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Abstract

We consider incorporating action elimination
procedures in reinforcement learning algo-
rithms. We suggest a framework that is based
on learning an upper and a lower estimates
of the value function or the Q-function and
eliminating actions that are not optimal. We
provide a model-based and a model-free vari-
ants of the elimination method. We fur-
ther derive stopping conditions that guar-
antee that the learned policy is approxi-
mately optimal with high probability. Sim-
ulations demonstrate a considerable speedup
and added robustness.

1. Introduction

Reinforcement Learning (RL) has emerged in the re-
cent decade as unified discipline for adaptive con-
trol of dynamic environments (e.g., Barto & Sut-
ton, 1998). A common problem with many RL al-
gorithms is a slow convergence rate, even for relatively
small problems. For example, consider the popular Q-
learning algorithm (Watkins, 1989) which is essentially
an asynchronous stochastic approximation algorithm
(Bertsekas & Tsitsiklis, 1996). Generic convergence
rate bounds for stochastic approximation (e.g., Borkar
& Meyn, 2000) or specific rates for Q-learning (see
Kearns & Singh, 1998; Even-Dar & Mansour, 2001)
are somewhat disappointing.

The problem of finding optimal policies in Markov De-
cision Processes (MDPs) was the subject of intensive
research since the 1950’s. When the model is known,

and learning is not required there are several standard
methods for calculating the optimal policy - Linear
Programming, Value Iteration, Policy Iteration etc.,
see Puterman (1994) for a review. Starting from Mac-
Queen (1966) several algorithms that eliminate actions
were proposed. When the MDP model is known Ac-
tion Elimination (AE) serves two purposes: reduce the
size of the action sets to be searched at every iteration;
identify optimal policies when there is a unique opti-
mal policy. (In Value Iteration this is the only way
to reach optimal policy rather than ε-optimal policy.)
AE procedures became standard practice in solving
large practical MDPs and are considered state-of-the-
art. (See Puterman (1994) for more details.) In this
paper we consider the learning aspect of AE when the
model is not known.

In many applications the computational power is avail-
able but sampling of the environment is expensive. By
eliminating sub-optimal actions early in the learning
process, the total amount of sampling is reduced, lead-
ing to spending less time on estimating the parameters
of sub-optimal actions. The main motivation for ap-
plying AE in RL is reducing the amount of samples
needed from the environment. In addition to that, AE
in RL enjoys the same advantages as in MDPs - conver-
gence rate speedup and possibility to find an optimal
policy (rather than ε-optimal).

We suggest a framework for AE in RL. The underly-
ing idea is to maintain upper and lower estimates of
the value (or Q) function. When the expected upper
estimate of the return of a certain action falls below
the expected lower estimate of another action, the ob-
viously inferior action is eliminated. We suggest both,
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a model-based and a Q-learning style AE algorithms.
The upper and lower bounds are based on a large devi-
ations inequality, so that when an action is eliminated,
it is eliminated with high probability.

Stopping times that are based on generic convergence
rate bounds (as in Even-Dar & Mansour, 2001) are
overly conservative. We suggest a stopping time based
on the difference between the upper and lower bounds
of the value (or Q) function. We show that if the
difference is small, then the greedy policy with respect
to the lower estimate is almost optimal.

2. The Model

We define a Markov Decision process (MDP) as follows

Definition 2.1 A Markov Decision process (MDP)
M is a 4-tuple (S, A, P, R), where S is a set of the
states, A is a set of actions, P a

i,j is the transition prob-
ability from state i to state j when performing action
a ∈ A in state i, and R(s, a) is the reward received
when performing action a in state s.

A strategy for an MDP assigns, at each time t, for each
state s a probability for performing action a ∈ A, given
a history Ft−1 = {s1, a1, r1, ..., st−1, at−1, rt−1} which
includes the states, actions and rewards observed until
time t − 1. While executing a strategy π we perform
at time t action at in state st and observe a reward rt

(distributed according to R(s, a)), and the next state
st+1 distributed according to P at

st,st+1
. We combine

the sequence of rewards into a single value called the
return. Our goal is to maximize the return. In this
work we focus on the discounted return, which has a
parameter γ ∈ (0, 1), and the discounted return of
policy π is V π =

∑∞
t=0 γtrt, where rt is the reward

observed at time t. We also consider the finite horizon
return, V π =

∑H
t=0 rt for a given horizon H.

