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Abstract

We consider the problem of unsupervised
learning from a matrix of data vectors where
in each row the observed values are randomly
permuted in an unknown fashion. Such prob-
lems arise naturally in areas such as computer
vision and text modeling where measure-
ments need not be in correspondence with
the correct features. We provide a general
theoretical characterization of the difficulty
of “unscrambling” the values of the rows for
such problems and relate the optimal error
rate to the well-known concept of the Bayes
classification error rate. For known para-
metric distributions we derive closed-form ex-
pressions for the optimal error rate that pro-
vide insight into what makes this problem dif-
ficult in practice. Finally, we show how the
Expectation-Maximization procedure can be
used to simultaneously estimate both a prob-
abilistic model for the features as well as a
distribution over the correspondence of the
row values.

1. Introduction

There are a number of real-world machine learning
problems that can be characterized as follows: there
are N objects of interest, where for each object we
measure a number of features or attributes of the ob-
jects but we do not necessarily know the correspon-
dence between the measurements for different objects.
In this paper we focus specifically on the case where
the feature values have been permuted in a random
manner. Table 1 shows a simple example of this type
of permutation problem. We would like to be able to
learn the joint probability density of the original data
on the left given only the permuted data and knowl-
edge of the type of permutations that may have been

Table 1. An example of the permutation problem

Original Data Permuted Data Permutations

0.2 10 4 56 10 4 56 0.2 (2, 3, 4, 1)
0.1 12 4 62 62 0.1 4 12 (4, 1, 3, 2)
0.1 11 3 70 11 3 0.1 70 (2, 3, 1, 4)
0.3 14 4 61 61 0.3 14 4 (4, 1, 2, 3)

applied to the data (e.g., cyclic shifts). Two questions
naturally arise: (a) how hard is this type of learning
problem in general? and (b) what kinds of algorithms
can we use to solve this problem in practice?

In considering the first problem, our intuition tells us
that the “more different” the features in the original
(unpermuted) table are then the “easier” the unscram-
bling problem may be. For example, in Table 1, the
distributions of each individual feature in the table on
the left appear quite different from each other, so that
one hopes that given enough data one could eventu-
ally recover a model for the original data given only
permuted data. In Section 2 we make this notion
of learnability precise by introducing the notion of a
Bayes-optimal permutation error rate. In Section 3
we show that under certain conditions this error rate
is upper-bounded by an appropriately defined Bayes-
optimal classification error rate, confirming the intu-
ition that the ability to unmix the row-values should
be related to the overlap of the column densities. In
Section 4 we derive closed-form expressions for the per-
mutation error rate for specific parametric models —
finding for example that negative correlation among
Gaussian columns can make the unmixing problem sig-
nificantly harder, while positive correlation can make
it arbitrarily easy. In Section 5 we address the second
question (how to simultaneously unlearn the mixing
and estimate the original joint density) using an EM
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framework, and provide various experimental results
to illustrate how these learning algorithms work. Con-
clusions are presented in Section 6.

Our interest in this “learning from permuted data”
problem is motivated by recent work in applying ma-
chine learning techniques to astronomical image data
(Kirshner et al., 2003a). In this problem each im-
age consists of three intensity “blobs” that represent
a particular type of galactic structure of interest to
astronomers. For each blob a vector of features can
be extracted, such as mean intensity, ellipticity, and
so forth. Astronomers can visually identify a central
“core” blob, and right and left “lobe” blobs in each
image. However, in the training data the groups of fea-
tures are not associated with any labels that identify
whether they are from the center, left, or right blob —
this information is hidden and must be estimated from
the data. This is a version of the permutation prob-
lem described earlier. In prior work (Kirshner et al.,
2003a) we developed an EM algorithm to solve this im-
age analysis problem and focused on domain-specific
aspects of the astronomy application.

