
Goal-directed Learning to Fly

Andrew Isaac isaaca@cse.unsw.edu.au
Claude Sammut claude@cse.unsw.edu.au

School of Computer Science and Engineering, University of New South Wales, Sydney NSW 2052, Australia

Abstract
Learning to fly an aircraft is a complex task
that requires the development of control skills
and goal achievement strategies. This paper
presents a behavioural cloning system that
learns to successfully fly manoeuvres, in tur-
bulence, of a realistic aircraft simulation. A
hierarchical decomposition of the problem is
employed where goal settings and the control
skill to achieve them are learnt. The bene-
fit of this goal-directed approach is demon-
strated in the reuse of the learnt manoeuvres
to a flight path that includes novel manoeu-
vres. The system is based on an error minimi-
sation technique that benefits from the use
of model tree learners. The model trees pro-
vide a compact and comprehensible represen-
tation of the underlying control skill and goal
structure. The performance of the system
was improved by compensating for human re-
action times and goal anticipation. We con-
clude that our system addresses current lim-
itations of behavioural cloning by producing
robust, reusable and readable clones.

1. Introduction

An expert predominately relies on highly developed
tacit skills to competently perform dynamic real-time
control tasks. Typically, the expert can only give an
approximate and incomplete description of these tacit
skill. For knowledge acquisition of the tacit skills “ma-
chine learning tools can, however, recover symbolic
models of skills from behavioural traces. The resulting
data-derived ‘clones’ show transparency and run-time
dependability” (pp 1, Michie, 1993). In this paper, we
present a novel technique for behavioural cloning that
learns hierarchical rule structures in combination with
classical control methods. The robustness, generality
and transparency of the system are demonstrated by
application to a simulated piloting domain.

Behavioural cloning was originally formulated as learn-
ing ‘reactive’, situation-action decision trees from be-
havioural trace data. A limitation of the situation-
action formulation is that it is often difficult to un-
derstand because it lacks goal structure. It is also not
very robust to variation (see Bratko et al., 1998 for a
review of early behavioural cloning work). To address
these limitations, several researchers have adopted a
hierarchical decomposition of the learning task. Bain
and Sammut (1999) and Šuc (2001) present a two level
‘goal-directed’ framework that learnt the effects of con-
trol actions and a model of the goals directing the con-
trol.

These approaches have had some success but often
by compromising either transparency or robustness.
We take a different approach in learning control ac-
tions as an approximation of an operator’s reactions
to any difference between the anticipated and actual
state of the system and (as above) learn models of
the goals directing the control. That is, the system
models control skill as being separable into a reactive
level and an anticipatory level. This approach allows
us to combine traditional PID (Proportional Integral
Derivative) controllers into a goal-directed hierarchy.
The resulting controllers are robust and easy to un-
derstand. Thus, we have avoided many of the compro-
mises found in previous methods.

To access the robustness, generality and transparency
of our system, we have chosen the task of controlling a
simulated aircraft in turbulence. The flight domain is
complex: the task context changes during the course
of the flight; there are many cues and system vari-
ables to consider; the aircraft dynamics are complex
and non-deterministic (with turbulence) and flying re-
quires both predictive and reactive control, often based
on the same cues.

A particular advantage of a goal-directed structure
over situation-action rules is that we can build con-
trollers that are quite general. A situation-action for-
mulation is difficult to decompose and therefore tends

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.



to work only for entire flight plans, with little varia-
tion. However, our goal-directed approach allows the
system to learn a library of discrete manoeuvres that
can be combined to create a controller for a wide vari-
ety of tasks. The generality of the clones can be tested
by their performance over an arbitrary flight path. To
avoid learning manoeuvres that may be specific to a
particular task, we adopt a flight training approach
similar in spirit to pilot flight training (Thom, 1998)
that consists of two main steps. Namely, fly and learn
one basic aircraft manoeuvre at a time and then test
the (auto-)pilot by flying a takeoff and land circuit.

