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Abstract

We show that a classifier based on Gaussian
mixture models (GMM) can be trained dis-
criminatively to improve accuracy. We de-
scribe a training procedure based on the ex-
tended Baum-Welch algorithm used in speech
recognition. We also compare the accuracy
and degree of sparsity of the new discrimi-
native GMM classifier with those of genera-
tive GMM classifiers, and of kernel classifiers,
such as support vector machines (SVM) and
relevance vector machines (RVM).

1. Introduction

GMDMs have been applied in many classification tasks,
e.g., (Hastie & Tibshirani, 1996). Conventionally, the
expectation-maximization (EM) algorithm (Dempster
et al., 1977) is used to train the mixtures, leading to a
generative (see, e.g., Rubinstein & Hastie, 1997) clas-
sifier.

Recently, several new discriminative learning methods
have been proposed. They include SVM (Cortes &
Vapnik, 1995), proximal SVM (PSVM) (Fung & Man-
gasarian, 2001; Rifkin, 2002), RVM (Tipping, 2001),
and informative vector machine (IVM) (Lawrence
et al., 2002). These discriminative methods were suc-
cessfully used in a variety of classification problems.

In this paper we derive an algorithm for discriminative
training of GMMs based on the extended Baum-Welch
algorithm, which is used to train hidden Markov mod-
els (HMM). It incorporates several speed-ups, and has
a very low memory footprint, even for multiclass prob-
lems.

We also compare the accuracy and sparsity of the pro-
posed classifier to those of the conventional, genera-

tive, GMM classifier, and of the four discriminative
classifiers mentioned above when constrained to using
Gaussian kernels. We show that the proposed discrimi-
native GMM classifier (DGMM) achieves, for example,
a result close to the Bayes error (14%) for the wave-
form dataset (Breiman et al., 1984), while the genera-
tive GMM, SVM, PSVM, RVM and IVM achieve 17.4,
15.5, 15.4, 16.0, 17.2%, respectively. In a vowel clas-
sification task (Klautau, 2002), DGMM achieves the
best error using 20 Gaussians (with diagonal covari-
ances), while the five classifiers listed above achieve
their best result using 40 (Gaussians), 413, 599, 112
and 134 support vectors, respectively.

The paper is organized as follows. In Section 2 we es-
tablish the notation. In Section 3 we present DGMM
as a special case of a Bayes classifier, and discuss a
training procedure. Most of the material in Section 3
can be found in the speech recognition literature, but
we present it in the classification framework to avoid
issues specific to HMMs. In Section 4 we briefly de-
scribe the kernel classifiers that will be compared to
DGMM. Section 5 presents the simulations results and .
is followed by our conclusions.

2. Classification

We deal with supervised classification problems, where
one is given a training set {(X1,%1),...,(XN,ynN)}
containing N examples, which are independently and
identically distributed (iid) samples from an unknown
but fixed distribution P(x,y). Each example (x,y)
consists of an instance x € X and a label y €
{1,...,Y}. The input x is a vector of dimension K.
If the input is discrete, we use z instead of x. A clas-
sifier is a mapping f : X = {1,...,Y}. Of special
interest are binary classifiers, for which Y = 2, and for
mathematical convenience, sometimes the labels are
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y € {-1,1} (e.g., SVM) or y € {0,1} (e.g., RVM).

2.1. Bayes classifiers

We adopt the nomenclature used in (Duda et al.,
2001), where! P(y|x), P(x|y), P(y) and P(x) are
called posterior, likelihood, prior and evidence, respec~
tively, and are related through Bayes’ rule

P(XIy)P(y)_

P(y|x) = Px)

1)

Bayes classifiers attempt to select the label

arg max P(x|y)P(y),

which maximizes the posterior probability. However,
neither P(y), nor P(x|y) is known, hence the classifiers
use estimates P(y) and P(x|y) and maximize

f(x) = arg nax P(xly) P(y). (2)
We assume here that the prior P(y) can be reliably
estimated by counting the labels in the training set,
i.e., P(y) = P(y). Estimating P(x|y) is often the most
difficult task. