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Abstract

In this paper we present a simple to im-
plement truly online large margin version
of the Perceptron ranking (PRank) algo-
rithm, called the OAP-BPM (Online Aggre-
gate Prank-Bayes Point Machine) algorithm,
which finds a rule that correctly ranks a given
training sequence of instance and target rank
pairs. PRank maintains a weight vector and
a set of thresholds to define a ranking rule
that maps each instance to its respective
rank. The OAP-BPM algorithm is an ex-
tension of this algorithm by approximating
the Bayes point, thus giving a good gener-
alization performance. The Bayes point is
approximated by averaging the weights and
thresholds associated with several PRank al-
gorithms run in parallel. In order to en-
sure diversity amongst the solutions of the
PRank algorithms we randomly subsample
the stream of incoming training examples.
We also introduce two new online versions
of Bagging and the voted Perceptron using
the same randomization trick as OAP-BPM,
hence are referred to as OAP with extension
-Bagg and -VP respectively. A rank learn-
ing experiment was conducted on a synthetic
data set and collaborative filtering experi-
ments on a number of real world data sets
were conducted, showing that OAP-BPM has
a better performance compared to PRank
and a pure online regression algorithm, albeit
with a higher computational cost, though is
not too prohibitive.

1. Introduction

In applications like information retrieval and collab-
orative filtering we want to order or rank documents
rather than (simply) classifying them into relevant and
non-relevant documents, that is, we aim at finding
mappings of instances to their correct ranks chosen
from an ordered set of ranks {1, . . . , k}. For example
consider the information retrieval task of rating a par-
ticular query-document pair into relevant, possible rel-
evant, and not relevant, which we model as an ordered
set of 3. This example requires investigating the con-
tent of both the document and the query and using
some similarity metric between the two, resulting in
a ranked list of documents. An alternative approach
to ranking the query-document pair is collaborative
filtering or recommender systems (Resnick & Varia,
1997; Breese, Heckerman, & Kadie 1998) where the
predicted rankings for query-document pairs are made
by using the rankings (or judgements) made by people
with similar interests or some expertise in ranking the
pairs. We chose to focus on collaborative filtering, as
this seems a natural way to rank items and avoid the
issue of studying the content of the items.

Two different ways traditionally used in tackling rank
learning are: either as a regression problem or a classi-
fication problem. However, in the regression setting a
metric is required which converts the ranks to real val-
ues. Determining this metric is in general very difficult
and makes regression algorithms very sensitive to the
representation of the ranks rather than their pairwise
ordering. On the other hand, classification algorithms
completely ignore the ordering of the ranks by treating
them as classes and thus require in general more train-
ing data. The main difficulty with regression, specifi-
cally SVM ordinal regression is the quadratic growth
in the number of constraints as the training set size
increases.
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A recent rank learning algorithm motivated by the
Perceptron is the PRank algorithm (Crammer &
Singer, 2001). In contrast to other algorithms (see
Herbrich, 2000), which usually square the training set
size by working on pairs of training examples, PRank
requires a much smaller training set. For large data
sets memory constraints make ranking methods which
perform multiple runs through the data unmanage-
able. We are therefore interested in online ranking
learning algorithms that can be used for truly online
problems, e.g. ranking web documents on the internet.

Classification algorithms involving the Perceptron
have been studied extensively, and recently there has
been increased interest in using them to produce large
margin solutions (see, e.g. the variants of the marginal-
ized Perceptron (Duda, Hart, & Stork, 2000), Maximal
margin perceptron (Kowalczyk, 2000), ROMMA (Li
& Long, 2002), ALMA (Gentile, 2001), and MIRA
(Crammer & Singer, 2003)). For example, ALMA
guarantees a margin of (1 − α)γ after O( 1

α2γ2 ) up-

dates1, where γ is the maximum achievable margin
and α ∈ (0, 1]. Ensuring a large margin solution is de-
sirable in providing the ability to handle concept drift
as well as to control generalization error. However,
Herbrich, Graepel, and Obermayer (2000) have shown
that this carries over into the ranking learning task.
Recently, Shashua and Levin (2002) showed two differ-
ent Support Vector Machine (SVM) algorithms which
maximized the margin resulting in a ranking learn-
ing algorithm with better generalization performance
compared to PRank. Having a rank learning solution
with a large margin is desirable whilst remaining in the
online setting. This motivates the search for a large
margin variant of the online algorithm PRank.