By performing a circuit consisting of variations on the
learnt manoeuvres and by varying the degree of tur-
bulence, we demonstrate how the clones of each given
manoeuvre can be reused – without modification – in
combination to successfully fly the circuit with a high
degree of robustness. The induced rule sets are more
compact and more transparent than previously found
(Sammut et al., 1992; Bain & Sammut, 1999; Cama-
cho, 2000).

2. Related Work

One of the novel features of our system is the learning
of PID controllers as rule sets and combining them into
a goal-directed hierarchical framework. Other control
theoretic techniques have been applied to both goal
and control learning, however they have either been
hand crafted or based on complex numerical mod-
elling. Stirling (1995) used an expert supplied con-
trol influence matrix and highly specified task struc-
ture to guide an exhaustive search of the goal space.
This was combined with manually configured propor-
tional controllers and the system was able to handle
catastrophic failure of a control. Šuc (2001) demon-
strated the robustness of control theoretic techniques
in several dynamic control domains that have less well
defined task structure than the flight domain. To im-
prove the readability of the learnt numerical models
they were converted to qualitative models describing
monotonic regions of given state quantities. To pro-
duce working controllers, however, required the engi-
neering of proportional controllers based on the qual-
itative constraints and domain knowledge. The whole
process obscures the interpretation of any recovered
skill knowledge. Camacho (2000) used a (turbulence-
free) F-16 fighter jet simulation1 and learnt a level
left turn that was robust to variation in initial condi-
tions and (fixed) goal setting. The learnt control rules
were proportional controllers based on first and sec-

1The ACM public domain flight simulator.
http://www.websimulations.com

ond derivatives of an error term. The error was not
goal-directed but based on a fixed goal setting for the
manoeuvre. For our work, learning PID controllers as
rule sets has the advantage of combining the robust-
ness of the PID control framework with the relative
simplicity and transparency of rule learners. PID con-
trollers have been widely studied for Control Engineer-
ing (Franklin et al., 1995) and are well suited to non-
deterministic dynamic control systems. Furthermore,
by combining the controllers with a goal level we have
the advantage of hierarchical and goal-directed control
mentioned above. Such a system also has the poten-
tial to be combined with more deliberative procedural
knowledge in a logic programming framework (Bain &
Sammut, 1999).

To date, most of the flight simulators used in be-
havioural cloning research have not used turbulence
and have been based on simple aircraft flight mod-
els. We use a simulator with a sophisticated flight
model and added turbulence. The original work of
Sammut et al. (1992) flew a takeoff and land loop
of a runway with no turbulence using a handcrafted
flight model of a Cessna 150 light aircraft.2 Using the
same (turbulence-free) simulator, Bain and Sammut
(1999) learnt individual manoeuvres and were able to
reuse them to fly the majority of the takeoff and land
loop, but the system was unable to perform the line-
up and land stages. These systems used decision tree
learners that required discrete state and action values.
We have chosen rule based techniques that can handle
continuous values, namely regression trees and model
trees.

We develop our behavioural clones by flying a variety
of goal settings and then learning a library of individ-
ual manoeuvres. Other behavioural cloning systems
have been developed to recover a goal model from trace
data over an entire flight. van Lent and Laird (1999)
describe a system that uses a multi-level hierarchy and
learns performance goals at each level of the hierar-
chy. To construct the system required the assistance
of an expert to develop the hierarchies, categorise the
state values and primitive actions and annotate the
behavioural trace. Anderson et al. (2000) applied a
modular neural network to learn a model of the pilot
(as opposed to learning a model of how to fly consid-
ered here). The system automatically decomposed the
task and required no extra input from the expert. The
interpretation of what the system had learnt, however,
is difficult. In this paper we avoid learning a specific
flight plan by developing a library of clones to per-

2The simulator was a modified version of the Silicon
Graphics Dog Fight simulator.



form discrete manoeuvres. The only additional effort
we require of an expert is the identification of goal-
directing quantities. Using rule-based models, we ar-
gue, retains the transparency of the acquired control
knowledge and produces compact rules.

