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Abstract
In this paper we analyze the most popular
evaluation metrics for separate-and-conquer rule
learning algorithms. Our results show that all
commonly used heuristics, including accuracy,
weighted relative accuracy, entropy, Gini index
and information gain, are equivalent to one of
two fundamental prototypes: precision, which
tries to optimize the area under the ROC curve for
unknown costs, and a cost-weighted difference
between covered positive and negative examples,
which tries to find the optimal point under known
or assumed costs. We also show that a straight-
forward generalization of them-estimate trades
off these two prototypes.

1. Introduction

Most rule learning algorithms for classification problems
follow the so-calledseparate-and-conqueror covering
strategy, i.e., they learn one rule at a time, each of them
explaining (covering) a part of the training examples. The
examples covered by the last learned rule are removed from
the training set (separated) before subsequent rules are
learned (before the remaining training examples arecon-
quered). Typically, these algorithms operate in aconcept
learning framework, i.e., they expect positive and negative
examples for an unknown concept. From this training data,
they learn a set of rules that describe the underlying con-
cept, i.e., that explain all (or most) of the positive exam-
ples and (almost) none of the negative examples. If any of
the learned rules fires for a given example, the example is
classified as positive. If none of them fires, the example
is classified as negative. This corresponds to theclosed-
world assumptionin the semantics of theories (rule sets)
and clauses (rules) in PROLOG.

Various approaches that adhere to this framework differ in
the way single rules are learned (Fürnkranz, 1999). The

vast majority of algorithms uses a greedy top-down hill-
climbing or beam search strategy, other approaches search
bottom-up or apply exhaustive or evolutionary search algo-
rithms. Common to all algorithms is that they have to use
a metric for evaluating the quality of a candidate rule.

Note that rule learning algorithms that are based on iter-
ative refinement of candidate rules typically use the same
metric for evaluating complete and incomplete rules. While
the evaluation of complete rules should measure the rule’s
potential of classifying unseen test cases, the evaluation of
an incomplete rule should capture its potential to be refined
into a high-quality complete rule. In this case, the evalu-
ation metric is used as asearch heuristic. We note that,
in principle, different types of search heuristics are possi-
ble (cf. also Section 5), but, like all refinement-based rule
learning algorithms, we will not further differentiate be-
tween evaluation metrics and search heuristics, and use the
terms interchangeably in the remainder of the paper.

The outline of the paper is as follows. In Section 2 we give
some formal definitions used in the rest of the paper. In
Section 3 we present our main analysis tool: isometrics in
PN-space (a variant of ROC space). Section 4 is the main
part of the paper, presenting our analysis of rule learning
heuristics through isometric plots. Section 5 discusses the
main implications of the analysis, and Section 6 concludes.

2. Formalities

In the remainder of the paper, we use capital letters to de-
note the total number of positive (P ) and negative (N ) ex-
amples in the training set, whereasp(r) andn(r) are used
for the respective number of examples covered by a rule
r. Heuristics are two-dimensional functions of the form
h(p, n). We use subscripts to the letterh to differentiate
between different heuristics. For brevity and readability,
we will abridgeh(p(r), n(r)) with h(r), and omit the ar-
gument(r) from functionsp, n, andh when it is clear from
the context,
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Definition 2.1 (compatible) Two search heuristicsh1 and
h2 arecompatibleiff for all rules r, s:
h1(r) > h1(s) ⇔ h2(r) > h2(s).

Definition 2.2 (antagonistic) Two search heuristicsh1

andh2 areantagonisticiff for all rules r, s:
h1(r) > h1(s) ⇔ h2(r) < h2(s).

Definition 2.3 (equality-preserving) Two search heuris-
tics h1 andh2 are equality-preservingiff for all rules r, s:
h1(r) = h1(s) ⇔ h2(r) = h2(s).

Theorem 2.4 Compatible or antagonistic search heuris-
tics are equality-preserving.

Proof: Assume they would not be equality-preserving.
This means there exist rulesr ands with h1(r) = h2(s)
but h2(r) 6= h2(s). Without loss of generality assume
h2(r) > h2(s). This implies thath1(r) > h1(s) (for com-
patibility) or h1(r) < h1(s) (for antagonicity). This leads
to a contradiction. 2

Definition 2.5 (equivalence)Two search heuristicsh1

and h2 are equivalent(h1 ∼ h2) if they are either com-
patible or antagonistic.