We assume that R(s, a) is non-negative and bounded
by Rmax, i.e., for every s, a : 0 ≤ R(s, a) ≤ Rmax

and for simplicity we assume that R(s, a) is determin-
istic and note that all the results apply for stochastic
rewards as well (under minor changes in the proof).
This implies that the discounted return is bounded
by Vmax = Rmax

1−γ ; for the finite horizon the return
is bounded by HRmax. We define a value func-
tion for each state s, under policy π, as V π(s) =
Eπ[

∑∞
i=0 riγ

i], where the expectation is over a run of
policy π starting at state s, and a state-action value
function Qπ(s, a) = R(s, a) + γ

∑
s′ P

a
s,s′V

π(s′). Simi-
larly, we define the value functions for the finite hori-
zon model.

Let π∗ be an optimal policy which maximizes the re-
turn from any start state. This implies that for any
policy π and any state s we have V π∗(s) ≥ V π(s), and
π∗(s) = argmaxa(R(s, a) + γ(

∑
s′ P

a
s,s′V

π∗(s′)). We
use V ∗ and Q∗ for V π∗ and Qπ∗ , respectively. We say
that a policy π is ε-optimal if ‖V ∗ − V π‖∞ ≤ ε. We
also define the policy Greedy(Q) as the policy that
prescribes in each state the action that maximizes the
Q-function in the state, i.e., π(s) = argmaxa Q(s, a).

For a given trajectory let: T s,a be the set of times in
which we perform action a in state s and T s,a,s′ be
a subset of T s,a in which we reached state s′. Also,
#(s, a, t) is the number of times action a is performed
in state s up to time t, i.e., |T s,a ∩ {1, 2, 3, . . . , t}|.
Next we define the empirical model. Given that
|T s,a| > 0 we define the next state distribution as

P̂ a
s,s′ = |T s,a,s′ |

|T s,a| and since the reward is deterministic

we have that R̂(s, a) = R(s, a). If |T s,a| = 0 the em-
pirical model and the reward can be chosen arbitrar-
ily. We define the expectation of the empirical model
as Ês,s′,a[V (s′)] =

∑
s′∈S P̂ a

s,s′V (s′). To simplify the
notations we omit s, a in the notations Ês′ whenever
evident.

We often use large deviation bounds in this paper.
Since we assume boundedness we can rely on Hoeffd-
ing’s inequality (We note that the boundedness as-
sumption is not essential and can be relaxed.)

Lemma 2.1 (Hoeffding, 1963) Let X be a set, D be
a probability distribution on X, and f1, ..., fm be real-
valued functions defined on X with fi : X → [ai, bi]
for i = 1, ..., m, where ai and bi are real numbers sat-
isfying ai < bi. Let x1, . . . , xm be IID samples from
D. Then we have the following inequality

P

[∣∣∣∣∣
1
m

m∑

i=1

fi(xi)−
(

1
m

m∑

i=1

∫ bi

ai

fi(x)D(x)

)∣∣∣∣∣ ≥ ε

]

≤ 2e
−2ε2m2 1∑m

i=1
(bi−ai)

2
.

3. Model-Based Learning

In this section we focus on model-based learning. In
the model-based methods, we first learn the model,
i.e., estimate the immediate reward and the next state
distribution. Then by either value iteration or pol-
icy iteration on the learned (empirical) model, we find
the exact optimal policy for the empirical model. If
enough exploration is done, this policy is an almost
optimal policy for the real model. We note that there
is an inherent difference between the finite horizon and
the infinite discounted return. Technically, the finite



horizon return is simpler than the discounted return,
as one can apply the large deviation bounds directly.
We provide model-based algorithms for both cases.