3. Representation and Learning

Learnt skills are represented by a two level hierarchical
decomposition with an anticipatory goal level and a
reactive control level. The goal level models how the
operator chooses goal settings for their control strategy
and the control level models the operator’s reaction to
any error between the goal setting and actual state
of the system. For example, in flying, the pilot can
achieve goal values for the desired heading, altitude
and airspeed by choosing appropriate values of turn-
rate, climb-rate and acceleration. The controls can be
set to correct errors between the current state and the
desired state of these goal-directing quantities. Goal
models map system states to a goal setting. Control
actions are based on the error between the output of
each of the goal models and the current system state.

The control level is modelled as a set of proportional
integral derivative (PID) controllers, one for each con-
trol variable. A PID controller determines a control
value as a linear function proportional to the error on
a goal variable, the integral of the error and the deriva-
tive of the error. The basic form is

control = P · error + I ·
∫

error dt + D · derror

dt
(1)

where coefficients P , I and D are set to values so as to
optimise the control of the system. The integral term
refers to accumulated error and the derivative term
refers to instantaneous changes in goal setting.

As an example of the hierachical representation a goal
and control rule for a left turn is presented in Table
1. The goal rule determines the goal setting for turn-
rate based on the relative azimuth and distance to the
goal position. The error, integral and derivative are
calculated with respect to the goal-directing value and
the control rule determines the value to set the aileron.

3.1. Performance Element

The goal-directed control system interacts with the en-
vironment by determining the desired value for each
goal variable based on the current state, comparing
the desired values to the current values and determin-
ing each controllers’ action to reduce the errors. The
output of the control models are delayed to prevent
instantaneous control actions and to approximate hu-
man reaction time delays.

Table 1. Sample Goal and Control rules.

Goal Rule

if (azimuth ≤ −3.6) then
if (distance ≤ 1715) then

t = 0.163 · azimuth + 0.0013 · distance− 1.90
else

t = 0.073 · azimuth + 0.0003 · distance− 0.92
else

t = 0.006 · azimuth + 0.0022 · distance− 1.93

Control Rule

if (i ≤ 11.71) then
if (d ≤ −1.84) then

a = −0.059 · e− 0.0091 · i− 0.0207 · d− 0.139
else

a = −0.046 · e + 0.0012 · i + 0.0001 · d− 0.005
else

a = −0.043 · e− 0.0236 · i− 0.0122 · d + 0.329

where,
t = goal-directing turn-rate
a = aileron control value
e = current turn-rate – goal-directing turn-rate
i = integral of e
d = derivative of e

Controllers have been built for a variety of manoeu-
vres, such as turns, climbs and straight-and-level
flight. This allows us to produce a library of controllers
for use in complex tasks with multiple goal conditions.
In our autopilot example, we hand crafted the flight
plan to determine the appropriate controller and goals
to use for each stage of the flight plan. However, by
annotating controllers with pre- and post-conditions,
it is possible to use the library in a planning system.
This is future work.

3.2. Learning Goal Settings

The learning process is simplified by learning the goal
and control models separately. First, we describe how
goal rules are learnt. The process begins be deciding
which variables are to be used for the goal settings. For
learning to fly an aircraft, standard flight instruction
manuals (Thom, 1998) make this choice clear. For ex-
ample, trainee pilots will learn to execute a “constant-
rate turn”, that is, their goal is to maintain a given
turn rate. In general, we make the reasonable assump-
tion that an expert can identify goal variables.