Basically, we consider two heuristics as equivalent if they
order a set of candidate rules in the same or the opposite
way.

3. PN-spaces and Isometrics

We will visualize the behavior of a search heuristich by
plotting it in a rectangular window with two axes repre-
senting the positive and negative examples covered by a
rule. In thisPN-space, a point (n, p) ∈ [0, N ] × [0, P ]
represents a rule coveringp positive and andn negative ex-
amples.1 With each such point, we associate its heuristic
valueh(p, n) and draw the isometrics of the functionh.

Definition 3.1 (isometric) An isometricof a heuristich is
a line (or curve) in PN-space that connects, for some value
c, all points(n, p) for whichh(p, n) = c.

The importance of isometrics is reflected in the definitions
in the previous section: Equality-preserving search heuris-
tics can be recognized by examining their isometrics and
establishing that for each isometric line forh1 there is
an identical isometric lineh2. Compatible (antagonistic)
search heuristics can be recognized by investigating corre-
sponding isometrics and establishing that their associated
heuristic values are in the same (the opposite) order.

Note that PN-graphs are essentially equivalent to the graphs
that are used in ROC analysis (e.g., Provost & Fawcett,
2001): A PN-graph can be turned into a ROC graph by sim-

1In all figures, we will assumeP < N . This choice was made
for esthetic reasons and does not affect our results.

Table 1. PN-spaces vs. ROC-spaces.
property ROC-space PN-space
x-axis FPR =n

N n
y-axis TPR =p

P p
empty theory (0, 0) (0, 0)
correct theory (0, 1) (0, P )
universal theory (1, 1) (P,N)
resolution ( 1

P , 1
N ) (1, 1)

slope of diagonal 1 P
N

slope ofp = n line N
P 1

ply normalizing theP andN -axes to the scale[0, 1]×[0, 1].
Consequently, the isometrics of a function in a PN-graph
are equivalent to its isometrics in ROC-space (Flach, 2003).
Nevertheless, PN-graphs have several interesting properties
that may be of interest depending on the purpose of the vi-
sualization. Table 1 compares some of the properties of
PN-curves to those of ROC-curves. A more detailed dis-
cussion can be found in (Fürnkranz & Flach, 2003).

Of particular interest for the covering approach is the prop-
erty that PN-graphs reflect a change in the total number or
proportion of positive (P ) and negative (N ) training exam-
ples via a corresponding change in the relative sizes of the
P andN -axes. ROC analysis, on the other hand, would
rescale the new dimensions to the range[0, 1], which has
the effect of changing the slope of all lines that depend on
the relative sizes ofp andn. Therefore, the PN-graph for a
subset of a training set can be drawn directly into the PN-
graph of the entire set. In particular, the sequence of train-
ing sets that are produced by the recursive calls of the cov-
ering strategy—after each new rule all training examples
that are covered by this rule are removed from the training
set and the learner calls itself on the remaining examples—
can be visualized by a nested sequence of PN-graphs (see
Figure 6).

4. Analysis

The ultimate goal of learning is to reach point(0, P ) in PN-
space, i.e., to learn a correct theory that covers all positive
examples, but none of the negative examples. This will
rarely ever be achieved in a single step, but a set of rules
will be needed to meet this objective. The purpose of a rule
evaluation metric is to estimate how close a rule takes you
to this ideal point.

In the following, we analyze the most commonly used met-
rics for evaluating the quality of a rule in covering algo-
rithms. Because of space restrictions, we cannot reference
each occurrence in the literature, but we have to refer the
reader to the survey (Fürnkranz, 1999) to the longer version
of the paper (F̈urnkranz & Flach, 2003).



Figure 1. Isometrics for minimizing false positives and for maxi-
mizing true positives.

4.1. Basic Heuristics

Clearly, each rule in a correct theory has to cover a subset
of the positive examples but none of the negative exam-
ples. This property can simply be measured by counting
the number of covered negative examples for each individ-
ual rule. Alternatively, one can also try to cover all positive
examples “at all costs”, i.e., regardless of how many neg-
ative examples are covered. This is equivalent torecall in
information retrieval. Two heuristics that implement these
strategies are

hn = −n hp = p

Figure 1 shows their isometrics: vertical and horizontal
lines. All rules that cover the same number of negative
(positive) examples are evaluated equally, irrespective of
the number of positive (negative) examples they cover.