In the next section, we formally define the ranking
learning setting and recall the Perceptron ranking al-
gorithm (PRank) of Crammer and Singer (2001). Sec-
tion 3 presents a large margin version of PRank, the
Online Aggregate Prank-Bayes Point Machine (OAP-
BPM). Online variants of the batch voting methods
of Bagging (Breiman, 1996) and the voted Perceptron
(Freund & Schapire, 1999) are also presented. Exper-
imental results are given in Section 4 for a number of
real world collaborative filtering data sets and a syn-
thetic ranking data set.

2. PRank in a nutshell

As background we provide the ranking definitions [4]
relating to the PRank algorithm. We have a finite set

1Note that this is assuming the instances to be normal-
ized.

Algorithm 1 PRank (Crammer & Singer, 2002)

Require: A training example at round t of (xt, yt)
consisting of a rank yt ∈ {1, . . . , k} and instance
xt ∈ R

d.
Require: Perceptron weights wt ∈ R

d.
Require: The threshold set at round t, ct =

(ct(1), . . . , ct(k − 1), ct(k) = ∞)
′
.

1: predict ŷt = minr∈{1,...,k}{r : wt · xt − ct(r) < 0}
2: if ŷt 6= yt then

3: for r = 1 to k − 1 do

4: if (yt ≤ r) then lt(r) := −1 else lt(r) := 1
5: end for

6: for r = 1 to k − 1 do

7: if (wt · xt − ct(r))lt(r) ≤ 0 then

8: at(r) := lt(r) else at(r) := 0
9: end for

10: update wt+1 := wt +
∑k−1

r=1 at(r)xt

11: ct+1 := ct − at

12: else

13: wt+1 := wt

14: ct+1 := ct

15: end if

16: return Updated weights ct+1 and thresholds wt+1

of ranks Y = {1, . . . , k} from which a rank yt ∈ Y
is assigned to an instance xt ∈ R

d. We are con-
cerned with the supervised learning setting where we
have a training sequence of instance rank pairs z =
((x1, y1), . . . , (xT , yT )) and the goal is to find a rank-
ing rule H : R

d → Y .

The PRank algorithm is defined by rounds (iterations)
of the PRank update (Algorithm 1). The ranking rule
H of the PRank algorithm consists of the combination
of Perceptron weights w ∈ R

d and a threshold vec-
tor c = (c(1), . . . , c(k − 1)), where it is assumed that
c(k) = ∞. The objective of the PRank algorithm is to
find a Perceptron weight vector w which successfully
projects all the instances in z into the k subintervals
defined by the thresholds c, i.e. for the rank of r the
subinterval is c(r − 1) < w · x < c(r). This ranking
procedure of the respective instances xt is given by
Algorithm 1. At round t of PRank the first step is to
predict the rank yt (line 1 of Algorithm 1) for a given
instance xt by selecting the smallest rank r such that
wt · xt < c(r). If the prediction ŷt is not the correct
rank then a label of lt(r) = +1 is allocated to those
subintervals above the target rank yt and lt(r) = −1
to those below2 (lines 3, 4 and 5 of Algorithm 1). For
each subinterval, if the ranking rule H consisting of

2Note that we exclude the kth subinterval because
ct(k) = ∞ for all t, so clearly lt(k) = 1.



wt and ct(r) misclassifies the label lt(r) then the label
is subtracted from the threshold ct(r), and the Per-
ceptron is updated wt+1 = wt + lt(r)xt. Our intu-
ition tells us that updating w and c in this way has
the effect of moving the threshold of the desired rank
ct+1(r) and the updated predicted rank wt+1 · xt+1

closer together. This procedure is repeated for all the
subintervals r = 1, . . . , k − 1 for round t.

Two important results which are significant when con-
sidering the benefits of the PRank algorithm are:

1. The ranking order is preserved [4] between rounds,
i.e. ct+1(r+1) ≥ ct+1(r) given this is true at round
t.

2. The number of mistakes (updates) made by this
algorithm is at most (k − 1)(R2 + 1)/γ2, where
R = maxt ‖xt‖

2 and margin γ = minr,t{(w
∗ ·x−

c∗(r))lt(r)} if there exist a rank rule pair w
∗ and

c
∗ such that γ > 0.

