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Abstract

We formulate the problem of solving stochas-
tic linear operator equations in a Bayesian
Gaussian process (GP) framework. The so-
lution is obtained in the spirit of a collocation
method based on noisy evaluations of the tar-
get function at randomly drawn or deliber-
ately chosen points. Prior knowledge about
the solution is encoded by the covariance ker-
nel of the GP. As in GP regression, analyti-
cal expressions for the mean and variance of
the estimated target function are obtained,
from which the solution of the operator equa-
tion follows by a manipulation of the ker-
nel. Linear initial and boundary value con-
straints can be enforced by embedding the
non-parametric model in a form that auto-
matically satisfies the boundary conditions.
The method is illustrated on a noisy linear
first-order ordinary differential equation with
initial condition and on a noisy second-order
partial differential equation with Dirichlet
boundary conditions.

1. Introduction

Gaussian processes (GP) have become popular tools
for regression (MacKay, 1998) and—more recently—
for classification (Williams & Barber, 1998) tasks. In-
teresting application include the prediction of wind
fields (Nabney et al., 1999) and—more in the spirit
of this work—inverse quantum theory (Lemm & Uh-
lig, 1999). GPs have been proposed as an alternative
to neural networks, in particular within the Bayesian
community, because of their beautiful simplicity, prob-
abilistic interpretability, and analytical tractability—
at least in the first stage of Bayesian inference (Gibbs,
1997). Inspired by recent work on solving differential
equations by neural networks (Lagaris et al., 1998;
van Milligen et al., 1995) on the one hand and by
Bayesian methods (Skilling, 1992) on the other, we
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demonstrate in this paper that GPs are not limited to
regression and classification, but can also be applied
to the more general problem of solving noisy linear
operator equations. This general problem had been
discussed earlier in the context of smoothing splines
by (Wahba, 1990).

The most widely used operator equations are integral
and differential equations. Both types have an ex-
tremely wide scope of applications ranging from basic
science to engineering. Our method provides a means
to solving linear operator equations in stochastic set-
tings where the given data are assumed to be noisy
measurements. As an example of a noisy differential
equation consider the Poisson equation (cf. Subsec-
tion 4.2) for the electric potential given noisy measure-
ments of the charge distribution. Another application
of derivative information in Gaussian processes has re-
cently been presented in the context of dynamic sys-
tems (Solak et al., 2003). A typical application that
requires the inversion of a stochastic integral equation
is the deconvolution of a noisy image given the point-
spread function of an optical instrument. In this work
we focus on noisy differential equations.

The Gaussian process approach we advocate provides
solutions in closed analytic form whose degree of differ-
entiability or integrability is determined entirely by the
choice of covariance kernel, which may also be used to
incorporate prior knowledge into the model. The prior
knowledge could include information about expected
smoothness or periodicity of the solution. The noise
in the data is modelled explicitly and the procedure
leads to a distribution over solutions characterised by
mean and variance at any given point. Hence, prob-
lems of generalisation such as over-fitting, which may
result from the noise in the data, can be handled in a
principled way. The proposed method is general and
can be applied to ODEs and PDEs defined on orthog-
onal box boundaries.

Let us consider the solution of operator equations of



the form, Vz € X
Ap (@) =y (@) , (1)

by an unknown function ¢ € F from a specified class
of functions F C Y%, given a function y : X = Y and
an operator A : F = F. The existence of a unique
solution often requires to impose n initial or boundary
conditions on 9 that are conveniently expressed by n
functional equations, B; [¢) := ¢;, with functionals B; :
F — Rand constants ¢; € R. The quality of any given
solution 1 (x) is determined by defining an integrable
loss function 1 : Y x Y — [0, 00) and by evaluating the
residual integral

wi= [ (@ @) e o
The problem can also be stated in a more general way
by defining a probability measure Px over A" and by
replacing the integral in (2) by an expectation. We
consider the case when the deterministic function y ()
is replaced by a random variable Y|x=, leading to
stochastic operator equations (Vapnik, 1998).

Possibly the most straight-forward method to solving
operator equations like (1) is by means of so-called col-
location methods (Grofmann & Roos, 1994): Choose
a sample z := (z1...,2Tm,) of elements © € X and a
class F of functions 9. The residual integral R[‘IZJ] is
approximated by

Ralili= -5 1 (4 @)y @), O

and collocation methods aim at minimizing R[] with
respect to the choice of the function 1,’:) € F. In order
to make the optimisation tractable, 3 is often taken
from a parameterised family of function approxima-
tors, dw : X x W = Y. Since the resulting opti-
mization problem is often ill-posed its solution usually
requires regularization for stability (Vapnik, 1998).