4.2. Accuracy, WRA, General Costs

Both basic heuristics have the disadvantage that they focus
only on one aspect: covering positive examples or exclud-
ing negative examples. Ideally, one would like to achieve
both goals simultaneously. A straight-forward solution is
to simply add uphn andhp:

hacc = p− n

The isometrics for this function are shown on the left graph
of Figure 2. Note that the isometrics all have a45o angle,
which means that this heuristic optimizes accuracy:

Theorem 4.1 hacc is equivalent to accuracy.

Proof: The accuracy of a theory (which may be a single
rule) is the proportion of correctly explained examples, i.e.,
positive examples that are covered (p) and negative exam-
ples that are not covered (N −n), in all examples (P +N ).
Thus the isometrics are of the formp+(N−n)

P+N = c. As P
andN are constant, these can be transformed into the iso-
metrics ofhacc: p− n = cacc = c(P + N)−N . 2

Optimizing accuracy gives equal weight to covering a sin-
gle positive example and excluding a single negative ex-

Figure 2. Isometrics for accuracy and weighted relative accuracy

ample. There are cases where this choice is arbitrary, for
example when misclassification costs are not known in ad-
vance or when the samples of the two classes are not rep-
resentative. In such cases, it may be advisable to normalize
with sample size:

hwra =
p

P
− n

N
= TPR− FPR

The isometrics of this heuristic are shown in the right half
of Figure 2. The main difference to accuracy is that the iso-
metrics are now parallel to the diagonal, which reflects that
we now give equal weight to increasing the true positive
rate (TPR) or to decreasing the false positive rate (FPR).

Note that hwra may be viewed as a simplification of
weighted relative accuracy(Lavrǎc et al., 1999).

Theorem 4.2 hwra is equivalent to weighted relative ac-
curacy.

Proof: Weighted relative accuracy is defined ashwra’ =
p+n
P+N ( p

p+n −
P

P+N ). Using equivalence-preserving trans-
formations (multiplications with constant values like
P + N ), we obtainhwra’ = 1

P+N (p−p P
P+N −n P

P+N ) ∼
p N

P+N − n P
P+N ∼ pN − nP ∼ p

P −
n
N = hwra. 2

The two PN-graphs of Figure 2 are special cases of a func-
tion that allows to incorporate arbitrary cost ratios between
false negatives and false positives. The general form of this
linear cost metricis

hcosts= ap− bn ∼ cp− (1− c)n ∼ p− dn

Obviously, the accuracy isometrics can be obtained with
a = b = d = 1 or c = 1/2, and the isometrics of weighted
relative accuracy can be obtained by settinga = 1/P and
b = 1/N or c = N/(P + N) or d = P/N . In general, the
slope of the parallel isometrics in the PN-graph isc−1

c .

4.3. Precision

The most commonly used heuristic for evaluating single
rules is to look at the proportion of positive examples in all
examples covered by the rule. This metric is known under
many different names, e.g.,confidencein association rule



Figure 3. Isometrics for precision and entropy

mining, orprecisionin information retrieval. We will use
the latter term:

hpr =
p

p + n

Figure 3 shows the isometrics for this heuristic. Likehp,
precision considers all rules that cover only positive exam-
ples to be equally good (theP -axis), and likehn, it consid-
ers all rules that only cover negative examples as equally
bad (theN -axis). All other isometrics are obtained by ro-
tation around the origin(0, 0), for which the heuristic value
is undefined.

Several other, seemingly more complex heuristics can be
shown to be equivalent to precision. For example, the
heuristic that is used for pruning inRipper (Cohen, 1995):

Theorem 4.3 Ripper’s pruning heuristichrip = p−n
p+n is

equivalent to precision.

Proof: hrip = p
p+n − (1− p

p+n ) = 2hpr − 1 2

In subsequent sections, we will see that more complex
heuristics, like entropy and Gini index, are also equivalent
to precision. On the other hand, seemingly minor modifi-
cations like the Laplace orm-estimates are not.