In other words, we know that the learning algorithm
is exploiting the order of the ranks (property 1) and
converges as fast as a multi-class Perceptron learning
algorithm (property 2).

3. Improved generalization (large
margin) version

Although for the PRank algorithm the number of up-
dates required to correctly rank the training sequence
is bounded, there is no guarantee on the size of the
margin of PRank as the Perceptron (of PRank) only
guarantees γ > 0. At first glance a large margin could
be produced with a variant of the Perceptron men-
tioned in the introduction. However, there is the added
complication of the thresholds of c which are central
to ranking the instances.

Methods which achieve the maximum margin solution
on the training examples do not guarantee the same
generalization performance as the Bayes point (Her-
brich, 2000). The Bayes point is the single hypothesis
chosen from a fixed class of classifiers H that achieves
the minimum probability of error. Hence the Bayes
point differs to the Bayes optimal classifier in that the
latter may not be in H. The Bayes optimal classifier
in general is difficult to evaluate even if all the prob-
ability distributions are known, which motivates the
use of the Bayes point instead.

A suitable estimate of the Bayes point for linear
classifiers is to generate N diverse solutions wi, by
training each classifier with a different permutation,
i.e. π(z) := (zπ(1), . . . , zπ(T )) and have an equally

Algorithm 2 OAP-BPM algorithm

Require: A training sample
z = ((x1, y1), . . . , (xT , yT )).

Require: A online learning algorithm
PRank(cj,t, wj,t, xt, yt).

Require: A subroutine Bernoulli(τ) which returns in-
dependent Bernoulli random variables with proba-
bility τ of taking the value 1.

Require: Parameters N ∈ N and τ ∈ (0, 1].

1: Initialize weights wj,1 = 0 and thresholds .
2: for t = 1 to T do

3: w̃t := 0

4: for j = 1 to N do

5: bj,t := Bernoulli(τ)
6: if bj,t = 1 then

7: wj,t+1, cj,t+1 := PRank(cj,t, wj,t, xt, yt)
8: else

9: wj,t+1 := wj,t

10: cj,t+1 := cj,t

11: end if

12: w̃t+1 := w̃t+1 + wj,t+1/N
13: c̃t+1 := c̃t+1 + cj,t/N
14: end for

15: end for

16: return

H(x) := minr∈{1,...,m}{r : w̃T+1 ·x− c̃T+1(r) < 0}

weighted sum w̃ =
∑N

i=1 wi/N (Herbrich, Graepel
& Campbell, 2001). This is an elegant trick but in
the form presented requires that we see all training
examples before we can permute them. Our aim is
in finding an online method to estimate the Bayes
point for the ranking learning problem. Our idea is
as follows: Given a training sequence z, we run N
Perceptrons in parallel and ensure diversity of their fi-
nal solutions by randomly choosing to present a given
sample zt to Perceptron j only if bj,t = 1, where bj,t,
j = 1, . . . , N , t = 1, 2, . . . are independent Bernoulli
random variables with Pr{bj,t = 1} = τ . This method
should not be confused with voting methods like Bag-
ging (Breiman, 1996) where, instead of the weights wj ,
the hypotheses x 7→ sgn (wj · x) are averaged. Con-
ceptually, this algorithm (see Algorithm 2) is similar
to the OBPM algorithm presented in Harrington et al.

(2003) for classification. In Harrington et al. (2003)
it was shown that OBPM achieved comparable per-
formance in producing a linear solution to the exact
large margin (SVM) (using a fast SVM optimization,
SVMlight) on a number of real world data sets. On
the largest data set of 100 000 training examples and
instance dimension of 6125, OBPM was several orders
of magnitude faster than the SVM.
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w : w · x5 > 0

w : w · x2 > 0

w : w · x4 > 0
wcm

w : w · x3 > 0

w : w · x1 > 0

Figure 1. Illustration of approximating the Bayes point for
a two dimensional feature space.

