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Abstract

To address the problem of algorithm se-
lection for the classification task, we equip
a relational case base with new similarity
measures that are able to cope with multi-
relational representations. The proposed
approach builds on notions from clustering
and is closely related to ideas developed in
similarity-based relational learning. The re-
sults provide evidence that the relational
representation coupled with the appropriate
similarity measure can improve performance.
The ideas presented are pertinent not only
for meta-learning representational issues, but
for all domains with similar representation re-
quirements.

1. Introduction

Classification algorithm selection can be seen as one of
the ‘holy grails’ of the machine learning field, it is com-
mon knowledge that there is no algorithm uniformly
superior over all possible problems.

The most common and widely accepted methods for
performing algorithm selection require substantial ex-
pertise on machine learning and involve systematic ex-
perimentation and evaluation. In recent years there
have been some efforts to automate the selection and
lift the experimental burden by relying on some form of
learning, most often called meta-learning. The whole
idea dates back to the work of (Rendell et al., 1987),
it became more concrete within the European project
STATLOG, (Michie et al., 1994), to finally find its
full expression in another European project, METAL,
which produced a considerable amount of publica-
tions (Brazdil et al., 2003; Pfahringer et al., 2000).

The main concept is very simple and views classifica-
tion algorithm selection as just another learning prob-
lem. The training examples consist of descriptions of

complete classification datasets and the target; the lat-
ter is usually defined from a performance based prefer-
ence order over the set of available algorithms for the
given dataset. While there has been significant work
on the definition of preference order over learning al-
gorithms and the construction of the target, little at-
tention has been given to representational issues that
arise when one tries to describe datasets.

The heart of the representational issues can be traced
to the one-to-many relationships that appear in the
descriptions of classification datasets. A training in-
stance in a meta-learning setup is a dataset descrip-
tion, which comprises characterizations of each of the
attributes that constitute the dataset1. In the propo-
sitional framework it is not possible to retain the
complete information about the individual attributes,
since this would clearly result in meta-instances of vari-
able length, depending on the number of the attributes
of a given dataset.

The bulk of the work in meta-learning naively ad-
dressed the representational problem by resorting to
descriptions of properties that are computed for each
one of the attributes of a dataset using averages or
at most the min and max statistics. Two exceptions
are, the work of (Todorovski & Dzeroski, 1999) where
the problem was treated as a multi-relational problem,
as it actually is, and handled via first-order learners;
and the work of (Kalousis & Theoharis, 1999) where
the distributions of the properties are described us-
ing histograms. The former suffers from a well known
problem of first-order learning; the high number of de-
grees of freedom of the search space, which is deter-
mined by the number of properties used to describe
datasets and the actual number of attributes of the

1This is true when statistical and information based
properties are used to described the datasets. But it
is not true when datasets are described via landmark-
ers (Pfahringer et al., 2000), or via model based charac-
teristics as in (Peng et al., 2002)
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dataset. This results in an extremely time consuming
learning process and at the same time increases the
chances of overfitting by accidental discovery of in-
valid patterns, especially when the number of training
instances is small as is typical in applications of meta-
learning. The latter attacks the high dimensionality of
the search space adequately, as its dimensions are only
determined by the examined properties. However the
semantic power of the distribution based representa-
tion is not fully exploited in the framework of classical
propositional learners.

In a previous paper, (Hilario & Kalousis, 2001), we
described the case representation of a relational case-
based system which served as a repository of classifi-
cation experiments. Thorough records were kept on
every aspect of these experiments. The goal was to
use the case-base as a predictive tool, that would pro-
vide support in classification algorithm selection, but
also as an explanatory tool determining the areas of
expertise of classification algorithms.

Although case-based systems do not induce first-order
theories they can make use of multi-relational rep-
resentations addressing thus the representational re-
quirements of the meta-learning problem. The collec-
tive treatment of dataset attributes and their proper-
ties in the similarity measures can make case based
systems less susceptible to overfitting phenomena. In
a first order meta-learning scenario we would be look-
ing for rules of the form: ∃ attribute whose property
I satisfies condition X . As the number of attributes
increases chances that we would, accidentally, discover
invalid rules of that form which hold on the training set
also increase. The appropriate selection of similarity
measures, which would be defined over all attributes
and their properties in contrast to the existential ap-
proach, can alleviate that problem.

In this paper we continue the work started in (Hi-
lario & Kalousis, 2001). We equip the relational case-
base with precise similarity measures, that can cope
with the multi-relational structure of the information
describing the classification datasets, Section 3, and
undertake a systematic evaluation of the predictive
power of the relational case-based classification, Sec-
tion 5. The evaluation takes place within a specific
meta-learning framework described in Section 4. The
next section gives a brief overview of the cases.

2. Overview of the Cases

In Figure 1 we give the overall description of a case in
the relational case-based system. We now give a brief
description of the main components of a case.
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Figure 1. Case representation

• ModTool : A general class that provides the pro-
file of a modeling tool. In principle it can be
any learning algorithm, for example a supervised
learner, a regression or a clustering algorithm, al-
though here we focus only on classification algo-
rithms. The profiles of the learning algorithms
have been constructed via extensive experimenta-
tion. The subclasses of ModTool represent spe-
cific classification algorithms along with specific
instantiations of their training and testing param-
eters.

• EvalStrategy : A general class that defines the
concept of an evaluation strategy. Its subclasses
are specific evaluation strategies, like HoldOut
or CrossValidation. Each subclass contains char-
acteristics that are specific to the corresponding
evaluation method (e.g. the number of folds and
the number of times that a Cross Validation is
repeated).

• Dataset : The class of all datasets that have been
used in the different learning experiments. It
contains a collection of N attributes (attributes
are instances of the Variable object). It can be
a Labeled Dataset, i.e. a dataset with a target
variable, continuous (regression task), or discrete
(classification task), or an UnLabelled one where
no target variable is defined. For each dataset a
number of high level characteristics are recorded,
like the number of classes, number of attributes,
and summary statistics of statistical and informa-
tion based properties of the individual attributes
of the dataset.

• Variable : The class of variables or attributes of a
dataset, whether predictors or targets. A number
of statistical and information based properties are
recorded for every attribute depending on its na-
ture (discrete or continuous) and its role (target
or predictor).



A Modeling Tool can be applied and evaluated on a
Dataset using a specific Evaluation Strategy. The com-
plete results of the evaluation are stored in a ModPro-
cess object, which links together the Dataset, ModTool
and EvalStrategy objects. A case in the case base is
a learning episode, i.e. the application and evaluation
of a learning algorithm to a specific dataset.

3. Defining the Similarity Metrics

We have defined the representation of cases in what
is essentially a relational case base. In order to fully
exploit that representation we have to define similarity
measures that are able to cope with it.

The most important component of the relational case
base is the Dataset object. Each instance of the
Dataset class is associated with a set of instances of
the Variable class. Any similarity measure defined
over a Dataset object should also take into account
the elements of the Variable class associated with that
Dataset object. Before addressing the problem of sim-
ilarity definition between sets of variables we have to
define a similarity measure among the individual ele-
ments of the sets, i.e. among the variables.

A dataset I includes a set of variables SI . Each vari-
able vi ∈ SI is described by a vector u of n dimensions
describing various properties of the variable. The sim-
ilarity between any two variables vi, vj , whether from
the same or from different datasets, will be given by :

sim(vi, vj) =
1

n

∑
n

(sim(uvin , uvjn )) (1)

=
1

n

∑
n

(1−
|uvin − uvjn |
unmax − unmin

) (2)

The given similarity measure is based on the normal-
ized Manhattan distance between the two vectors that
describe the corresponding variables. Any measure of
similarity between two sets of variables will make use
of the similarity measure between individual variables
defined by Formula 1.

The definition of similarity measures between sets of
objects, in our case the sets of variables that consti-
tute the datasets, is not trivial. There is no unique-
best similarity measure and the appropriate selection
always depends on the semantics of the problem at
hand. For example in the scope of similarity-based
multi-relational learning (Kirsten et al., 2001), the
similarity between two sets is defined as the sum of
the maximum similarities of the elements of the set
with the lower cardinality with the elements of the set
with the greater cardinality, normalized by the cardi-
nality of the greater set. The normalization with the

cardinality of the larger set results in very low sim-
ilarities when the two sets have very different cardi-
nalities. More formally for two sets SI and SJ with
possible different cardinalities ni and nj , where the
similarity between elements vi ∈ SI , vj ∈ SJ , is given
by Formula 1, the similarity according to Kirsten et al.
(2001) is:

1

nj

∑
i

(max
i
sim(vi, vj)), ni < nj

simK(SI , SJ ) =

1

ni

∑
j

(max
j
sim(vi, vj)), ni ≥ nj

Very similar ideas are quite developed in clustering
algorithms and more precisely for defining the similar-
ities between sets in agglomerative hierarchical clus-
tering (Duda et al., 2001). Exploiting the exper-
tise developed there, we have chosen to implement
and evaluate two different similarity measures based
on measures commonly used by the clustering com-
munity. The first one is based on the similarity used
in the single linkage clustering algorithm, where the
similarity between two sets is defined as the maximum
similarity observed between all pairs of elements of the
two sets, while the second one is based on the similar-
ity used in the average linkage clustering algorithm,
where the similarity between two sets is defined as the
average similarity between all pairs of elements from
the two sets. More formally we have:

• Single Linkage Based Similarity

simSL(SI , SJ ) = maxij(sim(vi, vj)),

• Average Linkage Based Similarity

simAL(SI , SJ) =
1

ninj

∑
ij

(sim(vi, vj)),

For all three measures similarity is determined af-
ter the computation of all the pair-based similarities,
sim(vi, vj). The difference comes from the way it is
computed from them. In simSL the similarity be-
tween two sets is determined by the most similar el-
ements of the two sets. As a result this method is
more sensitive to outliers. On the other hand simAL

reduces the effect of outliers by averaging over all el-
ement pairs. SimK emphasizes the best matches be-
tween the elements of the two sets, and penalizes the
similarity when there is a large difference in cardinali-
ties. Of course there are many possible refinements of
the above similarity measures, some of which may be



worthy of investigation in a more detailed study. For
example, in computing the final similarity with simAL

one could remove similarity outliers, i.e. extremely
high or low similarities that do not conform with the
general similarity distribution. However, this should
be done with caution because for the algorithm selec-
tion application it might be exactly these cases that
determine the relative performance of classification al-
gorithms. In the general case the appropriate measure
depends heavily on the semantics of the problem.

Apart from these detailed descriptions of individual
variables there are also higher level characteristics that
are part of the description of a Dataset object. These
characteristics do not make sense for all datasets. For
example summary statistics of the properties of con-
tinuous variables do not make sense on datasets that
contain only discrete variables and vice versa. In or-
der to be able to handle such cases the description
of a dataset is divided into two groups of characteris-
tics; the first one contains summary statistics for the
discrete variables (Disc. Properties object), while the
second summary statistics for the continuous (Cont.
Properties object). Each group is treated as a single
variable of the dataset object when computing the sim-
ilarity of datasets. When the computation of the char-
acteristics of one group does not make sense then the
corresponding variable takes the value non-applicable,
na. The problem is known in the CBR community
as the heterogeneity problem. Aha et al. (2001) dealt
with the problem in the automatic construction of tree-
structured representations of case libraries in a similar
way.

Integrating the notion of non-applicability into the def-
inition of similarity, the similarity of values Ai, Aj of
variable A, A ∈ [Amin, Amax] ∪ na becomes:

1− |Ai−Aj |
Amax−Amin , if Ai, Aj 6= na

sim(Ai, Aj) = 0, if Ai = na⊕Aj = na
1, if Ai, Aj = na

The similarity of two datasets A,B is given by:

sim(A,B) =

∑
i(sim(Ai, Bi))

N

where N is the number of variables that constitute the
description of a Dataset object. The variables Ai, Bi
are :

• any of the high level characteristics that are part
of a Dataset object description,

• the set of variables associated with the datasets
A and B,

• and the grouped descriptions of continuous and
discrete variables.

4. Meta-learning Framework

One of the goals of the system is to act as an assis-
tant for algorithm selection. The analyst wishes to
identify the most suitable classification algorithm for
a new dataset based on past learning episodes and
the description of the dataset. Given a new classi-
fication task, the analyst uses a Data Characteriza-
tion Tool (Lindner & Studer, 1999) to extract dataset
meta-attributes which are stored in a new instance of
the Dataset class. This dataset is then posed as a query
to the case-based system. Using the similarity mea-
sures presented in section 3, the case-base returns the
k most similar datasets. For each j of these k datasets
there are ji associated cases; these are instances of
the ModProcess class which describe past learning ex-
periments performed on this dataset (i.e. past appli-
cations of ModTool instances to the dataset using a
specific EvalStrategy. The number of instances ji of
the ModProcess object which are associated with each
dataset j of the k most similar datasets depends on
the number of the classification algorithms that have
been evaluated on the j dataset and the evaluation
strategies that have been used; it is not necessary to
have complete results for every dataset registered in
the case base, so ji can be different for different j.

For each retrieved dataset the ”best” classification al-
gorithm is identified using the error rates recorded in
the ji ModProcess instances associated with it. The
algorithm that most frequently obtained the lowest er-
ror on the k most similar datasets is recommended by
the system for the new dataset. A more systematic
approach for defining the ”best” algorithm should be
based on the notions of pairwise comparisons and sig-
nificant wins between classification algorithms given
in (Kalousis & Theoharis, 1999). We have chosen to
work with the more simplistic approach simply be-
cause our main goal was the exploration of the repre-
sentational and predictive power of the relational case-
base system and it was more straightforward to use the
simplistic scenario.

5. Evaluation of relational case-based
classification

The meta-learning problem is a typical classification
problem where each instance corresponds to the de-
scription of a dataset; the class label that we are try-
ing to predict is simply the algorithm that achieves
the lowest error on the specific dataset. We use a sim-
ple 0/1 loss function to compute what we will call the
Strict Error.

Algorithm selection was performed amongst the ten



following: c50boost, c50rules, c50tree, mlcib1 (1-
nearest neighbor), mlcnb (naive bayes), ripper (rule
inducer (Cohen, 1995)), ltree (multivariate decision
tree (Gama & Brazdil, 1999)), lindiscr (linear discrim-
inants), clemMLP (multi-layer perceptron) and clem-
RBFN (radial basis function network). Table 1 gives
the distribution of the class labels; the majority class
corresponds to c50boost which is the best performing
algorithm in 35.92% of the 103 datasets used in the
study. The default error of the meta-learning prob-
lem —that of the default learner which simply predicts
the majority class—is 64.08%. To be at all useful, the
case-based system’s algorithm recommendation should
exhibit an error rate lower than this default error.

Table 1. Distribution of class labels for the meta-learning
problem

Class Label Frequency Percentage

c50boost 37 35.92%

c50rules 10 9.70%

c50tree 4 3.88%

clemMLP 12 11.65%

clemRBFN 6 5.82%

lindiscr 12 11.65%

ltree 9 8.73%

mlcib1 10 9.70%

mlcnb 3 2.91%

ripper 0 0.00

Total 103 100%

We used 10-fold stratified cross validation in order to
estimate the classification errors of the algorithms. All
algorithms were applied using their default parameter
setting. Normally this should give rise to 10×103 cases
in the case base, but some learning algorithms could
not be successfully applied on all the datasets.

In addition based on the results of the evaluation of

Table 2. Distribution of groups of the significantly better
performing algorithms

Algorithms Group Membership

c50boost

√ √

c50rules

√

c50tree

√

clemMLP

√

clemRBFN

lindiscr

√

ltree

√

mlcib1

√

mlcnb

ripper

Freq. 24 4 7 7 7 7

Percent 23.3 3.88 6.8 6.8 6.8 6.8

the algorithms we determined the group of the best
algorithms for each one of the 103 datasets using Mc-
Nemar’s test of significance. This consists of learn-
ing algorithms whose performance did not vary signif-
icantly within the group but was significantly better
than that of any algorithm outside the group. The sig-
nificance level was set to 0.05. Table 2 gives the most
frequent groups of significantly better performing al-
gorithms. Each column corresponds to a given group
whose members are indicated via

√
.

The establishment of the significantly better group of
algorithms will provide the basis of one more eval-
uation scenario. Here the suggestion of the system
will be considered successful if the recommended al-
gorithm belongs to the set of best algorithms for the
given dataset. This method reflects the idea that when
dealing with a classification task, for which the main
goal is low classification error, we will be satisfied if the
algorithm that we select belongs to the group of the
significantly better algorithms for the given dataset.
We will call the error estimated via this method Loose
Error. In this case the default Loose Error is the error
that we get when we predict the algorithm that most
often appears in the top groups. In the datasets ex-
amined here this is c50boost, which in 52.43% of the
datasets is part of the group of significantly better al-
gorithms. This default strategy corresponds thus to
an error of 100%-52.43%=47.57%.

For evaluation we used leave-one-out cross validation.
We experimented with three different values of k,
k = 1, 3, 10 and the two different similarity measures
defined over the set of variables, i.e. simAL, simSL.
We also report results for simK , and for a simple flat
attribute-value version of the case-base2, (AV), where
the information on the individual variables of each
dataset was simply ignored, (remember though that
the high level description of a dataset contains sum-
mary statistics of the information on the individual
variables mostly in the form of averages). The later is
done in order to examine whether the synergy of the
relational case-based representation and of the similar-
ity measures can bring an improvement over the flat
AV representation. We report the estimated error and
the results of a Wilcoxon test on the significance of
the difference of the estimated error with the default
error.

5.1. Results

In Table 3 we present the estimated Strict Error for all
the experimental setups. Both methods that use the

2This is in essence a simple k-nearest neighbor classifi-
cation algorithm.



Table 3. Strict Error, (SE), estimation via leave-one-out
cross validation. p-values, (p), of the Wilcoxon test of sig-
nificance with the default error, (default = 64.08%). In
bold the cases where we have a significant win over the
default.

simSL simAL simK AV

k SE p SE p SE p SE p
1 64.1 1.00 66.0 0.75 69.9 0.39 67.0 0.63

3 56.3 0.07 55.3 0.03 66.0 0.63 63.1 0.80

10 61.7 0.36 61.2 0.36 63.1 0.76 64.1 1.00

Table 4. Loose Error, (LE), estimation via leave-one-out
cross validation. p-values, (p), of the Wilcoxon test of sig-
nificance with the default error (default = 47.57%).

simSL simAL simK AV

k LE p LE p LE p LE p
1 51.4 0.52 52.4 0.43 52.4 0.48 53.4 0.34

3 41.7 0.17 42.7 0.25 49.5 0.63 49.5 0.61

10 44.6 0.31 43.7 0.20 46.6 0.73 48.5 0.79

clustering based similarity measures perform consis-
tently better than the AV version over all the values of
k, though not always at a statistically significant level.
The only two experimental setups in which a signifi-
cant improvement over the default error is observed are
for k = 3, simAL, simSL. For simAL that difference is
statistically significant. SimK exhibits an error which
is worst than the error of AV . One explanation for the
low performance of simK could be the penalization of
similarity for datasets pairs with very different number
of attributes, in which case simK becomes very small.
In the algorithm selection problem it is probable that
the most important factor in determining relative per-
formance is the highest similarity observed between
any pair of attributes independently of any differences
in the number of attributes, a fact that is supported by
the good performance of the simSL which takes into
account only the most similar pair of attributes.

The results with respect to the Loose Error are fairly
similar. Again simAL and simSL perform better than
AV , which in this case is worse than the default for all
the values of k. Nevertheless the difference between
simAL, simSL, and the default loose error is not sta-
tistically significant. Like before simK and AV have
similar levels of performance.

The results provide evidence that the exploitation of
the representational power of the relational case base
can indeed improve the predictive performance over
the flat attribute-value version. Nevertheless this by
itself is not sufficient, it should be coupled by the selec-

tion of the appropriate similarity measure, otherwise
we can even have performance deterioration.

5.2. Recommendations

The recommendations of the system are mainly guided
by the nature of the dataset that is given as a query,
Table 5 presents some examples of the recommenda-
tions of the case-base. For datasets composed of nu-
meric variables, (typewriter fonts), the most simi-
lar datasets are also composed of numeric variables,
the same holds for datasets with discrete (slanted
fonts) or a mixture of discrete and continuous variables
(sans serif fonts). However this intuitively appealing
behavior does not guarantee the best performance.

For example for dataset allrep the algorithm exhibit-
ing the lowest error in its three most similar datasets
is c50boost, but for allrep itself the algorithm with the
lowest error is c50tree, a fact that results in an erro-
neous recommendation. Taking a closer look at the
performance of the algorithms for allrep we can see
that c50tree, c50rules and c50boost have very similar
errors, 0.9%, 0.8% and 0.7% respectively. Moreover
the differences between the three algorithms are not
statistically significant. All these make the prediction
of the algorithm that achieves the lowest error on the
specific dataset a very hard task. The problem could
have been alleviated by adopting the notion of signifi-
cant wins as in (Kalousis & Theoharis, 1999).

Another interesting observation is that the case-based
system seems to group together datasets that come
from similar application domains. For example for
dataset byzantine, a dataset related to the recogni-
tion of byzantine printed notes, almost all its sim-
ilar datasets come from the pattern recognition do-
main and even more specifically from character recog-
nition, with the exceptions of vowel (acoustic vowel
recognition), lrs (low resolution spectrometer dataset)
and abalone (predicting the age of gastropod mollusks
from some of its physical characteristics). The same
holds for the allrep and allbp datasets where their six
most similar datasets are the well known thyroid based
datasets. The seventh dataset is the hepatitis dataset
another medical diagnosis dataset; only the last three
most similar datasets do not involve medical appli-
cations. In a sense the relational case-based system
seems to group datasets into clusters that correspond
to specific application regions.

6. Discussion and Future Work

The use of CBR systems to support the exploration,
comparison, categorization and application of tools



Table 5. Examples of recommendations.

Query Eight Most Similar Datasets

allrep allbp allhyper
c50tree c50boost c50boost

sick dis
c50boost c50rules

allhypo ann–thyroid
c50boost c50boost

hepatitis tic
clemMLP c50rules

allbp allrep sick
c0boost c50tree c50boost

allhyper dis
c50boost c50rules

allhypo ann–thyroid
c50boost c50boost

hepatitis tic
clemMLP c50rules

byzantine byzantine32 vowel
mlcib1 mlcib1 mlcib1

lrs segmentation
c50boost c50boost

abalone pendigits
clemMLP mlcib1

char letter
c50boost c50boost

dna-splice monk1 parity5 5
c50boost c50boost c50boost

splice monk3
mlcnb c50boost

tic-tac-toe connect–4
mlcib1 c50boost

monk2 balance-scale
clemMLP c50boost

from a given domain is not new. Althoff et al. (2000)
use a CBR system to build an experience base which
does exactly that for Knowledge Managment tools.

One of the major learning paradigms in machine learn-
ing is lazy learning. Central to this paradigm is the
retrieval, based on some notion of similarity, of past in-
stances and their reuse in order to determine the class
of an unseen instance. On the other hand the standard
Case Based Reasoning cycle consists of four phases: re-
trieval, reuse, revision and retention (Aamodt & Plaza,
1994). Past cases are retrieved, using similarity mea-
sures, reused and possibly revised in order to solve a
new unseen problem, with the final solution being re-
tained as part of a new case. Lazy learning can profit
from the experience developed in CBR systems, and
more specifically relational CBR, in order to adapt its
instance representation, and the retrieval and reuse
phases to tackle classification problems that cannot be
adequately addressed within the propositional frame-
work. One example of this synergy is the work of Ar-
mengol and Plaza (2001), where they used a relational

case-based representation and defined similarity mea-
sures to perform classification. Their approach is not
based on pairwise similarity comparisons, they view
similarity as a symbolic description of what the cases
present in the case base and the case to be classi-
fied have in common. Of direct utility is the work
on similarities over complex structures, for example
Bergmann and Stahl (1998) discuss the definition of
similarities over object oriented structures.

The meta-learning task serves as an opportunity to
set forth a number of representational issues that can-
not be tackled adequately via propositional learners.
The main issue that arises is the ability to handle one
to many relationships that appear when one tries to
describe properties of datasets which consist of many
variables. Relational case based systems offer a natu-
ral solution. In the current paper we continue previous
work on meta-learning using such a system. We de-
fine precise similarity measures between sets exploiting
well established results from clustering and present the
results of a thorough evaluation of the system. The re-
lational case base allows us to overcome naturally the
representational limitations inherent in propositional
learning algorithms since it makes use of the relational
representations of the training instances.

The evaluation of the system with respect to Strict Er-
ror showed that it provides suggestions which are sta-
tistically significant better than the default strategy
for simAL, k = 3. Comparing the relational versions
with the attribute-value version showed a consistent
advantage of the former, albeit not statistically signif-
icant, for the two cluster inspired similarity measures.
The simK measure had a performance very similar to
the attribute-value version, thus providing support for
the hypothesis that the two first are more appropriate
for the algorithm selection problem. The Loose Error
results, i.e. how often the recommendation is a part
of the truly best set of algorithms for a given dataset,
were similar though the differences observed this time
were not statistically significant.

Another interesting dimension of the present work are
the groups of datasets that the case-base was form-
ing whenever it was presented with a query. These
seem to comprise datasets that come from very sim-
ilar application domains. So we observed groups of
datasets from pattern recognition problems, or groups
of datasets from medical diagnosis problems. An inter-
esting further research direction would be the applica-
tion of clustering algorithms making use of the multi-
relational representation capabilities of the case-base.

The proposed relational case-based representation of
datasets can be used together with any of the various



meta-learning frameworks for algorithm selection, e.g.
algorithms ranking, direct error prediction etc.

Overall the performance results are encouraging but
there is still space for significant improvement. We
plan to focus our efforts on the representational issues
that are set forth here by providing more elaborate
representation schemas for the description of various
properties of the set of attributes of a dataset, but
also more general of sets of objects. More precisely we
want to use histogram representations, as they were
introduced in (Kalousis & Theoharis, 1999), to de-
scribe the distributions of properties of sets of objects
in a compact form and use them to extend the classical
propositional learning schema. This will give rise to a
new representational schema that will lie between the
propositional and the multi-relational paradigms.
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