As an example, the above formulation includes regres-
sion at points & with X Y = R and I(y,3) =
(y— §)? as a special case, where A is the identity op-
erator, A = Z. Choosing Ay := sign(¢), that is, a
nonlinear operator, leads to the case of binary classifi-
cation when applied in conjunction with the zero-one
loss.

In this paper we focus on the case of linear operators £
(e.g., differential or integral operators), that is, opera-
tors that satisfy for all aj,a> € K and all ¢,92 € F
that £ (a1% + a292) = a1 L1 + aaLaPs. In Section 2
we show how GPs can be used to approximately solve
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linear operator equations with certain boundary condi-
tions. In Section 3 we discuss linear differential opera-
tors and show how to solve linear differential equations
given typical boundary conditions. In Section 4 we
illustrate the approach by solving a noisy first-order
linear ordinary differential equation (ODE) with ini-
tial condition (IC) and a noisy second-order partial
differential equation (PDE) with Dirichlet boundary
conditions (BCs).

2. Inversion of Linear Operators by
Gaussian Processes

2.1. Probabilistic Model

We assume that the measurements of the right-hand
side of the operator equation (1) are contaminated
by Gaussian noise, that is, we have observations dis-
tributed according to

TIX:;!: ~ JV‘ ('CI')J) (a‘) :0?) .

As a consequence in our model the conditional dis-
tribution of m observations t := (ti,...,t,) at the
sample points x is given by

Tixzow=w ~ N (Lz¢w () ,071m) ,

where ¢, is a function approximator parameterised by
w and

D = bu (@) = (bow (1) s Pww (2) 5+ -1 b ()T -

We assume that ¢, (x) can be written as a linear com-
bination of basis functions ¢; : X = VY,

w () 1= Y _w;; (z) = " w.

=1

We assume a Gaussian prior over weight vectors, W ~
N (0,1,)), such that the observations are distributed
according to

T|X=:c,W:w ~ JV (E@W,O’flm) N
where with matrix notation ®;; := ¢;(z;) and

(L®);; = [L29; (2)),—,,- The posterior density over
W is obtained by Bayes’ theorem,

fT|X=:B,W:W (t) fW (W)
Ew [frix=e.w=w (t)]

fwix=e, 7=t (W) =

’

leading to a Gaussian posterior over weight vectors,

Wixoo 1ot ~ N (1 (L8,t,07), 5 (£8,t,07))
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Figure 1. Noise-free (oy = 0) first-order ODE (11) with IC
1) (0) = 1 solved at ten points equally spaced in the interval
[0,1] with a Gaussian kernel (10) of o = 0.3, and assumed
noise level o = gy = 0. Shown is the analytical solution
1 (z) and and the (coinciding) estimated solution P ().

with expectation

((c®)" £2 +071,)” cd)Tt,
(4)

r (L2, Ut) :

and covariance matrix

B (08,t,07) = (07 (LR LB+T) . (6)

Using the Woodbury formula and the fact that the
expected squared loss is minimised by the posterior

expectation we obtain the prediction § (z) := Lo (z)
at point z,
§(z) = Ewx=e1=t [Lzdw (z)] (6)
= ¢F (@) 8% (2:8F +0fLn) ¢,
where we define ¢, (z) := L¢$ (z) and 8, := LP. The

variance estimate is given by

&3 (z) Var [L,9 (2)] = Vary|x=a,1=t [C2zdw ()]

-1

= oL — ¢l (2oL +0lln) Bode

2.2. Operators and Covariance Kernels

Let us define the covariance kernel acted upon by the

linear operator £ on both arguments, kg2 : X x X =
Y, by
n
kea (2,8) 1= ) Lodi (2) Ladi (8) = Lalsk (2,5) ,
i=1

and the inverted operator kernel, k¢ : X x X = Y, by
= L;lkLQ (fD,.’i)

D i (@) Ladi (8) = Lsk (2, 8)

i=1

ke (z,%)

where k : X x X — Y is the covariance kernel cho-
sen beforehand. By construction kg2 is positive semi-
definite as well. If we define the matrix K 2 by
(K(2);; = ke (23, 2;) we can write the predicted left-
hand side §(z) = Lq9 (&) of the operator equation
from (6) in the form of the well-known kernel expan-
sion,

() = Ewx=e1=t [Lsdw ()]
m
> &k (,3;)
=1
& = (Kp+02L,) 7't
Defining (kp2); := kg2 (2, 2;) the estimated variance
is given by
63 (z) = Varwx=ert=t [Lodw (2)]

= kre (.’I},:l)) k£2 (K[; + Ut ) k52(7)
Using the relation £,9) (z) = § () and the fact that
by construction Lz ke (z,%) = kce (z, %) and we obtain
an estimator 1) (z) for the solution 4 of the stochastic

linear operator equation,

= E &jk[, (:B, {l:j) .

i=1

P ()
We can also calculate the variance from (7),

&2 (z) = k(x,2) — ki (Kc2 + 071 ) ke .
Examples of both 4 (z) and &,2,, (x) are shown in Fig-

ure 3 for a simple ODE with initial condition.