Rather than collecting behavioural traces over an en-
tire flight, pilots are only asked to execute specific ma-
noeuvres, each time ensuring that a particular goal set-
ting is maintained. Data are collected for a variety of



set values, such as a turn-rate of 180◦ per minute and
zero climb-rate or zero turn-rate and 500 ft per minute
climb-rate. Absolute positions and orientations are
converted into quantities relative to the goal values set
for each trial. All the behavioural traces for one ma-
noeuvre were then combined. Although the goal value
is given in advance, we found that some improvement
could be gained by using the average value actually
obtained by the pilot, rather than set value. This re-
sults in a controller that more faithfully reproduces the
pilot’s behaviour.

A separate goal rule is constructed for each goal vari-
able. In our first attempt at predicting goal values, we
used a re-implementation of the CART regression tree
learner (Breiman et al., 1984). This was later extended
to produce model trees, similar to Quinlan (1993).
The model tree learner was found to produce better
performing and more compact models. The minimum
node size is the only parameter supplied.

3.3. Learning Control Actions

From the goal rules, we can obtain the setting for a
goal variable and therefore, we can find the difference
(error) between the current state value and the goal
setting. We augment the data set by calculating, for
each record, the integral and derivative of the error.
For example, if the set turn-rate is 180◦ per minute,
then the error on the turn-rate is calculated as the
actual turn-rate minus 180. The integral is then the
running sum of the error multiplied by the time inter-
val between time samples, starting from the first time
sample of the behavioural trace, and the derivative is
calculated as the difference between the error and pre-
vious error all divided by the time interval.

For each control available to the pilot (e.g. elevators,
ailerons, throttle, flaps, etc), a model tree learner is
used to predict the appropriate control setting. Lin-
ear regression is used in the leaf nodes of the model
tree to produce linear equations whose coefficients are
the P , I and D of values of Equation 1. Thus the
learner produces a collection of PID controllers that
are selected according to the conditions in the internal
nodes of the tree (see Table 1). In control theory, this
is known as piece-wise linear control.

Originally, a regression tree learner was used, how-
ever, it produced very large trees that were difficult to
interpret. Furthermore, since the leaf node contained
only a single average value, the regression trees did not
produce continuous control actions. The use of model
trees to produce PID controllers means that we get
continuous control and while the PID equations break
the logical interpretation of the tree, their simplicity

and compactness makes them easy to understand.

3.4. Learner Parameter Selection

For the convenience of the pilots, it is desirable to keep
to a minimum the number of trials they are asked
to perform. Thus, the small number of behavioural
traces we can obtain forms a quite sparse data set.
This makes constructing the controller difficult. In
particular, pruning against unseen data is a problem.
Whereas pruning often begins by partitioning the orig-
inal data and leaving aside some proportion of exam-
ples for testing, we have a simulation that can create
new data “on the fly” . Thus, our process for building
controllers is to iteratively construct a controller, test
it by running it as an autopilot, repeating until a trial
is completed successfully.

We proceed by first constructing a complete tree and
successively pruning leaf nodes. Since we construct
one goal tree for each goal variable and one control
tree for each control action, there are many combina-
tions of model trees to examine. To determine the best
performing combination, we use a wrapper (Camacho,
2000) to run flight trials for each combination of trees.

Fifteen trials are run for each combination, with five
different starting locations (see below). All trials are
run with the highest turbulence setting (10 ms−1).
Each combination is performed with the same fifteen
random seeds for the fifteen trials and the performance
of each combination compared. The performance of
the controller is tested by measuring the mean sum of
squares error value (SSE) at the goal point. The SSE
equation is

horiz2 + vert2 + (3.1 · heading)2 + (1.55 · roll)2 (2)

where the heading and roll are scaled such that a
horizontal or vertical error of 31 m (100 ft) has the
same weight as a heading error of 10◦ or a roll of 20◦.
The combination of rule sets that produced the lowest
mean SSE is chosen as the best.

4. The Aircraft and Simulator

Having described our method for learning, we now
describe the experiments that were undertaken with
the flight simulator. As mentioned previously, flying
is usually taught as a set of basic flight manoeuvres
where a particular rate is maintained, for example, in a
basic turn manoeuvre the pilot aims to maintain a con-
stant turn-rate (e.g. 180◦ per minute). The basic ma-
noeuvres flown were straight-and-level flight (Level),
climb and descent (Climb), left and right level turns
(Turn), takeoff, and descent-to-land (Landing).