3.1. Finite Horizon

Let us first recall the classical Value Iteration equa-
tions for finite horizon:

V H(s) = max
a
{R(s, a) + Es′ [V H−1(s′)]}, H > 0

V 0(s) = max
a

R(s, a),

where V H(s) is the optimal value function for horizon
H. Given the empirical model by time t we define the
upper estimate V δ, which will be shown to satisfy for
every horizon k and every state s, V

k

δ (s) ≥ V k(s) with
high probability. For horizon H we define:

V
H

δ (s) = max
a

{
R(s, a) + Ês′ [V

H−1

δ (s′)] + (1)

HRmax

√
ln ( c|S||A|H2

δ )
|T s,a|

}
, H > 0

V
0

δ(s) = max
a

R(s, a), (2)

for some constant c > 2. Similarly to the upper bound
V

H

δ , a lower bound may be defined where the plus
sign before the last element of Eq. (1) is replaced by
a minus sign. We call this estimate the lower estimate
V H

δ . The following Lemma proves that V
H

δ (V H
δ ) is

indeed an upper (lower) estimation for any horizon.
(The proof appears in Appendix A.)

Lemma 3.1 Every state s and for every finite horizon
k, we have that V

k

δ (s) ≥ V k(s) ≥ V k
δ (s) with probabil-

ity at least 1− δ.

Consequently, a natural early stopping condition is to
stop sampling when ‖V H−V H‖∞ < ε. We do not pro-
vide here an algorithm, however a detailed algorithm
will be given in the following subsection.

3.2. Discounted Return - Infinite Horizon

In this subsection, we provide an upper estimate of the
value function V . The optimal value is the solution of
the set of the equations:

V ∗(s) = max
a
{R(s, a) + γEs′ [V ∗(s′)]}, s ∈ S.

As in Subsection 3.1, we provide an upper value func-
tion V δ, which satisfies with high probability V δ(s) ≥
V ∗(s). We define V δ as the solution of the set of equa-
tions:

V δ(s) = max
a

{
R(s, a)+γÊs′ [V δ(s′)]+Vmax

√
ln( 2|S| |A|

δ )
|T s,a|)

}

and Qδ as:

Qδ(s, a) = R(s, a)+γÊs′ [V δ(s′)]+Vmax

√
ln( 2|S| |A|

δ )
|T s,a| .

Similarly, we define V δ and Q
δ

as:

V δ(s) = max
a

{
R(s, a)+γÊs′V δ(s

′)−Vmax

√
ln( 2|S| |A|

δ )
|T s,a|)

}

Q
δ
(s, a) = R(s, a)+γÊs′ [V δ(s

′)]−Vmax

√
ln( 2|S| |A|

δ )
|T s,a| .

The next lemma shows that with high probability the
upper and lower estimations are indeed correct. (The
proof is deferred to Appendix B.)

Lemma 3.2 For every state s and action a with prob-
ability at least 1−δ we have that Qδ(s, a) ≥ Q∗(s, a) ≥
Q

δ
(s, a).

The AE procedure is demonstrated in the following al-
gorithm, which supplies a stopping condition for sam-
pling the model and eliminates actions when they are
clearly sub-optimal.

Input : MDP M , ε > 0, δ > 0
Output: A policy for M

Choose arbitrarily an initial state s0, let t = 0,
and let U0 = {(s, a)|s ∈ S, a ∈ A}
repeat

At state st perform any action a s.t. (st, a) ∈ Ut

Receive a reward rt, and a next state st+1

Compute, Qδ, Qδ
from all the samples

t = t + 1
Ut = {(s, a)|Qδ(s, a) ≥ V δ(s)}

until ∀(s, a) ∈ U |Qδ(s, a)−Q
δ
(s, a)| < ε(1−γ)

2 ;
return Greedy(Q

δ
)

Algorithm 1: Model-Based AE Algorithm

A direct corollary from Lemma 3.2, is a stopping time
condition to the Model-Based algorithm using the fol-
lowing Corollary.

Corollary 3.3 (Singh & Yee, 1994) If Q̃ is a function
such that |Q̃(s, a) − Q∗(s, a)| ≤ ε for all s ∈ S and
a ∈ A. Then for all s

V ∗(s)− V π̃(s) ≤ 2ε

1− γ
,

where π̃ = Greedy(Q̃).



Corollary 3.4 Supposed the Model-Based AE Algo-
rithm terminates. Then the policy, π, it returns is
ε-optimal with probability at least 1− δ.