In line 12 of Algorithm 2 we take the equal weighted
combination of the weight vectors of the respective
PRank algorithms to estimate the Bayes point. It
seems natural that in order to achieve a good gen-
eralized solution and truly estimate the Bayes point
for ranking, we also have to take an equally weighted
combination of threshold vectors of the N PRank al-
gorithms. Interestingly, combining the threshold this
way still preserves the order of the thresholds between
updates, as each PRank algorithm maintains cj(1) ≤
. . . ≤ cj,t(k − 1) ≤ cj,t(k) for all j = 1, . . . , N , which

implies that
∑N

j=1 cj(1) ≤ . . . ≤
∑N

j=1 cj,t(k − 1) ≤
∑N

j=1 cj,t(k).

To see why c̃t =
∑N

j=1 cj,t/N makes sense, consider a
two dimensional space where all the instances with the
same rank are grouped together. We justify consider-
ing the ranks separately due to the idea that PRank
represents a rank y = r by each subinterval’s thresh-
old c(r) i.e. w · x ≤ c(r), and there is order pre-
served amongst the thresholds. We add a dimension
to the weights for each rank, putting the threshold at
w(1) = c(r) for subinterval r and make the instance’s
first dimension x(1) = 1. For the example consider
that there are five instances with a rank of three in z

which defines half spaces {w : w·x > 0} (see Figure 1).
The shaded region of Figure 1 defines the intersection
of half spaces—a region which represents all the solu-
tion weights which correctly classify the five instances.
We can see from Figure 1 that the center of this region
(indicated by the wcm) would give some immunity to
unseen examples.

A kernel implementation of OAP-BPM can be eas-
ily derived by first expressing each Perceptron fj ,
j = 1, . . . , N by the representer theorem (Her-

brich, 2002) as fj(·) =
∑T

t=1 αj,tK(xt, ·) where

αj,t = bj,tyt

∑k−1
r=1 aj,r,t, combined with the repro-

ducing property giving f̃(x) = 1
N

∑N

j=1 fj(x) =
1
N

∑N

j=1

∑T

t=1 αj,tK(xt, x). For a truly online algo-

rithm we need to bound the number of instances xt

needed to be stored for the kernel expansion (Kivinen,
Smola & Williamson 2001).

We expect OAP-BPM to take longer to converge since
the mistake bound of OAP-BPM is driven by the mis-
take bound of worst solution (smallest γ) amongst the
N PRank algorithms. This is not a bad thing as OAP-
BPM will continue to learn after the Perceptron based
PRank stops. This method of creating diversity by τ
therefore has a trade-off of achieving a better general-
ization performance (large margin) and with the con-
vergence of the algorithm to the largest margin pos-
sible. The smaller τ the greater the diversity but the
slower the convergence to the final target margin. This
method can be applied in an online parallel fashion
making it well suited to large data sets with parallel
application.

3.1. Ensemble variants of OAP

As mentioned in the previous section the OAP-BPM
is different to ensemble methods, like Bagging. Whilst
Bagging in general is considered a batch learning
method, Oza (2001) presented an online learning ver-
sion. The online Bagging method of Oza is different
to the sampling proposed for the OAP-BPM, in Oza
(2001) each training example is presented to the on-
line base model learning algorithm q times, where q is
chosen from the Poisson distribution with a mean of
one. Aside from the sampling technique being differ-
ent, the other difference is our interest in the PRank
as the base model learning algorithm. The Bagging
method proposed in this paper uses the same Bernoulli
sampling used in OAP-BPM, hence we refer to this as
the OAP-Bagg algorithm.

Whilst Bagging is one ensemble method worth in-
vestigating another is the voted Perceptron (Freund
& Schapire, 1999). In the voted Perceptron, ap-
plied to the PRank algorithm at each update i =
1, . . . , u the weight wi is stored and the number of
correct ranks between updates, vi. At the end of
training the final hypothesis of the voted Perceptron
is given by H(x) =

∑u

i=1 vihi(x), where hi(x) :=
minr∈{1,...,m}{r : wi · x − ci(r) < 0}. We pro-
pose, rather than a single Perceptron/PRank algo-
rithm, combining N independent PRank algorithms
sampled using the same technique used in OAP-BPM.
We store the number of correct ranks made by each
PRank algorithm, vi, and combine them such that the
final hypothesis is H(x) =