The flight simulator is based on a high-fidelity flight
model of a high-performance aircraft, thus providing
more realistic aircraft control data. The aircraft mod-
elled is the Pilatus PC–9 aerobatic aircraft. The PC–9
is an extremely fast and manoeuvrable propeller air-
craft used by the Royal Australian Air Force (RAAF)
as a ‘lead in fighter’ for training fighter pilots before
they progress to jet fighters. The model was provided
by the Australian Defence Science and Technology Or-
ganisation (DSTO) and is based on wind tunnel and
in-flight performance data.

The controls for the aircraft are the ailerons, elevators,
throttle, flaps and gear levers. For our task, we did not
use rudder control. The mouse was used to control the
ailerons and elevators. Learning aileron and elevator
control is the most difficult so we will concentrate on
those. The throttle, flaps and gear were all controlled
via the keyboard. The ailerons primarily control the
roll of the aircraft, which in turn, controls the turn-
rate. The elevators control the pitch and consequently
affect the climb-rate. The throttle controls the thrust,
which directly effects the airspeed, which in turn, ef-
fects the climb-rate. The flaps are mostly used during
takeoffs and landings to provide extra lift at low speed.
The gear is retracted during flight.

Turbulence was added to the flight model as a random
offset to the velocity components of the aircraft. Tur-
bulence was scaled by a parameter ranging from 0 to
10, where 10 equates to a maximum displacement of
10 ms−1 (19 kt) in the vertical direction and 5 ms−1

(10 kt) in the horizontal direction. A turbulence set-
ting of 10 ms−1 represents a maximum of a 5% devia-
tion in the forward velocity, a maximum of a ten times
deviation in the sideways velocity, and a maximum of
a seven times deviation in the vertical velocity. The
turbulence was highly exaggerated to give a visual cue
to the occurrence of the turbulence as there is no phys-
ical feedback. In practice, the effect of turbulence is
less near ground level. We model this by reducing the
magnitude of the turbulence down to zero from 100 ft
to 10 ft and having no turbulence at less than 10 ft.

Figure 1 presents a sample screen image during a take-
off manoeuvre. The simulator world is presented as
flat polygons on a grid world 20 km by 20 km, this
is a low fidelity presentation and visual cues are lim-
ited. To provide visual cues to the flight path, we pro-
vide simple ‘target windows’. To denote a transition
between stages of the flight task, there is a red dot
bounded by a 200 ft square track window, oriented
perpendicular to the target heading (i.e. the aim is to
fly straight through the square as close to the centre
as possible). In addition to 17 real valued and four

Figure 1. Sample simulator screen image, showing the view
when heading toward the Takeoff goal window.

integer valued state and control variables, the simula-
tor output the aircraft relative distance, azimuth and
elevation to the centre point of each track window.

5. Data Collection and Processing

To produce a behavioural clone we collected be-
havioural trace data from a variety of flight conditions.
This was done to promote data diversity. In all data
collection trials, the turbulence was set to 10 ms−1.
For conditions other than takeoff, five start positions
were used, the centre of the start track, and the four
corners 100 ft from the centre. The corner starts were
also angled away from the track by 10◦. Four different
altitudes and orientations were used for Straight-and-
level, four different climb-rates (two positive and two
negative, i.e. descents) for Climb, and four different
turn-rates (two positive and two negative) for Turn
manoeuvres. An extra set of Climb manoeuvres was
also flown with flaps set to the takeoff position. To bal-
ance the data sets, there were equal numbers of each
variation of a manoeuvre.

The first step in processing the data is to convert the
position and heading values to goal relative values for
each record. The next step is to estimate the reaction
time delay between a stimulus state occurring and the
subsequent control reaction. Sammut et al. (1992)
tested a range of time delays to determine experimen-
tally the best time delay.