Proof: By Lemma 3.2 we know that with probability
at least 1−δ for every s and a we have that Q

δ
(s, a) ≤

Q∗(s, a) ≤ Qδ(s, a). Therefore, with probability of at
least 1− δ the optimal action has not been eliminated
in any state. Furthermore, any action b in state s that
has not been eliminated satisfies Q∗(s, b)−Q

δ
(s, b) ≤

Qδ(s, b) − Q
δ
(s, b) ≤ ε(1−γ)

2 . The result follows by
Corollary 3.3.

4. Model-Free Learning

In this section we describe a model-free algorithm. We
use two functions Q

t
and Qt, which provide lower and

upper estimations on Q∗, respectively. We use these
functions to derive an asynchronous algorithm, which
eliminates actions and supplies stopping condition.
Let us first recall the Q-learning algorithm (Watkins,
1989). This algorithm requires space which is pro-
portional to the space used by Q-learning and con-
verges under the same conditions. The Q-learning al-
gorithm estimates the state-action value function (for
discounted return) as follows:

Q0(s, a) = 0,

Qt+1(s, a) = (1− αt(s, a))Qt(s, a) +
αt(s, a)(rt(s, a) + γV t(s′)),

where s′ is the state reached from state s when per-
forming action a at time t, and V t(s) = maxa Qt(s, a).
Set αt(s, a) = 1

#(s,a,t) for t ∈ T s′,a′ and 0 otherwise.
We define the upper estimation process as:

Q
0

δ(s, a) = Vmax ln (
c|S||A|

δ
),

Q
t+1

δ (s, a) = (1− αt(s, a))Q
t

δ(s, a) + αt(s, a) ·(
R(s, a) + γV

t

δ(s
′) + β(#(s, a, t))

)
,

where c > 4 and s′ is the state reached from state
s when performing action a at time t, V

t

δ(s) =
maxa Q

t

δ(s, a) and

β(k) =

√
ln(ck2|S||A|/δ)

k
.

Analogously, we define the lower estimate Q
δ

as :

Q0

δ
(s, a) = −Vmax ln (

c|S||A|
δ

),

Qt+1

δ
(s, a) = (1− αt(s, a))Qt

δ
(s, a) + αt(s, a)

(
R(s, a) + γV t

δ(s
′)− β(#(s, a, t))

)
,

Input : MDP M , ε > 0, δ > 0
Output: A policy for M

For every state action (s, a):
Q(s, a) = Vmax ln ( c|S||A|

δ )
Q(s, a) = −Vmax ln ( c|S||A|

δ )
#(s,a) = 1
Choose an arbitrary initial state s
repeat

Let U(s) = {a|Q(s, a) ≥ V (s)}
choose arbitrarily action a ∈ U(s), perform it and
observe the next state s′

Q(s, a) := (1 − 1
#(s,a) )Q(s, a) + 1

#(s,a)

(
R(s, a) +

γV (s′) + β(#(s, a))
)

Q(s, a) := (1 − 1
#(s,a) )Q(s, a) + 1

#(s,a)

(
R(s, a) +

γV (s′)− β(#(s, a))
)

#(s, a) := #(s, a) + 1; s = s′

until ∀s ∈ S ∀a ∈ U(s) |Q(s, a)−Q(s, a)| < ε(1−γ)
2 ;

return Greedy(Q)

Algorithm 2: Model-Free AE Algorithm

where V δ(s) = maxa Q
δ
(s, a). We claim that these

processes converge almost surely to Q∗. (The proof
appears in Appendix C.)

Proposition 4.1 If every state-action pair is per-
formed infinitely often then the upper (lower) estima-
tion process, Q

t

δ (Qt

δ
), converges to Q∗ with probability

one.

The following Proposition claims that Q
t

δ upper
bounds Q∗ and Qt

δ
lower bounds Q∗ with high proba-

bility. (The proof appears in Appendix D.)

Proposition 4.2 For every state action pair s, a and
time t with probability at least 1 − δ we have that
Q

t

δ(s) ≥ Q∗(s) ≥ Qt

δ
(s).

We combine the upper and lower estimates to an algo-
rithm, which eliminates sub optimal actions whenever
possible. Furthermore, the algorithm supplies a stop-
ping condition that assures a near optimal policy. The
model free AE algorithm is described in Algorithm 2.