∑N

i=1 vihi(x)/|
∑N

i vi| (in
the Bagging case, OAP-Bagg the final hypothesis is
H(x) =

∑N

i=1 hi(x)/N) . Note that we normalize the
voted Perceptron by v, since rank learning in general



Table 1. Synthetic data set experimental results produced
by test sample (not used in training), showing the aver-
aged rank loss, 1

T

∑
T

t=1
|ŷt − yt|, where T is the test set

size and their corresponding 95 percent confidence inter-
vals with the Student’s t-distribution for OAP-VP (voted
Perceptron), OAP-Bagg (Bagging) and OAP-BPM (Bayes
Point Machine) for various settings of τ .

τ OAP-VP OAP-Bagg OAP-BPM

0.3 0.32±0.01 0.33±0.01 0.23±0.01
0.6 0.31±0.02 0.31±0.02 0.24±0.03
0.9 0.31±0.03 0.32±0.03 0.26±0.03

is sensitive to the scale, which is not true in the case
of binary classification. We refer to this algorithm as
OAP-VP, since we combine the voted Perceptron (VP)
with the online sampling of OAP-BPM.

It is well accepted that Bagging and the voted Percep-
tron perform well in the classification problem setting,
Bagging especially in the presence of noise. The ques-
tion is how does OAP-Bagg and OAP-VP compare
with OAP-BPM in the rank learning setting, which
motivates the empirical study in the experimental sec-
tion.

4. Experiments

Experiments comparing PRank, the regression algo-
rithm of Widrow-Hoff (1960) (WH) with the OAP-
BPM (Bayes Point Machine) and the ensemble vari-
ants OAP-Bagg (Bagging) and OAP-VP (voted Per-
ceptron), were performed on a synthetic ranking prob-
lem and using collaborative filtering on several real-
world data sets.

4.1. Ranking with a synthetic data set

We performed the synthetic data experiment of Her-
brich, Graepel and Obermayer (2000), and Crammer
and Singer (2002) in the batch setting with a non-
homogeneous kernel of degree two. To generate the
data each instance at round t, xt = (xt(1), xt(2))
was chosen according to the uniform distribution on
the unit square i.e. x ∈ [0, 1] × [0, 1] ⊂ R

2. The
ranks 1, . . . , 5 were assigned by y = maxr∈{1,...,5}{r :
10((x(1) − 0.5)(x(2) − 0.5)) + n > cr} with the rank
thresholds c = (−∞,−1,−0.1, 0.25, 1) give that c(5) =
∞ and n normally distributed with zero mean and
standard deviation of 0.125. The experiment consisted
a polynomial kernel K(x1, x2) = ((x1 · x2) + 1)2 with
20 Monte- Carlo trials with 50000 training examples
and a separate test set of 1000 examples.

To study the online nature of the ranking algorithms
we used the same measure of performance as Cram-
mer and Singer (2002), the average rank losses of
1
T

∑T

t=1 |ŷt − yt| where T is the number of rounds
performed so far. Figure 2 shows the average rank
losses from 20 trials for PRank, OAP-BPM (N = 100
and τ = (0.3, 0.6, 0.9)), Widrow-Hoff (plotting the
lowest losses with learning rates/step sizes of η =
(0.2, 0.1, 0.05, 0.01)) and OAP-Bagg (N = 100 and
τ = (0.3, 0.6, 0.9)) and OAP-VP (N = 100 and τ =
(0.3, 0.6, 0.9)). We achieved significantly better results
for WH than reported in Crammer and Singer (2002),
as they only tried η = 1. WH result with η = 0.1
is slightly better average rank loss than PRank after
5000 training examples. It is not that surprising that
WH is better than a mistake driven Perceptron, as
the squared loss function for WH can produce a large
margin like solution. Comparing the five different al-
gorithms the OAP-BPM had the lowest averaged rank
loss after the 5000 examples, though OAP-VP was the
lowest until 1000 examples.