We explored the use of state delays by performing
a lag analysis against the aileron control. Figure 2
presents the variation in correlation between the given



0 0.5 1 1.5 2

Lag (seconds)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C
or

re
la

tio
n 

to
 A

ile
ro

n

Roll
Roll-rate
Turn-rate

Figure 2. Variation in Aileron Correlation with Lag.

variables and the aileron for different delays. In the
case of zero delay, i.e. when the control reaction oc-
curs instantaneously with the current state, roll, roll-
rate and turn-rate are all positively correlated with
the aileron. This would suggest a positive feedback
control where the pilot reacts by increasing these val-
ues. Realistically, the pilot’s reaction will occur some
time after the stimulus state. The roll and turn-rate
correlation changes to a negative correlation after a
0.5 second delay, this means that there is a (desired)
negative feedback where the pilot reacts to reduce the
given stimulus states. The plateau in correlation for
roll and turn-rate in the 0.7 to 2 second delay time
range, also, suggests that once a delay is chosen in
this region the exact value is less critical. We chose a
0.7 second delay that corresponds to the peak in corre-
lation for turn-rate and aileron. To process the data,
the state variables were placed into a circular buffer
and output with the control actions that occurred ap-
proximately 0.7 seconds later for each training record.
Goals were learnt by using the same time delay, this
time to align the goal-directing variables’ states with
the system state that occurs 0.7 seconds later. That is,
the pilot’s anticipation of the future state is approxi-
mated. Without this anticipation offset, the clone did
not direct the control toward the goal quickly enough.
The use of an anticipatory delay needs further inves-
tigation. Sammut et al. (1992) also considered only
records where a change in control occurred and for
aileron and elevator only the record where the end of
the control adjustment occurred. We use the same
data filtering.

The final step in the data processing is to calculate

the error, integral and derivative terms for each goal
setting as described above.

6. Results

Several experiments with this framework have been
conducted. The first was to test how well our goal-
directed PID control framework performed on individ-
ual manoeuvres. We first learnt the control rules only,
and handcrafted simple goal rules for each manoeu-
vre. The behavioural clones were tested on fifteen tri-
als in full turbulence (10 ms−1) with the five starting
positions described above. Straight-and-level flights,
climbs and descents were all successfully performed for
all fifteen trials (i.e. passed through the target window
for all trials).

With the hand-crafted goal rule, the turn manoeuvre
rarely succeeded. To improve our handcrafted goal
rule, we learnt a goal rule for turn-rate and inspected
the model tree. This lead to insights into the goal
structure that contradicted our intuitive understand-
ing of the pilot’s behaviour. Bratko and Urbančič
(1999) explored the effectiveness of Machine Learning
in aiding skill reconstruction. They observed that in
the case where a person has no common-sense model
of the system, help from Machine Learning is essential.
In our case Machine Learning provided the insight into
where our common-sense model was failing.

Our next experiment was to build clones for each ma-
noeuvre by learning the goal and control rules. In
all cases using learnt goal rules produced better per-
forming clones than using handcrafted goal rules. The
improved success of the clones with the addition of
learnt goal rules indicates that the clones robustness
to turbulence is not just a result of using learnt PID
controllers but also of the learnt goal rules.

To investigate how the goal-directed PID control
framework improves manoeuvre performance we con-
ducted a baseline comparison to a situation-action
clone. The situation-action clone has no goal level and
models control action as a response to system state
using goal relative values and was learnt with model
trees. There were 15 trials all with 10 ms−1 turbulence
and five different start positions. The situation-action
clone successfully flew 11 Level, 9 Climb, 6 Left, 15
Takeoff and 9 Landing manoeuvres. The goal-directed
PID controller was successful for all trials of all ma-
noeuvres.

An experiment was performed to test the general-
ity and goal-directedness of our behavioural cloning
framework. The clones’ performance over a standard
takeoff and land circuit of a runway (Thom, 1998) was



Table 2. Per stage success rate (%) for given Clone style and level of turbulence.

Clone Style Situation-Action Goal-directed PID
Turbulance (ms−1) 1 1 2 3 4 5 6 7 8 9 10

Takeoff 99 100 100 100 100 100 100 100 100 100 98
Left climb 37 100 99 95 87 86 78 76 76 82 69
Outbound 14 100 100 100 100 100 99 98 97 98 95
Left 1 7 100 100 98 98 80 85 83 79 76 78
Downwind 0 100 100 100 100 100 99 97 93 92 90
Left 2 0 100 100 100 97 92 81 73 73 65 63
Inbound 1 100 100 100 100 96 94 82 87 88 77
Line up 0 100 99 98 90 95 89 80 87 77 83
Landing 1 100 100 100 97 93 92 78 82 78 73

investigated. Our runway circuit consists of the fol-
lowing stages.

• Takeoff and climb to 500 ft with takeoff flap and
retract landing gear once airborne.

• Left climbing turn through 90◦ to 1000 ft.†

• The outbound leg for 2 km at 70% throttle.

• Level left turn through 90◦.

• Downwind leg for 5 km.

• Descending left turn trough 90◦.†

• Descending inbound leg for 2 km with 50% throt-
tle.

• Descending left turn down to 500 ft to line up
with the runway with flaps partially extended.†

• Descent-to-land with flaps fully extended, landing
gear down and reducing airspeed.

• Landing near the start of the runway with air-
speed, roll, heading, drift and descent-rate all
within tolerance.

Note that the circuit contains manoeuvres (indicated
by †) that were never learnt, such as a left climb or
left descent.

Table 2 presents the success rates of the goal-directed
PID control clone at each stage for various levels of tur-
bulence. Also shown in the column labelled ‘Situation-
Action’ is the success rate of the best performing
situation-action clone for the circuit with a turbulence
level of 1 ms−1. A stage is counted as successfully
flown when the aircraft flies through the target win-
dow of the stage. Landing is successful when the air-
craft lands on the runway within certain tolerances.

One hundred trials of the circuit were flown for each
set level of turbulence.

To compare the robustness over the flight path the
situation-action controller was optimised by ‘tuning’
the learning parameters for every rule for every stage.
That is, the clone was learnt specific to the flight path.
In this case it was able to fly the entire circuit success-
fully with no turbulence, however, for a turbulence set-
ting of 1 ms−1 the performance over the circuit dete-
riorated rapidly. This highlights the situation-action’s
brittleness. In comparison the goal-directed frame-
work is far more robust. The goal-directed frame-
work is able to recover after missing track windows.
For example, when the turbulence was set to 3 ms−1

the left climb, first left turn and line-up stages have
cases where the goal is missed. The following stages
(outbound, downwind and landing) all have 100% suc-
cess. This is reflected at all turbulence levels except
for some of the landing stages. In general the success
of the turn manoeuvres deteriorated quickly with an
increase in turbulence level. This can be related to
the fact that turbulence has the greatest effect on the
sideways velocity of the aircraft.

The transparency of the system can be examined from
Table 1. The rules are compact and demonstrate a
high degree of robustness and generality. In compar-
ison, the rules for the situation-action controller were
over twice as long. The use of a relatively simple
rule learner and PID control has improved the trans-
parency of the behavioural clone.

7. Future Work and Conclusion

To simplify data processing we learnt goals and con-
trols separately. This is possible for the flight domain
where control can be segmented into manoeuvres de-
fined by homeostatic control. Other domains may not
have such a natural decomposition and we are cur-



rently testing our system in less structured domains.

The system relies on very little expert input other than
the expert performing their skill and giving a gen-
eral description of goal-directing quantities for the task
performed. To improve the application of the frame-
work, the goal-directed clones could be combined in a
more symbolic hierarchy such as in van Lent and Laird
(1999) or with task theories as in Bain and Sammut
(1999).

The temporal dynamics of the system are handled by
preset lags of system states (for learning) or control ac-
tions (for execution). Reaction times and anticipation
times will vary with the nature of the task. Bratko
et al. (1998) discusses the use of reaction time delay
and suggests that it may not be crucial to clone learn-
ing. We found that there was an improvement in per-
formance by using reaction time and anticipation time
offsets. We have not explored the issue further, but
have found that lag analysis of the data may provide
some basis for choosing the offsets and goal-directing
quantities. Learning temporal dynamics is a difficult
problem that requires further research.

Acknowledgements

This work was done as part of the first author’s Doc-
toral Dissertation. We thank Mike Bain, Malcolm
Ryan and James Westendorp for their advice and as-
sistance with the flight simulator. Thanks also to Ed-
uardo Morales for his valuable reviewing of the various
drafts of this paper. We also thank the referees for
their suggestions for improving the clarity of the pa-
per. The Australian Defence Science and Technology
Organisation, Melbourne, was a great assistance to us
in the early stages of this research.

References

Anderson, C., Draper, B., & Peterson, D. (2000). Be-
havioural cloning of student pilots with modular
neural networks. Proceedings of the Seventeenth In-
ternational Conference on Machine Learning (pp.
25–32). Stanford: Morgan Kaufmann.

Bain, M., & Sammut, C. (1999). A framework for
behavioural cloning. In K. Furukawa, D. Michie and
S. Muggleton (Eds.), Machine intelligence 15, 103–
129. Oxford University Press.

Bratko, I., & Urbančič, T. (1999). Control skill, ma-
chine learning and hand-crafting in controller de-
sign. In K. Furukawa, D. Michie and S. Muggle-
ton (Eds.), Machine intelligence 15, 131–153. Ox-
ford University Press.

Bratko, I., Urbančič, T., & Sammut, C. (1998). Be-
havioural cloning: phenomena, results and prob-
lems. Proceedings of the Fifth International Fed-
eration of Automatic Control Symposium on Auto-
mated Systems Based on Human Skill (pp. 143–149).
Berlin: ASLIB Press, South Australia.

Breiman, L., Friedman, J., Olshen, R., & Stone, C.
(1984). Classification and regression trees. New
York: Chapman and Hall.

Camacho, R. C. (2000). Inducing models of human
control skills using machine learning algorithms.
Doctoral dissertation, Engineering Faculty of Porto
University, Portugal.

Franklin, G., Powell, J., & Emami-Naeini, A. (1995).
Feedback control of dynamic systems. Reading, MA:
Addison Wesley.

Michie, D. (1993). Knowledge, learning and machine
intelligence. In L. Sterling (Ed.), Intelligent systems,
1–19. Plenum Press.

Quinlan, J. (1993). Combining instance-based and
model-based learning. Proceedings of the Tenth In-
ternational Conference on Machine Learning. (pp.
236–243). Amherst, Massachusetts: Morgan Kauf-
mann.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D.
(1992). Learning to fly. Proceedings of the Ninth
International Conference on Machine Learning (pp.
385–393). Aberdeen: Morgan Kaufmann.

Stirling, D. (1995). Compressed heuristic universal re-
action planers. Doctoral dissertation, Basser De-
partment of Computer Science, University of Syd-
ney.

Thom, T. (1998). The flying training manual.
Williamstown Victoria Australia: Aviation Theory
Centre.

van Lent, M., & Laird, J. (1999). Learning hierarchical
performance knowledge by observation. Proceedings
of the Sixteenth International Conference on Ma-
chine Learning (pp. 229–238). Morgan Kaufmann.

Šuc, D. (2001). Machine reconstruction of human
control strategies. Doctoral dissertation, Faculty of
Computer and Information Sciences, University of
Ljubljana, Slovenia.