A direct corollary from Proposition 4.2 is a stopping
condition to the model free AE algorithm. The follow-
ing corollary follows from Corollary 3.3 and its proof
is similar to the proof of Corollary 3.4.

Corollary 4.3 Suppose the Model-Free AE Algorithm
terminates. Then the policy, π, it returns is ε-optimal
with probability at least 1− δ.



0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

F
ra

ct
io

n 
of

 p
la

yi
ng

 9
9%

 o
pt

im
al

The queue problem: AE Vs. ε−greedy

AE Q−learning
 
 
ε−greedy Q−learning, ε =0.1

Figure 1. Example of a Queue of size 5 with three types of
packets with values 1, 20, 150. The discount factor is set
to 0.99. We disregard the full queue state in which every
action is optimal. We repeated each experiment 15 times
and the error bars represent 1 standard deviation.

5. Experiments

In this section we show four types of MDPs in which
the number of samples used by AE procedures is sig-
nificantly smaller than the number of samples used by
standard Q-learning and ε-greedy Q-learning. Both
model free AE algorithm and standard Q-learning
choose the action in each state uniformly at ran-
dom. In our experiments we focused on the steady
state norm (L1 weighted by steady state probabilities)
rather than the L∞ norm. We note that we use the
steady state rather than the discounted steady state.
We run AE Q-learning algorithm from Section 4 with
the same input (for actions that were not eliminated)
as a standard Q-learning algorithm. The following ex-
periments were conducted:

1. A queueing system. The MDP represents a
queueing problem that appears in Differentiated
Services (Aiello et al., 2000; Kesselman et al.,
2001). The basic settings are that the arriving
packets have different values and they are buffered
in a FIFO queue to be sent. The major constraints
are that we reject or accept a packet upon its ar-
rival (no preemption) and that the buffer has lim-
ited capacity. We have looked on a queue of size
five and three different packets values, 1, 20, 150.
In each time unit we either receive a packet or
send a packet according to some distribution. We
modelled the queueing problem via a discounted
MDP with discount factor γ = 0.99. The AE
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Figure 2. Example of a 20 state sparse randomly gener-
ated MDPs with 50 actions in each state, where γ = 0.833
(as in Puterman, 1994.) The precision is the distance of
the Q-function from the optimal Q-function. We repeated
each experiment 10 times and the error bars represent 1
standard deviation.

model free algorithm was compared with epsilon
greedy Q-learning with epsilon varying from 0.05
to 0.2. In Figure 1 we present the results for ε
which was empirically best, ε = 0.1. In this ex-
periment we used a fixed step size. Rather than
looking on distance from the optimal value, we
focused here on the fraction of times in which
optimal actions were performed. The results are
demonstrated in Figure 1, in which we see that
not only AE has better results but the variance
in the results is much smaller. While not shown
in Figure 1, the AE was superior in terms of the
value function as well. (The output policy of the
AE Q-learning algorithm achieved on average 85%
of the optimal value function, while the ε-greedy
output policy achieved about 70% of the optimal
value function.)

2. Random MDPs. The random MDPs are ran-
domly generated MDPs with 20 states each and
50 actions in each state. The first one is due
to Puterman (1994) and is a sparse MDP, such
that each action can reach only three states. The
second random MDP is a dense MDP, such that
the next state distribution is randomly chosen for
each state-action pair and might include all states.
For both MDPs the immediate reward expecta-
tion is randomly chosen in the interval [0, 10]. Re-
sults of ten runs are presented by Figure 2 for the
sparse MDP, in this experiment the model free
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Figure 3. Example of a 20 state dense randomly generated
MDPs with 50 actions in each state, γ = 0.9. The error
bars represent 1 standard deviation.

AE algorithm needs only about half the samples
used by the Q-learning to achieve the same pre-
cision. The precision is measured as the distance
of the Q-function from the optimal function in
steady state norm. In Figure 3 for dense MDP, the
results are similar. The AE algorithm required
about 40% fewer samples.

3. Howard’s automobile replacement prob-
lem. This MDP represents another realis-
tic problem—Howard’s automobile replacement
problem (Howard, 1960). This problem contains
40 states, in each state there are 41 actions. See
Howard (1960) for a detailed description. This
problem was considered as a benchmark by sev-
eral authors in the optimization community. We
run the model free AE algorithm for this problem
with discount factor γ = 0.833 against standard
Q-learning and the results appear in Figure 4. A
significant improvement is evident.