2.3. Initial and Boundary Conditions

We must ensure that given BCs are satisfied by the so-
lutions. We restrict ourselves to linear ICs/BCs, that
is, we require for all a;,a; € R and for all 41,9, € F
that

B; [a191 + aswha) = a1B; [th1] + aoBi [12] -

Following (Lagaris et al., 1998) we choose candidate
solutions 6y, : X — Y that are related to the function
approximator ¢ by

Ow (z) :=b(2) + Codw (z) ,
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Figure 2. Scenario as in Figure 1. Shown is the given tar-
get function y(z) and the (coinciding) estimated target
function § (z), and sample points (z;,t;)

with a function b: X' — Y that satisfies the BCs/ICs,
Bi [b] = ci, and another linear operator C; : F = F
such that B;[C;¢w] = 0. The corresponding uncon-
strained operator equation (1) becomes

LCepw(z) = ¥ (z) — L:b (=),
and the effective kernel function is given by
ke2 (2,8) = L£,C.L:Csk (2, T) .

How b and C, are chosen will be discussed for specific
boundary conditions in Section 3.

3. Differential Equations and Boundary
Conditions

We now focus on the case of differential equations in-
volving a linear differential operator D,. For the case
of ODEs we take ¥ C R and Y C R. The general
linear differential operator of order N > 0 then reads

dN N-1 di
D, i=m+§fi($)a;y

with f; : X = ) arbitrary functions and % = 1.

In order to obtain unique solutions we need additional
constraints in the form of ICs/BCs. Let us consider
an Nth order linear differential equation with n = N
initial conditions (ICs) 9~ (0) = ¢; on the deriva-
tives of ¢». We can write the candidate solution in the
form 6, (z) := b(z) + Codw (2) as

N
Oy (z) == Zil?f_lci +a2Vow (2) 8)

i=1
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Figure 3. Noisy (o, = 0.3) ODE (11) with IC #(0) = 1
solved at ten points equally spaced in the interval [0,1)
with a Gaussian kernel (10) of ¢ = 0.5 and assumed noise
level oy = 0, = 0.3. Shown is the analytical solution 9 (z)
and the estimated solution ¥ (z) & gy (z).

which is constructed so as to satisfy the ICs defined
above. For a first order linear ODE with IC 9 (0) = ¢
this corresponds to the candidate solution

Ow (2) := c+ 2oy (z) .

Let us discuss the case of PDEs, with X = [0,1] x
[0,1] € R? for illustration. Typical boundary con-
ditions (BCs) are of the Dirichlet type: % (0,29) =

¢10 (22), ¥ (L, 22) = en (x2), ¥ (21,0) = co0 (21), and
1!)(:171,1) = C31 (1121) with Cij ! [0, 1] — R. The candi-
date solution is written as

By (%) :=b(x) + 21 (1 — 1) 22 (1 — 22) dw (x) , (9)
where b(x) Is given by
b(x) = b1 (x) + b2 (x) ,
with
by (x) := (1 = z1) cio (22) + zrc11 (2)
and

by (x) :=
(1 = z2) (c0 (1) — ((1 — z1) €20 (0) + T1c20 (1))
+ 29 (C-)l (271) - ((]. - :Bl) C21 (0) + 21¢91 (1))) .

Note that von Neumann BCs could be treated in a
similar way.
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Figure 4. Scenario of Figure 3. Shown are the true target
function y (z), sample points (z;, £:), and estimated target
function § (z) % 6y (z)-

4. Experimental Results

We illustrate our approach by solving two differential
equations with given ICs/BCs, whose analytical solu-
tions for the noise-free case are known (Lagaris et al.,
1998). For our experiments we used the Gaussian co-
variance kernel (see Appendix 6 for derivatives)

ks (x,%X) :=exp (~ ”){;iﬂi) . (10)
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Other, problem-specific choices are desirable in prac-
tice. In order to make the examples easy to reproduce
we provide some detailed results about the evaluation
of differential operators applied to kernels.