We then took the test set of 1000 examples and cal-
culated the averaged rank losses for the same five
algorithms PRank, WH, OAP-BPM, OAP-Bagg and
OAP-VP, plus we tried PRank with the voted Per-
ceptron. The averaged rank loss results of the algo-
rithms with their 95% confidence intervals for a Stu-
dent’s t-distribution were: PRank 0.37± 0.07, PRank
with voted Perceptron 0.31 ± 0.00, with η = 0.1
WH 0.30 ± 0.2 and table 1 show the rest for τ =
(0.3, 0.6, 0.9). The results from the test examples show
that OAP-BPM had the lowest averaged rank loss over
the three choices of τ . From Table 1 we see as τ is made
smaller so is the confidence interval.

4.2. Collaborative filtering

To allow for a fair comparison a general frame work for
the collaborative filtering experiments was consistent
for all three data sets: OHSUMED 3, cystic fibrosis 4

and EachMovie 5. We constructed a training set and
test set, where given an item (i.e. query-document
pair) to be ranked, at first the target rank yt was drawn
randomly from the ratings made on that item and then
the remaining ratings were used as dimensions of the
instance vector xt. All the results in this section are
averages produced by 500 Monte-Carlo trials.

3Available at http://ftp.ics.uci.edu/pub/
machine-learning-databases/ohsumed

4Available at http://www.sims.berkeley.edu/
~hearst/irbook/cfc.html

5Available at http://www.research.compaq.com/SRC/
eachmovie/
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Figure 3. Collaborative filtering experimental results, comparing the averaged rank loss 1

T

∑
T

t=1
|ŷt − yt|, where T is the

number of rounds of training performed, for the PRank, WH, OAP-BPM, OAP-Bagg, and OAP-VP algorithms, against
the three data sets (a) OHSUMED, (b) cystic fibrosis, and (c) EachMovie.

The detail of the experimental setup for each data set
used are as follows:

• The OHSUMED data set consists of 106 medi-
cal queries constructed by novice doctors, an in-
formation retrieval software package given each
query returned a list of perceived relevant docu-
ments which were extracted from the MEDLINE
medical database. Each of the query-document
pairs was judged either definitely relevant, pos-
sibly relevant, or not relevant by three different
sets of people which we converted to ranks 3,2,1
respectively. Noting that not all of the three sets
of people judged every query-document pair. We
selected from the query-document pairs only those

where at least two of the possible three sets of peo-
ple had ranked the pair. To construct the training
set, at each round we drew at random a different
query-document pair, drew at random one of the
three peoples ranks as the target rank and used
the other two to construct the instance (noting
zero was allocated when there was no rating pro-
vided). The size of the training set used was 1000
examples and the test set size was 100 examples.

• The cystic fibrosis data set is similar to
OHSUMED in that it consists of query-document
pairs with three possible ratings of highly rele-
vant, marginally relevant and not relevant, again
assigning ranks of 3,2,1 respectively. The differ-
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Figure 2. Experimental results for synthetic data set com-
paring the rank learning algorithms PRank, WH with step
size η = 0.1, OAP-BPM with Bernoulli probability τ = 0.3,
OAP-BPM ensemble variants OAP-Bagg (Bagging) and
OAP-VP (voted Perceptron).

ence to OHSUMED is that we have four ratings
for each query-document pair, hence the instances
are of three dimensions. The training and test set
sizes were 4247 and 582 respectively.

• The EachMovie data set consists of ratings from
a possible 1628 movies (films and videos) where
72916 people were involved in assigned scores (this
is larger than 61265 people used by Crammer
and Singer (2002)): 0, 0.2, 0.4, 0.6, 0.8, 1 to subsets
of the possible movies. A similar experiment to
Crammer and Singer (2002) was performed, which
considered only people who rated over 300 movies,
totaling 547 people. To allow for a score of zero
for unseen movies 0.5 was subtracted from the
peoples scores. The target rank y was assigned
by using the rank {1, . . . , 6} of a person drawn
randomly from the possible 547. Each round is
represented by the first 300 movies scored by the
target person. The instances (features) x were
formed by going through the remaining 546 peo-
ple for each movie seen by the target person. For a
given movie each person’s score represents a differ-
ent dimension of the instance (dimension is zero if
that person didn’t see the movie this is equivalent
to an indifferent rating). Forming the instances
and target rank this way we can predict the score
of a random person from the scores of the rest of
the people. The training set was selected at ran-
dom to be 210 and the remaining 90 movies the

Table 2. Collaborative filtering experimental results pro-
duced by test sample (not used in training), showing the
averaged rank loss, 1

T

∑
T

t=1
|ŷt −yt| where T is the test set

size and their corresponding 95 percent confidence intervals
with the Student’s t-distribution.