6. Future Directions

Extending the concept of action elimination to large
state spaces is probably the most important direction.
The extension to function approximation, which ap-
proximate the value function, requires some assump-
tions on the value (or Q) function approximation ar-
chitecture. Following Kakade and Langford (2002) we
can consider value functions that can be approximated
under the infinity norm. For an example of such an al-
gorithm see Ormoneit and Sen (2002). If convergence
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Figure 4. Example of Howard’s Automobile Replacement
Problem, where the discount factor, γ, is 0.833. The norm
is the steady state norm. The error bars represent 1 stan-
dard deviation.

rate of the function approximation is provided, as in
Ormoneit and Sen (2002), then an AE procedure can
be derived as before.
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Appendix

A. Proof of Lemma 3.1

We prove the claim by induction. For the base of
the induction we have that for every state s V

0

δ(s) =
V 0(s) = R(s, a). Next we assume that the claim holds
for i ≤ k and prove for k + 1 and for every action a.
By definition V

k+1

δ (s) satisfies for every a that

V
k+1

δ (s) ≥ R(s, a) + Ês′ [V
k

δ (s′)] +

kRmax

√
ln ( c|S||A|k2

δ )
|T s,a|

≥ R(s, a) + Ês′ [V k(s′)] +

kRmax

√
ln ( c|S||A|k2

δ )
|T s,a| ,

where the second inequality follows from the inductive
assumption. Note that V k is not a random variable,
so we can bound the last expression using Hoeffding’s
inequality. We arrive at:

P



Ês′ [V k(s′)] + kRmax

√
ln ( c|S||A|k2

δ )
|T s,a| < Es′ [V k(s′)]





≤ e

− ln (
c|S||A|k2

δ
)|T s,a|

(
kRmax√
|T s,a|

)2

(kRmax)2 =
δ

c|S||A|k2
.

Therefore, we have that with high probability the fol-
lowing holds

V
k+1

δ (s) ≥ R(s, a) + Ês′ [V k(s′)] +

kRmax

√
ln ( c|S||A|k2

δ )
|T s,a|

≥ R(s, a) + Es′ [V k(s′)]
= V k+1(s′).

Using the union bound over all state-action pairs and
all finite horizons k, we obtain that the failure proba-
bility is bounded by δ/2 for large enough c. Repeating
the same argument for the lower estimate and applying
the union bound completes the proof.

B. Proof of Lemma 3.2

Suppose we run a value iteration algorithm on the em-
pirical model. Let V

k

δ be the kth iteration of the value
function algorithm, and let Q

k

δ be the associated Q-
function, that is Q

k

δ (s, a) = R(s, a) + γÊs′ [V
k

δ (s′)] +

Vmax

√
ln(

2|S||A|
δ )

T s,a . Assume that we start with V
0

δ =
V ∗. (The use of V ∗ is restricted to the proof and
not used in the algorithm.) We need to prove that
Qδ(s, a) ≥ Q∗(s, a) for every s and a. Note that
since the value iteration converges, Q

k

δ converges to
Qδ. We prove by induction on the number of the
iterations that if we take V

0

δ = V ∗ then with high
probability for every k we have that Q

k

δ ≥ Q
k−1

δ , i.e.
P[∀k Q

k

δ ≥ Q
k−1

δ ] ≥ 1 − δ/2. For the basis, since
V ∗ is not a random variable we can apply Hoeffding’s
inequality and obtain that for every state action pair
s, a

P
{
Ês′ [V ∗(s′)] + Vmax

√
ln(2|S||A|

δ )
|T s,a| < Es′ [V ∗(s′)]

}

≤ e− ln(
2|S||A|

δ ) =
δ

2|S||A| ,



Since V
0

δ(s) = V ∗ we have that Q
1

δ(s, a) = R(s, a) +

γÊs′ [V
0

δ(s′)] + Vmax

√
ln(

2|S||A|
δ )

|T s,a| . Therefore, Q
1

δ ≥ Q
0

δ

with probability 1 − δ/2. For the induction step, we
assume that the claim holds for i < k and prove for k.