Permutation problems frequently occur in computer
vision where, for example, features in the form of land-
marks are calculated for an object of interest in an im-
age (such as a face) but the features are not necessarily
in correspondence across different images (Gold et al.,
1995). Similar problems also arise in language model-
ing and information extraction, e.g., in learning models
documents, where different text fields can occur in dif-
ferent positions on the page (McCallum et al., 2000).
A significant advance in recent years is the realization
that many of these types of correspondence issues can
be cast as machine learning problems, viewing the un-
known correspondences as hidden variables that can
be estimated from the data using techniques such as
Expectation-Maximization (EM), e.g., in vision (Frey
& Jojic, 2003). Much of this prior work takes advan-
tage of domain-specific information to help solve the
correspondence problem, e.g., the use of prior knowl-
edge of likely types of spatial deformations in images,
or sequential constraints on text formation in informa-
tion extraction. In contrast, in this paper we focus on a
more abstract theoretical characterization of learning
from permuted data. The primary novel contribution
of this paper is the introduction and analysis of the
notion of Bayes-optimal error rates for “unscrambling”
the permutations, providing a lower bound on the per-
formance of any unsupervised learning algorithm for
this problem.

2. Probabilistic Generative Models

2.1. Notation

Let x = (~x1, . . . , ~xi, . . . , ~xc) be composed of c feature-
vectors ~xi, with each vector ~xi taking values from the
same d-dimensional set S. Thus, x has dimension c×d
and takes values in the set Sc.

Example 1. Let each ~xi be a one-dimensional real-
valued feature-vector. In this case S is the real line
(S = R) with d = 1, each ~xi is a scalar, and Sc = R

c.

Example 2. Consider the case where A = {a,b, . . . ,z}
is a set of letters in an alphabet, and let S = A×R. In
this case each feature-vector takes values as pairs of a
letter and a real number, i.e. d = 2, and the space Sc

is 2c-dimensional.

We define p(x) as a probability density (distribution)
function over the set Sc. For example, in Example
1 above p(x) could be a c-dimensional multivariate
Gaussian density.

2.2. A Generative Model for Permuted Data

Our generative model consists of two parts:

In the first part we generate samples from p (x) in a
standard manner — throughout this paper we assume
independent and identically distributed random sam-
ples. In this manner we can generate a data matrix of
N rows and c columns, where each column has dimen-
sion d.

The second part of the generative model randomly ap-
plies a permutation ρ to each row of the data matrix
in the following manner. Let P = {ρ1, . . . , ρm} be
a set of permutations defined on (1, . . . , c). For ex-
ample, P could be the set of all c cyclic shifts, e.g.,
c = 3, ρ1 = (1, 2, 3), ρ2 = (2, 3, 1), and ρ3 = (3, 1, 2).
For each row x of the data matrix a permutation ρ ∈ P
is randomly selected according to a probability distri-
bution p (ρ) over P . The components of x are then
permuted according to the selected ρ to obtain a per-
muted vector taking values in the same set Sc.

The size of P , |P|, is denoted by m. Note that if
all possible permutations are allowed then m = c!.
Unless stated otherwise, in this paper we will generally
assume that all permutations in P are equally likely,
i.e. p (ρj) = 1

m , j = 1, . . . , m.

2.3. Probability Densities for Permuted Data

It is useful to express the probability density of a per-
muted vector, call it q (x), as a function of (a) the
density of the original data rows p (x), and (b) the
distribution over permutations p(ρ). In the remainder



Table 2. Probability distributions for Example 4.

x p (x) q(x)

(0, 0) 0.28 0.28
(0, 1) 0.42 0.27
(1, 0) 0.12 0.27
(1, 1) 0.18 0.18

of the paper whenever the symbol q is used it is implic-
itly assumed that the argument x has been permuted.
Note that q (x) can be expressed as a finite mixture
over all m possible permutations that could have led
to the generation of x:

q (x) =
m

∑

j=1

q (x| ρj)p (ρj)

=

m
∑

j=1

q (~x1, . . . , ~xc| ρj) p (ρj)

=

m
∑

j=1

p
(

ρ−1
j (~x1) , . . . , ρ−1

j (~xc)
)

p (ρj)

=

m
∑

j=1

p
(

~xρ−1

j
(1), . . . , ~xρ−1

j
(c)

)

p (ρj) (1)

where ρ−1
j is the unique inverse permutation for ρj .