4.1. First-Order Linear Ordinary Differential
Equation

Let us consider the first ODE toy problem from (La-
garis et al., 1998)

dyp (x)

o T @Y =9(), (11)
with 14352
T
1@ = (o+ 155 5m)
and
s 14322

=% 42 _
g@)=z"+2z+z e

The initial conditions are ¥ (0) = 1 and X = [0,1].
The analytic solution is

exp (—22/2)

LS ey b
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According to (8) the candidate solution of this first-
order ODE is written as

Ow (2) :=b(z) + Codw (z) = 1 + 2w (2) .

The complete operator £, acting upon ¢, is

L =D Cp:= (% +f(:12)) z,

and the target function y (z) of the operator equation
becomes

y(2):=g(@) ~Del =g () - f () .

Using the results in Appendix 6 and the shorthand
notation 8; := £ and f, := f () we obtain for the
inverted operator kernel

(1+ %0z + f:2) k(z, %)
(1 +i‘% + 52]%) k(z,%) .

kC (22, j"') =

Writing Az := z; — z; and 82; = 8,8; we obtain for
kee (z,%):

ke2 (m:i) =
(28 (825 + f20s + f203 + fof3)
+ (28, + 205 + fox + fzE + 1)

vos (ot fofe+ (£o- 1= 55) 5F)
+ <1~—- %2—2 +Zfz +$fz)] ko (z,%) .

We generated a sample of 10 equally spaced points in
[0,1] from g(z) in a noise-free version and contami-
nated with Gaussian noise of variance o, = 0.3. We
applied the method from Section 2 using the Gaussian
RBF kernel (10) with o = 0.5 and an assumed noise
level o; matching the actual noise used, ie., oy = 0
and oy = 0.3 respectively.

Figure 1 shows the true and the estimated solution for
the ODE problem (11) without noise, resulting in an
exact match. Figure 2 shows the corresponding esti-
mated target function which essentially coincides with
the true target function. The accuracy is very high and
appears to correspond to that of the neural network
methods (Lagaris et al., 1998), who do not provide
exact figures. Their neural network, however, uses 30
free parameters (weights) as opposed to 10 expansion
coefficients for the Gaussian process approach.

Figure 4 shows the result of the estimation with noise
(o0y = 0.3) in the target values: Although slightly
off, the solution is rather robust w.r.t. the introduced



Figure 5. Analytical solution ¥ (x) of PDE (12) with
Dirichlet BCs (13). The BCs can be seen as functions on
the boundary of the plot.

noise. No comparison was made with the neural net-
work methods (Lagaris et al., 1998) because they do
not provide a way to deal with noise in the right-hand
side of the differential equation.

4.2. Second-Order Linear Partial Differential
Equation

Let us consider the following Poisson equation (Lagaris
et al.,, 1998, Problem 1},

V24 (x) = exp (—z;) (x1 —2+23 + 6:::2)1, (12)

-~

g(x)

with Dirichlet BCs (see boundaries of Figure 5)

$(0,22) = 23 =:co(z2),

Y(Lz2) = (1+23)exp(=1)=:cni(22),
U(x,0) = ziexp(—z1) =:c0(z1),

Y(z1,1) = (21 +1exp(—z1) = en (1) ,(13)

and X = [0,1] x [0,1). The analytic solution is

P (x) = exp (—21) (21 + 23) .

Poisson equations describe the spatial variation of a
potential function for given source terms and have im-
portant applications in electrostatics and fluid dynam-
ics. The candidate solution is given by (9) with func-
tions ¢;; as defined above. The complete operator £y
acting upon ¢,, is

Ly =DyCx:=Viz (1 —z1)zs (1 - 23)
and the target function of the operator equation is

y(x) = g(x) ~ Vib(x) ,
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Figure 6. Noisy (oy = 0.01) PDE (12) with Dirichlet BCs
solved at 100 points equally spaced in [0,1] x [0,1] with
a Gaussian kernel (10) and ¢ = 0.2, assumed naise level
o = gy = 0.01. Shown is the deviation 9 (x) — ) (x).

with

1

= (1 ~zxz1)6z2 + 21620~
+ (1~z2)(z1 —2)e ™ +x25(z; = 1) ™

Vb (x)

as can be shown using the identity
V2fig = fV2g+9Vif +2Vf.Vg.