4.4. Information Content, Entropy and Gini index

Some algorithms measure the information content

hinfo = − log2

p

p + n

Theorem 4.4 hinfo and hpr are antagonistic and thus
equivalent.

Proof: hinfo = − log2 hpr, thushinfo(r) > hinfo(s) ⇔
hpr(r) < hpr(s). 2

The use of entropy (in the form of information gain) is very
common in decision tree learning (Quinlan, 1986), but has
also been suggested for rule learning in the original version
of CN2 (Clark & Niblett, 1989).

hent = −(
p

p + n
log2

p

p + n
+

n

p + n
log2

n

p + n
)

Entropy is not equivalent to information content and preci-
sion, even though it seems to have the same isometrics as
these heuristics (see Figure 3). The difference is that the
isometrics of entropy go through the undefined point(0, 0)
and continue on the other side of the45o diagonal. The
motivation for this is that the original version of CN2 did
not assume a positive class, but labeled its rules with the
majority class (i.e., it learned decision lists). Thus rules
r = (n, p) ands = (p, n) are considered to be of equal
quality because if one of them can be used for predicting
the positive class, the other can be used for predicting the
negative class.

Based on this, we can, however, prove the following

Theorem 4.5 hentandhpr are antagonistic forp ≥ n and
compatible forp ≤ n. .

Proof: hent = −hpr log2 hpr−(1−hpr) log2 (1− hpr)
with hpr ∈ [0, 1]. This function has its maximum at
hpr = 1/2 ⇔ p = n. From the fact that it is strictly
monotonically increasing forp ≤ n follows thathpr(x) <
hpr(y) ⇒ hent(x) < hpr(y) in this region. Analogously,
hpr(x) < hpr(y) ⇒ hent(x) > hpr(y) for p ≥ n, where
hent is monotonically decreasing inhpr. 2

In decision tree learning, the Gini index is also a very pop-
ular heuristic. To our knowledge, it has not been used in
rule learning, but we list it for completeness:

hgini = 1−
(

p

p + n

)2

−
(

n

p + n

)2

∼ pn

(p + n)2

The Gini index has the same isometric structure as entropy,
it only differs in the distribution of the values (hence the
lines of the contour plot are little denser near the axes and
less dense near the diagonal). This, however, does not
change the ordering of the rules.

Theorem 4.6 hgini andhentare equivalent.

Proof: Like entropy, the Gini index can be formulated in
terms ofhpr (hgini = hpr(1 − hpr)) and both functions
have essentially the same shape. 2

4.5. Information Gain

Next, we will look at Foil’s version of information gain
(Quinlan, 1990), which, unlikeID3’s andC4.5’s version
(Quinlan, 1986), is tailored to rule learning, where one only
needs to optimize one successor branch as opposed to the
multiple successor nodes in decision tree learning. It dif-
fers from the heuristics mentioned so far in that it does not
evaluate an entire rule, but only the effect of specializing a
rule by adding a condition. More precisely, it computes the
difference in information content of the current rule and its
predecessorr′, weighted by the number of covered positive



Figure 4. Isometrics for information gain as used inFoil. The
curves show different valuesc for the precision of the parent rule.

examples (as a bias for generality). The exact formula is2

hfoil = p(log2

p

p + n
− log2 c)

wherec = hpr(r′) is the precision of the parent rule. For
the following analysis, we will viewc as a parameter taking
values in the interval[0, 1].

Figure 4 shows the isometrics ofhfoil for four different
settings ofc. Although the isometrics are non-linear, they
appear to be linear in the region above the isometric that
goes through(0, 0). Note that this isometric, which we
will call the base line, has a slope of c

1−c : In the first graph

(c = P
P+N ) it is the diagonal, in the second graph (c = 1/2)

it has a45o slope, and in the lower two graphs (c = 1 and
c = 10−6) it coincides with the vertical and horizontal axes
respectively. From these graphs, it can be seen that above
the base line, information gain is equivalent to the linear
cost metrichcosts.

It is hard to explain the non-linear isometrics below the
base line. However, note that this region corresponds to
the cases where the precision of the rule is smaller thanc,
i.e., smaller than the precision of its parent rule. Such a re-
finement of a rule is usually not considered to be relevant.
In fact, this is also the region where the information gain is
negative, i.e., an information loss. The base line has infor-
mation gain 0, and the linear isometrics above it all have an
increasingly positive gain.

These graphs lead us to formulate the following

2This formulation assumes that we are learning in a propo-
sitional setting. For relational learning,Foil does not estimate
the precision from the number of covered instances, but from the
number ofproofsfor those instances.

Figure 5. Isometrics for them-estimate

Conjecture 4.7 For p > c
1−cn: hfoil is equivalent to

hcosts(wherec ∈ [0, 1] is the precision of the parent clause
in hfoil and1− c is the cost parameter inhcosts).

4.6. Laplace andm-estimates

The Laplace andm-estimates (Cestnik, 1990) are very
common modifications ofhpr.

hlap =
p + 1

p + n + 2
hm =

p + m P
P+N

p + n + m

The basic idea of these estimates is to assume that each
rule covers a certain number of examplesa priori. They
compute a precision estimate, but start to count covered
positive or negative examples at a number> 0. With the
Laplace estimate, both the positive and negative coverage
of a rule are initialized with 1 (thus assuming an equal prior
distribution), while them-estimate assumes a prior total
coverage ofm examples which are distributed according
to the distribution of positive and negative examples in the
training set.

In the PN-graphs, this modification results in a shift of the
origin of the precision isometrics to the point(−nm,−pm),
wherenm = pm = 1 in the case of the Laplace heuris-
tic, andpm = m ∗ P/(P + N) andnm = m − pm for
the m-estimate (see Figure 5). The resulting pattern of
isometrics is symmetric around the line that goes through
(−nm,−pm) and (0, 0). Thus, the Laplace estimate is
symmetric around the45o line, while them-estimate is
symmetric around the diagonal of the PN-graph.

Another noticeable effect of the transformation is that the
isometrics in the relevant window(0, 0) − (P,N) become
increasingly parallel to the symmetry line, the farther the
origin moves away from(0, 0). For m → ∞, the isomet-
rics of them-estimate converge towards the isometrics of
relative weighted accuracy (see theorem 4.8 below).



4.7. The Generalizedm-Estimate

The above discussion leads us to the following straight-
forward generalization of them-estimate, which takes the
rotation point of the precision isometrics as a parameter:

hgm =
p + mc

p + n + m
=

p + a

(p + a) + (n + b)

The second version of the heuristic basically defines the
rotation point by specifying its co-ordinates(−b,−a) in
PN-space (a, b ∈ [0,∞]). The first version usesm as a
measure of how far from the origin the rotation point lies
using the sum of the co-ordinates as a distance measure.
Hence, all points with distancem lie on the line that con-
nects(0,−m) with (−m, 0), andc specifies where on this
line the rotation point lies. For example,c = 0 denotes
(0,−m), whereasc = 1 means(−m, 0). The line that
connects the rotation point and(0, 0) has a slope of1−c

c .
Obviously, both versions ofhgm can be transformed into
each other by choosingm = a+ b andc = a

a+b or a = mc
andb = m(1− c).

Theorem 4.8 For m = 0, hgm is equivalent tohpr, while
for m →∞, its isometrics converge tohcosts.

Proof: m = 0: trivial.
m → ∞: By construction, an isometric ofhgm through
the point(n, p) connects this point with the rotation point
(−(1− c)m,−cm) and has the slope p+cm

n+(1−c)m . Form →
∞, this slope converges toc

1−c for all points(n, p). Thus
all isometrics converge towards parallel lines with the slope

c
1−c . 2

Theorem 4.8 shows thathgm may be considered as a gen-
eral model of heuristic functions with linear isometrics that
has two parameters:c ∈ [0, 1] for trading off the misclas-
sification costs between the two classes, andm ∈ [0,∞]
for trading off between precisionhpr and the linear cost
metric hcosts.

3 Therefore, all heuristics discussed in this
paper may (at least in their relevant regions) be viewed as
equivalent to some instantiation of this general model.

5. Discussion

In the previous section we have identified two fundamental
types of rule learning heuristics: precisionhpr, which ro-
tates around the origin(0, 0), andhcostswhich covers the

3The reader may have noted that form → ∞, hgm→ c for
all p andn. Thus form =∞, the function does not have isomet-
rics because all evaluations are constant. However, this is not a
problem for the above construction because we are not concerned
with the isometrics of the functionhgm at the pointm =∞, but
with the convergence of the isometrics ofhgm for m → ∞. In
other words, the isometrics ofhcostsare not equivalent to the iso-
metrics ofhgm for m = ∞, but they are equivalent to the limits
to which the isometrics ofhgmconverge ifm→∞.

Figure 6. Accuracy and precision in nested PN-spaces.

PN-space with parallel lines. We have also seen thathgm
can be used for trading off between the two basic models.
In this section, we will discuss a few interesting differences
betweenhpr andhcosts.

A property that makeshcostsattractive for covering al-
gorithms is that a local optimum in the subspacePNi,
which corresponds to the examples that remain after reach-
ing pointRi, is also optimal in the global PN-space. This
is because all isometrics are parallel lines with the same
angle, and nested PN-spaces (unlike nested ROC-spaces)
leave angles invariant. Precision, on the other hand, cannot
be nested in this way. The evaluation of a given rule de-
pends on its location relative to the origin(0, 0) of the cur-
rent subspacePNi. This is illustrated in Figure 6, where
the subspacesPNi correspond to the situation after remov-
ing all examples covered by the rule set{Rj |j ≤ i}.

Also note that at each point(n, p), hpr is equivalent to
hcostsfor c = n

p+n (the slope of the line connecting(0, 0)
with (n, p) is 1−c

c = p/n). Thus, one may say thathpr
assumes a different cost model for each point in the space,
depending on the relative frequencies of the covered posi-
tive and negative examples.

Why such locally changing costs may nevertheless be a rea-
sonable strategy becomes clear when we look at how suc-
cessive rules are learned (see Figure 6).hpr needs to be
evaluated locally in the PN-spacePNi that results from re-
moving all examples already covered by previously learned



rulesRi. The metric then picks the ruleRi+1 that promises
the steepest ascent for a continuation of the ROC curve that
already leads from the origin toRi. However, whilehpr
makes a locally optimal choice for a continuation of the
ROC curve, this choice need not be globally optimal be-
cause a rule with a slightly worse local evaluation may lead
to a much better situation for learning the next rule, and
thus eventually to a better overall theory.4

In brief we may say thathpr aims at optimizing under un-
known costs by (locally) maximizing the area under the
ROC curve, whereashcoststries to directly find a (global)
optimum under known (or assumed) costs. For example, if
the pointR2 in Figure 6 could be reached in one step,hacc
would directly go there because it has the better global
value, whereashpr would nevertheless first learnR1 be-
cause it promises a greater area under the ROC curve.

An interesting phenomenon is that several heuristics mod-
ify their cost model based on the properties of the PN-
space. For example, relative weighted accuracy always as-
sumes costs that are parallel to the main diagonal. Sim-
ilarly, we have seen thatFoil’s information gain assumes
costs that are parallel to the distribution of examples that
are covered by the parent rule of the current rule. In effect,
such approaches may be seen as normalizing the example
distribution and assuming equal costs for positive and neg-
ative misclassificationrates(as opposed to the misclassifi-
cations themselves like accuracy does). As the successive
removal of covered examples will necessarily skew the ex-
ample distribution, this seems to be a particularly good idea
for covering approaches. On the other hand, if fewer and
fewer positive and negative examples remain, the resolu-
tion on the positive axis becomes increasingly problematic,
with the limiting case where the true positive rate is either
1 or 0 because there is only one positive example left to
cover. It is still largely an open question whether such a
normalization is beneficial or not.

We have also ignored the fact that a learner typically eval-
uates a large number of candidate rules, which makes it
quite likely that one of them fits the characteristics of the
training set by chance. One of the objectives of a heuristic
function should be to counter this phenomenon by giving
lower evaluations to rules in regions that can be expected
to be particularly sensitive to this overfitting problem. In
particular,hpr suffers from overfitting because one can al-

4A similar idea is used by (Ferri et al., 2002): they suggest
to maximize the area under the ROC curve by sorting all rules
that correspond to the leaves of a decision tree according tohpr.
The main difference is that in their setting the set of rules is
fixed, while in the covering approach rules are added incremen-
tally, and thus a different choice for one rule may lead to a com-
pletely different theory. However, one could use their method as
a post-processor for re-ordering and finding the right subset of the
learned rules.

ways find a rule that covers a single positive example and
no negative example, and such a rule has an optimal value
hpr = 1. For large example sets,hcostscan be expected
to be less prone to overfitting because it will typically be
easy to find a general rule that has a higher evaluation than
a rule that fits a single example (e.g., there will usually be
many rules that havehacc = p − n > 1). In fact, one
of the main reasons why the Laplace andm-estimates are
favored over precision was because they are less sensitive
to noise. Our interpretation of these estimates as ways of
trading off between precision and linear costs supports this
view. However, for small example sets, each rule will only
cover a few examples, causing the same type of problems.
As small training sets are typically bound to happen at the
end of the covering phase,hcostswill eventually also over-
fit. Typically, the problem of overfitting is addressed with
a separate set of heuristics, so-calledstopping criteria. In
principle, stopping criteria decide which point of a ROC-
curve should be selected. We plan a separate analysis of
this issue in forthcoming work.

In accordance with most rule learning algorithms, we also
tacitly made the assumption that incomplete rules (or in-
complete rule sets) should be evaluated in the same way as
complete rules (or complete theories). However, it should
be noted that this is not necessarily the case: the value
of an incomplete rule lies not in its ability to discriminate
between positive and negative examples, but in its poten-
tial of being refined into a high-quality rule. For example,
Gamberger and Lavrač (2002) argued that for incomplete
rules, it is more important to cover many positives (hence
a flatter slope is acceptable), while for complete rules it is
more important to cover as few negatives as possible (hence
a steeper slope). A similar argument has been made by
Bradley (1996) who argued that the non-linear isometrics
of the χ2 statistic should be used in order to discriminate
classifiers that do “little work” from classifiers that achieve
the same accuracy but are preferable in terms of other met-
rics like sensitivity and specificity.

Highly related is the work of Vilalta and Oblinger (2000)
who analyzed evaluation metrics by proposing a bias sim-
ilarity measure based on the area between isometric lines
through a fixed point in ROC-space, and tried to relate the
similarity between metrics to the performance of classifiers
that use these metrics. The main difference to our work is
that they focused on decision-tree metrics, where the aver-
age impurity over all successor nodes is measured, whereas
we focus on a rule learning scenario where only the impu-
rity of a single node (the rule) is of interest.

In addition to the above-mentioned works, we refer to
(Flach, 2003) for a systematic treatment of the importance
of visualizing evaluation metrics and their isometrics in
ROC-space.



6. Conclusions and Future Work

In this paper, we analyzed the most common search heuris-
tics for classification rule learning algorithms. Our re-
sults show that there is a surprising number of equivalences
among these metrics. For example, we found that the rel-
evant regions ofFoil’s information gain metric are equiva-
lent to a conceptually simpler cost-weighted difference be-
tween positive and negative examples, where the precision
of the parent clause is used as the cost ratio. In fact, we
identified two basic prototypes of heuristics, precision and
the above-mentioned cost-weighted difference, and showed
that they follow complementary strategies: precision tries
to optimize the area under ROC curve for unknown mis-
classification costs, whereas the cost-metric tries to directly
find the best theory under known costs. We also showed
that a straight-forward generalization of the well-known
m-estimate may be regarded as a means for trading off be-
tween these two prototypes.

We believe that this work contributes to a better un-
derstanding of separate-and-conquer rule learning and its
heuristics. However, it also raises several questions, which
we hope to answer in future work. First, the computation
of search heuristics necessarily happens on a training set
and is thus prone to overfitting. An ideal search heuris-
tic should correct for such effects. Moreover, we did not
pay attention to the aspect that rules and theories are typi-
cally grown iteratively, and that the algorithm has to evalu-
ate how likely an incomplete theory or rule can be refined
into a complete theory or rule of high quality. Obviously,
this is not the same as evaluating the quality of the incom-
plete rule/theory itself. It might well be that for such tasks,
a different type of heuristic is more adequate. In particular,
we have found that all heuristics we looked at use a cost
model that yields linear cost isometrics (with the exception
of Foil’s information gain in regions that are not of interest
to the learner). It is an open question whether there is a
place for search heuristics with non-linear cost isometrics.
Finally, we believe that this work facilitates a systematic
empirical comparison of search heuristics because one can
now focus on comparing properties of the two basic proto-
types and study their trade-offs.
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