Example 3. Let c=3, and P = {ρ1, ρ2, ρ3} be a set
of cyclic shifts: ρ1 = (1, 2, 3), ρ2 = (2, 3, 1), and ρ3 =
(3, 1, 2). If x = (~x1, ~x2, ~x3) is a permuted vector, it
could have been obtained from one of three possible
permutations, as reflected by the mixture model:

q (x) = q (~x1, ~x2, ~x3|ρ1) p (ρ1)

+q (~x1, ~x2, ~x3|ρ2) p (ρ2)

+q (~x1, ~x2, ~x3|ρ3) p (ρ3)

= p (~x1, ~x2, ~x3) p (ρ1) + p (~x3, ~x1, ~x2) p (ρ2)

+p (~x2, ~x3, ~x1) p (ρ3) .

An important point is that p and q are not the same
distribution although both are defined over Sc.

Example 4. Let S = {0, 1} with c = 2. Let P =
{ρ1, ρ2} where ρ1 = (1, 2) and ρ2 = (2, 1). Let p(x) be
as defined in the Table 2. Assume p (ρ1) = p (ρ2) =
0.5. The resulting q distribution on permuted vectors
x is also listed in the Table 2. p 6= q since, for example,

q (0, 1) =

2
∑

j=1

p
(

0ρ−1

j
(1), 1ρ−1

j
(2)

)

p(ρj)

= p (0, 1) × 0.5 + p (1, 0) × 0.5

= 0.42× 0.5 + 0.12× 0.5

= 0.27 6= 0.42 = p (0, 1) .

2.4. Inference and Learning

There are two problems of direct interest. In the first
problem, we assume that p (x) is known, and that the
set of permutations P and their probabilities p (ρ) are
also known. Then, given a permuted vector x, we can
calculate

q (ρj |x) =
q (x| ρj) p(ρj)

∑

i q (x| ρi) p (ρi)
, j = 1, . . . , m

using the mixture model in Equation 1 and Bayes
rule. This allows us to identify (for example) the most
likely permutation, argmaxj q (ρj |x). This decision
rule is Bayes-optimal in that no other decision rule can
achieve a lower average error in terms of identifying
the permutations. Of interest here is the probability
that we make an error (on average) using this decision
rule, i.e., what is the optimal error rate achievable in
terms of unscrambling the row values. Here an “er-
ror” occurs whenever the most likely permutation is
not the same as the true permutation that generated
x. We will refer to this error rate as the Bayes-optimal
permutation error rate, defined as

E?
P =

∫

Sc

q (x) ×
(

1 − max
j

q (ρj |x)

)

dx

with the superscript ? referring to “Bayes-optimal”
and subscript P referring to “permutation”.

In the second problem, we are given the set of per-
muted vectors D =

{

x1, . . . ,xN
}

, a set of permuta-
tions P , and an assumed functional form for p (x).
Our task in this case is to estimate the parameters
of p (x), the probabilities p(ρ), and for each row x to
estimate the probability that permutation ρj was used
to generate it. This problem is discussed in Section 5.

The two problems above are intimately related. The
error rate of any learning algorithm in problem 2
(in terms of identifying permutations) will be lower-
bounded by the Bayes-optimal permutation error rate
E?

P as defined in problem 1. Thus, E?
P is a fundamen-

tal characteristic of the difficulty of learning in the
presence of permutations and it is of direct interest to
study it. In what follows we first show in Section 3
that E?

P is it itself upper-bounded (under certain as-
sumptions) by a well-known characteristic of density
overlap (the Bayes-optimal classification error rate),
and we then in Section 4 derive closed form expres-
sions for E?

P for specific simple forms for p(x).



3. Analysis of Bayes-Optimal Error

Rates

Recall that x = (~x1, . . . , ~xc). We can define a marginal
distribution for each feature-vector ~xi, i = 1, . . . , c as

p (~xi) =

∫

S

. . .

∫

S

p (~x1, . . . , ~xi−1, ~x, ~xi+1, . . . , ~xc)

d~x1 . . .d~xi−1d~xi+1 . . .d~xc,

i.e., the marginal density for ~xi defined on the set S.
Each of the c features has a similar marginal density
on the same set S. We will use p (~x|Ci) = p (~xi) to
denote the marginal density of ~xi on the set S.

We now have c different densities defined on S, which
in turn defines a finite mixture pM (~x) on S:

pM (~x) =

c
∑

i=1

p (~x|Ci) × p (Ci)

where p (Ci) = 1
c , since all marginals have equal weight

in the process of defining the mixture. In the space S
consider a classification problem with c classes, where,
given a measurement ~x ∈ S, we infer the most likely
feature-vector ~xj that it originated from, j = 1, . . . , c.
The Bayes-optimal classification rate for this problem
is defined as

E?
C =

∫

S

pM (~x) ×
(

1 − max
j

p(Cj |~x)

)

d~x.

Intuitively, E?
C is the error rate obtained if we were

given vectors ~xi one at a time, and asked to identify
which of the c “columns” they originated from, based
on knowing each of the p (~x|Ci) densities, i = 1, . . . , c.
E?

C is proportional to the overlap of the individual fea-
ture densities p (~xi) in the space S. For example, for
the data on the left in Table 1 we would expect the
overlap of the 4 densities, as reflected by E?

C , to be
quite small. Furthermore, we would expect intuitively
that the permutation error rate E?

P should also be low
in this case, and more generally that it should be re-
lated to E?

C in some manner. In what follows below
we quantify this intuition. Specifically, under certain
choices of P , we show that E?

P is upper-bounded by
E?

C .

Definition 1. For P , let k be a key index if
(ρ1 (k) , . . . , ρm (k)) is a permutation of (1, . . . , c).

Note that P having a key implies m = |P| = c. The
set of all cyclic shifts for example has a key.

Example 5. For P = {ρ1, ρ2} with ρ1 = (1, 2) and
ρ2 = (2, 1), both indices 1 and 2 are keys.

Example 6. A set of permutations P =
{ρ1, ρ2, ρ3, ρ4} with ρ1 = (1, 2, 3, 4), ρ2 = (2, 1, 3, 4),

ρ3 = (1, 2, 4, 3), and ρ4 = (2, 1, 4, 3) does not have a
key.

Theorem 1. If a set of permutations P for a permu-
tation problem has a key, and if each permutation is
equally likely, then

E∗
p ≤ E∗

c .

The proof is omitted in this version of the paper due
to lack of space, but can be found online in a longer
version of the paper (Kirshner et al., 2003b). Note
that if the set of permutations P does not have a key,
E?

P may in fact be larger than E?
C .

The theorem shows that under certain assumptions,
the permutation problem is easier than a correspond-
ing version of the classification problem. This gener-
ally agrees with our intuition since in the classification
version of the problem we are classifying feature val-
ues one at a time in terms of which column they are
thought to have originated from, whereas in the per-
mutation version of the problem we are simultaneously
classifying c values together and have the additional
information available that the c values must all be as-
signed to different classes.

4. Analysis of Permutation Error Rates

In this section we derive closed-form expressions for
the Bayes-optimal permutation error rate E?

P for spe-
cific functional forms for p(x) and we use these ex-
pressions to show how changes in the parameters of
p(x) can make learning and inference either harder or
easier.

4.1. Gaussian Features

We begin with the case of Gaussian features, since
the Gaussian model is both amenable to analysis and
widely used in practice.

4.1.1. Case 1: Two Independent Features

Consider the case when c = 2, d = 1 and S = R. Let
p(x) be a Gaussian with covariance matrix of the form
σ2I where I is the identity matrix (the features are
independent Gaussians with equal variances). Thus,

p(x) = N (x|µ,Σ)

where,

µ =

[

µ1

µ2

]

and Σ =

(

σ2 0
0 σ2

)

We have m = 2 with ρ1 = (1, 2) and ρ2 = (2, 1).

q(x|ρ1) = p(x1, x2) = N ((x1, x2)|µ,Σ)
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Figure 1. Simulated data (and covariance ellipses) from q(x|ρ1) (x’s) and q(x|ρ2) (o’s) for the correlated Gaussian case
with equal variances (case 2). The optimal decision boundary corresponds to the line x1 = x2.

and

q(x|ρ2) = p(x2, x1) = N ((x1, x2)|µ̃,Σ)

where

µ̃ =

[

µ2

µ1

]

.

It is straightforward to show that

E∗
P =

1√
2π

∫ ∞

r
2

e−u2/2du (2)

where
r2 = (µ − µ̃)T Σ−1(µ − µ̃).

Therefore, given the functional forms for q(x|ρ1) and
q(x|ρ2),

E∗
P =

1√
2π

∫ ∞

|µ1−µ2|√
2σ

e−u2/2du.

The quantity |µ1 − µ2| /σ is a measure of the overlap of
the two Gaussians: as overlap increases E∗

P decreases,
and vice-versa. This is exactly the same qualitative
behavior as one gets with the Bayes-optimal classifi-
cation error rate E∗

C for this problem, except that the
range of integration is different. Specifically (using the
results for E∗

C in (Duda et al., 2000)) we have

E∗
C − E∗

P =
1√
2π

∫

|µ1−µ2|√
2σ

|µ1−µ2|
2σ

e−u2/2du.

In the cases of both maximal overlap (|µ1 − µ2| /σ is
very large) and minimal overlap (the overlap expres-
sion is very small) the difference in the two error rates
is very small. The difference between the two types of

error is maximized when |µ2−µ1|
2σ =

√
ln 2.

4.1.2. Case 2: Two Correlated Gaussian

Features

Next consider a generalization of Case 1 where the
features are no longer assumed to be independent but
are allowed to have non-zero correlation ν:

p(x) = N (x|µ,Σ)

where,

µ =

[

µ1

µ2

]

and Σ =

(

σ2 ν
ν σ2

)

, −σ2 < ν < σ2.

q(x|ρ1) and q(x|ρ2) are defined as in Case 1, but Σ now
has a covariance term ν in the off-diagonal positions.
Using Equation 2 again, we get

E∗
P =

1√
2π

∫ ∞

|µ1−µ2|
√

2

√
σ2−ν

e−u2/2du.

Thus, as in the independent case, E∗
P decreases as |µ1−

µ2| increases and vice-versa.

As σ → ν the lower limit of the integral approaches ∞
and E∗

P approaches zero. Thus, even though the two
Gaussians could be heavily overlapped, as the corre-
lation approaches 1 we can identify permuted pairs

of values with accuracy approaching 1, in contrast
to the Bayes-optimal classification error rate for the
same problem which is defined based on classifying
each value separately and cannot take advantage of
the correlation information. This is a case where the
permutation error rate can approach 0 even in cases
where the classification error rate (proportional to the
overlap of feature densities) can be as high as 0.5.
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Figure 2. Simulated data (and covariance ellipses) from q(x|ρ1) (x’s) and q(x|ρ2) (o’s) for the correlated Gaussian case
with unequal variances (case 3). The optimal decision boundary corresponds to the line x1 = x2.
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Figure 3. Empirical values of the error rates for Case 3

Interestingly, negative correlation has the opposite ef-
fect in that as the correlation coefficient becomes more
negative, E∗

P increases and approaches E∗
C . Intu-

itively, negative correlation makes the problem harder
by effectively leading to more overlap between the two
densities. To see this visually, in Figure 1 we plot sim-
ulated data from q(x) for the case of very negative
correlation, zero correlation, and very positive corre-
lation.

4.1.3. Case 3: Unequal Variances

Consider further the case where the Gaussian features
have unequal variances σ2

1 and σ2
2 and covariance ν.