Applying the rules of differential calculus we obtain
for the inverted operator kernel

ke (x,%) DxCzk (%, %)
[(ﬁo V2 + +1§r3)

+2 (183, + Ha8,) | k (6, %) ,

where we define Hy := hz, hz,, Hy := h hs,, Ho
hz by, and Hy := =2 (hz, + hz,) + h h%, and b, =
z (1 —2) and bl := 1 — 2z. For the double operator

kernel kz2 (x,X) we obtain

kea (x, %) = [Hof{oviv:%'*’
+2Ho (MV20s, + H,V%0s, )
+ 2o (H18,, + Hydy,) V2
+ 48, (118,,05, + F1p0:,05,)

+4H, (ﬁlanc%, + ﬁ2azzaiz)
+H3 (I;Iov% +2 (glail + ﬁZaiz))
+ Hy (HoVZ +2(H,8,, + Hzazg))] k(x,%) .
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Both expressions can be further evaluated given the
results of Appendix 6 for a Gaussian covariance kernel,
or for any other component-wise twice differentiable
kernel.

We generated a noisy sample (o, = 0.01) from the
right-hand side g (x) of the PDE (12) with Dirichlet
BCs at 100 points equally spaced in [0,1] x [0,1]. We
solved the problem using a Gaussian kernel (10) and
¢ = 0.2 and an assumed noise level o; = gy = 0.01.

Figure 5 shows the analytical solution to the PDE
problem (12) and Figure 6 shows the deviation of the
estimated solution. Clearly, the strong boundary con-
ditions enforce equality at the boundary, and the devi-
ation is stronger at the centre of [0, 1] x [0, 1]. Figure 7
shows the given target function y (x) and Figure 8 the
deviation of the estimated target function, which—
in contrast to the estimated solution p—is uniformly
noisy over [0,1] x [0,1].

Again, the results cannot be compared directly to
other methods, because neither the neural network
methods (Lagaris et al., 1998) nor standard meth-
ods like finite-elements provide a straight-forward way
of dealing with noise. It could be argued that
the squared-loss used corresponds to a maximum-
likelihood method under a Gaussian noise assumption,
but the neural network is really only used as a function
approximator without any statistical interpretation.
For the noise-less case, the neural network method is
reported to give comparable results to the finite ele-
ments methods on the training data and much better
results on the test data. In comparison, the devia-
tions of the GP method on the noisy PDE example
with o = 0.01 are of the order of 0.02 as can be seen
from Figure 6. This represents a respectable degree of
stability and generalisation considering the ill-posed
nature of operator inversion tasks that tend to make
the solution critically dependent on fluctuation on the
right-hand side of the equation.

5. Conclusion and Outlook

We proposed to use GPs to solve noisy differential
equations with orthogonal box boundaries in particu-
lar. Our approach is related to collocation methods in
that the operator inversion is reduced to an optimisa-
tion problem on a grid. However, our approach is prob-
abilistic and allows for incorporating prior knowledge
about the nature of the solution into the covariance
kernel. Also, the noise in the data is taken into ac-
count explicitly and contributes to a distribution over
solutions characterised by expectation and variance.
The solution obtained is as differentiable as the co-
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Figure 7. PDE (12) as in Figure 5. Shown is the target
function y (x).

variance kernel used and is given as a linear expansion
of the covariance kernel evaluated between grid points
and test points. The computational costs of the al-
gorithm are O(m?) for the inversion of the matrix in
(4). While these costs may exceed those of training
a neural network, they can be reduced to O(m?) or
in the case of approximate inversion to O (m log m)
by working on a grid with a covariance kernel of finite
support (Storkey, 1999).

The close relationship between GPs and other ker-
nel methods suggests the development of related al-
gorithms, e.g., by replacing the squared loss by the
e-insensitive loss (Smola & Schélkopf, 1998). Also
the whole machinery of Bayesian inference (e.g., ev-
idence maximisation) can be applied to operator in-
version based on this work. Future work may aim at
the treatment of more complex boundaries (Lagaris
et al., 2000), on approximate GP models for the in-
version of non-linear operators (similar to GP classifi-
cation (Williams & Barber, 1998)), or the application
of GP techniques to operator eigenvalue problems, e.g.,
in the context of quantum mechanics (Lagaris et al.,
1997).

6. Appendix: Derivatives of Gaussian

Covariance Kernel

We define A := x — % and A? := ||A|*for shorter
notation.

Viko (X,%) = —Viky (x,%) = %k, (%, %)

VuVTk, (x,%) = 22 %) (Id - —IEAAT)
ag g
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Figure 8. Noisy PDE (12) as in Figure 6. Shown is the

deviation y (x) — L1 (¢) of estimated from given target

function.

Vik, (x,%) = V2k (x,%) = Vx - Viky (X, %)
2
- 12 (A ) o (%,%)
02 \ g2
VeVik, (%,%) = —ViVik, (x,%)

A o 2
- __‘“(’j’x) (d+2—é,2—)A
g g
. % 2\ 2
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