Q
k

δ (s, a)−Q
k−1

δ (s, a) = γÊs′ [V
k−1

δ (s′)− V
k−2

δ (s′)].

Since V
k−1

δ (s′) = maxa Q
k−1

δ (s′, a) we have by the in-
duction that for every s,

V k−1
δ (s) = max

a
Q

k−1

δ (s, a) ≥ max
a

Q
k−2

δ (s, a) = V k−2
δ (s).

So that Q
k

δ − Q
k−1

δ ≥ 0. We conclude that P[Qδ ≥
Q∗] ≥ 1 − δ/2. Repeating the same argument for
the lower estimate, Q

δ
, and applying the union bound

completes the proof.

C. Proof of Proposition 4.1

In order to show the almost sure convergence of the
upper and lower estimations, we follow the proof of
Bertsekas and Tsitsiklis (1996). We consider a gen-
eral type of iterative stochastic algorithms, which is
performed as follows:

Xt+1(i) = (1−αt(i))Xt(i)+αt(i)((HXt)(i)+wt(i)+ut(i)),

where wt is a bounded random variable with zero ex-
pectation and each H is a pseudo contraction mapping
(See Bertsekas and Tsitsiklis (1996) for details).

Definition C.1 An iterative stochastic algorithm is
well behaved if:

1. The step size αt(i) satisfies (1)
∑∞

t=0 αt(i) = ∞,
(2)

∑∞
t=0 α2

t (i) < ∞ and (3) αt(i) ∈ (0, 1).

2. There exists a constant A that bounds wt(i) for
any history Ft, i.e., ∀t, i : |wt(i)| ≤ A.

3. There exists γ ∈ [0, 1) and a vector X∗ such that
for any X we have ||HX − X∗|| ≤ γ||X − X∗||,
where || · || is any norm.

4. There exists a nonnegative random sequence θt,
that converges to zero with probability 1, and is
such that

∀i, t |ut(i)| ≤ θt(||Xt||+ 1)

We first note that the Q-learning algorithm satisfies
the first three criteria and the fourth criteria holds
trivially since ut = 0, thus its convergence follows (see
Proposition 5.6 in Bertsekas & Tsitsiklis, 1996). The
upper estimate has an additional noise term, ut. If we
show that it satisfies the fourth requirement, then the
convergence will follow.

Lemma C.1 The upper estimation algorithm is well
behaved.

Proof: In the convergence proof of Q-learning, it was
shown that requirements 1–3 are satisfied, this implies
that the upper estimates satisfies them as well. Now

we let ut = θt = c
√

ln(#(s,a,t))
#(s,a,t) Vmax. θt clearly con-

verges to zero, thus

|ut(i)| = θt ≤ θt(||Xt||+ 1).

Similar result holds for the lower estimate as well.

D. Proof of Proposition 4.2

We use induction on the time t to show that for every
state-action pair the following holds

P
{
∀t′ ≤ t Q

t′

δ (s, a) < Q∗(s, a)
}
≤

#(s,a,t)∑

i=1

δ

c|S||A|i2 .

For the induction basis we have that for every state-
action pair :Q

1

δ(s, a) ≥ Q∗(s, a). We assume that the
claim holds for k < t and prove for t. Suppose that
action a is performed at state s at time t, thus for
every other state-action pair the claim holds. Let ti
be the time were action a was performed at state s for
the ith time. Let si be the next state at time ti + 1.
For s, a we have that,

Q
t

δ(s, a) =
1

#(s, a, t)

#(s,a,t)∑

i=1

(R(s, a) + γV
ti

δ (si) + β(i))

≥ 1
#(s, a, t)

#(s,a,t)∑

i=1

(R(s, a) + γV ∗(si))

+

√
ln(c#(s, a, t)2|S||A|/δ)Vmax

#(s, a, t)
,

where the last expression can be bounded with high
probability using Hoeffding’s inequality

P
{ 1

#(s, a, t)

#(s,a,t)∑

i=1

(R(s, a) + γV ∗(si)) +

√
ln(c#(s, a, t)2|S||A|/δ)Vmax

#(s, a, t)
< Q∗(s, a)

}

≤ δ

c|S||A|#(s, a, t)2
,

which completes the induction by using the union
bound. Repeating the same argument for the lower
estimate completes the proof.