Since q(x|ρ1) and q(x|ρ2) have unequal covariance ma-

trices, there is no closed-form expression for E∗
P or E∗

C

as before. Nevertheless, we examine the variation of
E∗

P as a function of σ1, σ2 and ν via simulations. Fig-
ure 2 shows some 2-D plots for various values of ν,
keeping σ1 and σ2 fixed. Variance inequality changes
the nature of the overlap between q(x|ρ1) and q(x|ρ2)
as compared to the equal variance case in Figure 1.

We can also calculate empirical error rates (in terms
of classifying permutations) using the true model and
varying the true parameters (note that these are em-
pirical estimates of E∗

P by definition). Figure 3 shows
the variation of these empirical error rates with ν for
different values of the variances keeping the ratio σ1σ2

constant. E∗
P depends on both ν as well as the differ-

ence |σ2
1 −σ2

2 |, and the variation of the error rate with
ν is not monotonic.

4.2. Categorical Data

Consider the simple case when c = 2 and d = 1, i.e.,
x consists of two scalar features. Assume that the
features are discrete and can take one of V values. Let
m = 2 with ρ1 = (1, 2) and ρ2 = (2, 1), and both
permutations are assumed to be equally likely. We
have,

E?
P =

∑

x

q (x)
(

1 − max
i

q (ρi|x)
)

where x = (x1, x2)

=
∑

x

q (x) −
∑

x

q (x) max
i

q (ρi|x)

= 1 − 1

2

∑

x

max
i

q (x|ρi)



= 1 − 1

2

∑

x1,x2

max {p (x1, x2) , p (x2, x1)}

=
1

2
− 1

4

∑

x1,x2

|p (x1, x2) − p (x2, x1)|

Thus, E?
P is a function of the quantity

∑

x1,x2
|p (x1, x2) − p (x2, x1)|, which we can call

the permutation distance between ρ1 and ρ2. E?
P

decreases linearly with this distance, reflecting the
fact that the more dissimilar the probabilities of each
permuted pair of values are from the probabilities of
the unpermuted pairs, the more E?

P decreases.

5. Learning from Permuted Data

In this section we briefly comment on the problem of
unsupervised learning with permuted data. Space lim-
itations do not permit a complete treatment of the
topic: the goal here is to illustrate that learning with
permutations can be achieved in a practical sense, and
to demonstrate that the Bayes-optimal permutation
error rate provides an absolute lower bound on the
error rate of practical learning algorithms. We note
in passing that there can be identifiability issues with
mixtures of permutations that appear to be quite sim-
ilar to those for standard finite mixtures, e.g., certain
classes of distributions on categorical data cannot be
identified uniquely.

5.1. EM Algorithms for Permuted Data

Consider a “matrix” data set D =
{

x1, . . . ,xN
}

with N rows and c columns (each column being d-
dimensional) where we assume that D was generated
using the generative model described in Section 3. As-
sume that we know the set of permutations P and the
functional form (but not the parameters) of p (x). If
we knew the permutations that generated each data
vector xi, then presumably the problem of estimating
the parameters of p (x) using the “unscrambled” data
would be straightforward. This suggests the use of the
EM framework for this problem treating the m possi-
ble permutations as “hidden” information. Letting Θ
be the unknown parameters of p(x), the log-likelihood
can be defined as

l (Θ) = ln q (D|Θ) =

N
∑

i=1

ln q
(

xi|Θ
)

=

N
∑

i=1

ln

m
∑

j=1

p (ρj) p
(

ρ−1
j

(

xi
))

.

After Θ has been initialized in some fashion, the pa-
rameters are changed iteratively, guaranteeing a non-

decreasing log-likelihood at the end of each iteration.
In the E-step, the probability of each permutation is
estimated for each data vector given the current Θ. In
the M-step, new values for Θ are chosen to maximize
the expected log-likelihood of the data with respect to
the distribution over permutations as estimated in the
E-step. As an example, the p (ρj) terms can always be
updated analytically as follows:

p̂ (ρj) =
1

N

N
∑

i=1

q
(

ρj |xi, Θ
)

where here (unlike the analysis earlier in the paper)
the probabilities of different permutations need not be
equal and can be learned from the data.

5.2. Learning from Gaussian Data

We simulated data with S = R, c = 2, using the
setup in Section 4.1.1. In the first experiment, we
performed an empirical analysis of how the permu-
tation error rate of models learned with EM depends
on the number of training examples N . For this we
set µ1 = 1, µ2 = −1, σ2 = 16 which yields a Bayes-
optimal permutation error rate of roughly 0.36 — thus,
we know in advance that none of our learned models
can have a lower error rate than this. 10 different
training data sets were generated for each of the fol-
lowing sizes: N = {10, 20, 50, . . . , 5000, 10000} and for
each training data set the best fitting (maximum like-
lihood) model was chosen from 10 random restarts of
EM. Each of these best-fit models were then evaluated
on a large independent test data set (N = 2×106 data
points). The plot in Figure 4 shows that, as expected,
the error rate of the predicted model approaches the
Bayes-optimal error rate as the number of examples
increases. For this particular problem, once the num-
ber of data points is on the order of 1000 or greater,
EM is performing optimally in terms of identifying the
permutations.

5.3. Learning with Rotated Triangles

For illustrative purposes we simulated 200 triangles
from a distribution over angles (corresponding to
p(x)), and then rotated and reflected the triangles in
a manner corresponding to a set of random permu-
tations. The learning problem is to learn back the
distribution which generated the triangles and put the
triangles in geometric correspondence. For this prob-
lem, c = 3 (3 angles), S = R, and P = {ρ1, . . . , ρ6}
(all six possible permutations of (1, 2, 3)). We set
p (ρ) as uniform. p (x) is defined as p (x1, x2, x3) ∝
N

(

x1|µ1, σ
2
1

)

×N
(

x2|µ2, σ
2
2

)

if x1 +x2 +x3 = π, and
0 otherwise. For µ1, µ2 > 0 such that µ1 + µ2 < π,
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Figure 4. Error rates of models learned from permuted
data as a function of the number of training examples.

and with small σ2
1 and σ2

2 , this distribution generates
triangles with angles x1, x2, x3. Figure 5 demonstrates
how EM learns both the underlying density model for
angle generation and a distribution over rotations and
reflections for each triangle. The rows represent dif-
ferent iterations of EM and the leftmost column is the
learned density model as represented by the “mean tri-
angle” at each iteration. The columns represent the 6
possible permutations for one of the simulated trian-
gles in the training data, and the numbers in each row
are the probability distribution p(ρj |x), 1 ≤ j ≤ 6 for
a specific iteration of EM. Starting from a random tri-
angle model (upper left corner) and considerable un-
certainty about the likely permutation (row 1), EM
gradually learns both the correct “mean shape” and
identifies the most likely orientation for this particular
triangle (row 5).

6. Conclusions

We analyzed the problem of unsupervised learning in
the presence of unknown permutations of feature val-
ues using the notion of a Bayes-optimal permutation
error rate E?

P . We derived a general bound on E?
P

as well as closed-form expressions for specific learn-
ing problems and found (for example) that negative
and positive correlation among the feature variables
can lead to very different learning problems. The pa-
per concluded with a brief empirical illustration of how
EM can be used to perform unsupervised learning from
permuted data. A related applications-oriented pa-
per (Kirshner et al., 2003a) shows how this framework
can be usefully applied to orienting images of galax-
ies in a real-world classification application in astron-
omy. There are several possible extensions of this work

iter:1
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iter:7

0.0931 0.1720 0.2042 0.2231 0.2486 0.0590

iter:15

0.1357 0.1328 0.1432 0.3078 0.2466 0.0340

iter:30

0.3011 0.0038 0.0081 0.6228 0.0640 0.0002

iter:48

0.0296 0.0000 0.0003 0.9694 0.0007 0.0000

true permutation 

Figure 5. Illustration of EM learning with triangle data.

including further analysis of the relationship between
E∗

C and E∗
P , computational techniques to handle large

numbers of permutations (m = c! for large c), and
analysis of learning algorithms for more general trans-
formations than permutations.
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