Algorithm OHSUMED Cystic Each-

Used fibrosis Movie

WH
(η = 0.2) 0.43±0.01 0.75±0.02 2.19±0.06
(η = 0.05) 0.38±0.01 0.48±0.02 1.92±0.07
(η = 0.01) 0.38±0.01 0.43±0.02 2.25±0.08
(η = 0.001) 0.38±0.01 0.41±0.02 2.74±0.10
PRank 0.53±0.02 0.50±0.02 1.06±0.03
PRank-VP 0.49±0.00 0.52±0.01 1.13±0.03
OAP-VP
(τ = 0.1) 0.47±0.01 0.47±0.01 0.95±0.03
(τ = 0.2) 0.46±0.01 0.45±0.01 0.95±0.03
(τ = 0.3) 0.46±0.01 0.45±0.01 0.95±0.03
OAP-BPM
(τ = 0.1) 0.41±0.01 0.40±0.01 0.89±0.03
(τ = 0.2) 0.41±0.01 0.39±0.01 0.89±0.03
(τ = 0.3) 0.41±0.01 0.40±0.02 0.90±0.03
OAP-Bagg.
(τ = 0.1) 0.53±0.01 0.50±0.01 0.96±0.03
(τ = 0.2) 0.50±0.01 0.48±0.01 0.95±0.03
(τ = 0.3) 0.49±0.01 0.47±0.01 0.96±0.03

test set.

From the results of Table 2 in two of the collabora-
tive filtering experiments OAP-BPM had the lowest
average rank loss for the test sets. In OHSUMED re-
sult OAP-BPM was close to the better WH, though
this would be considered the easier of the three exper-
iments with only a dimension of two.

Figures 3 (a), (b) and (c) give some insight into the
convergence behaviour of the five different rank learn-
ing methods on the training examples. We see that the
OAP-VP has a faster convergence than both OAP-
Bagg and OAP-BPM. We also notice that for the
smaller rank set of three and lower dimensional data
sets of OHSUMED and cystic fibrosis, the WH regres-
sion algorithm had the fastest convergence and com-
parable performance to the OAP-BPM on the test
examples. Yet even though the convergence is slow
the results of Table 2 show that the Perceptron based
OAP-BPM had the best performance overall. It is
not surprising that the test set results for OAP-BPM
of Table 2 are better than the training set results in
Figures 3 (a), (b) and (c), for two reasons: the test
set results are using the final trained weights and the
OAP-BPM has larger rank losses at the start making



the average rank loss higher, since each rank loss at
time t has equal weight over the entire training set.

5. Summary and conclusions

We propose a simple OAP-BPM rank learning algo-
rithm which improves the generalization performance
of the PRank algorithm. The improved generalization
performance is achieved by having the rank prediction
wt+1 · xt+1 in the centre of the subinterval true rank
yt. To estimate the centre of the subinterval we en-
able diversity amongst the ranking rules produced by
N different PRank algorithms run in parallel by a sim-
ple online randomization trick. It was demonstrated
that averaging the N rank rules (producing the final
ranking rule of OAP-BPM) had a lower averaged rank
loss for a separate test set of examples compared to
the algorithms of Widrow-Hoff, PRank and ensemble
versions OAP-Bagg and OAP-VP for a number of ex-
periments. The experiments involved rank learning on
a synthetic and the collaborative filtering on the real
world data sets of EachMovie, OHSUMED and cys-
tic fibrosis. The advantage of OAP-BPM is improved
generalization performance compared to PRank whilst
remaining in an online learning setting. There is an
added computational cost in achieving a large margin,
which on average is an order of O(τN) more than the
original PRank algorithm.

For future work, an interesting extension to the OAP-
BPM would be the incorporation of ROMMA rather
than the Perceptron in the update rule of PRank.
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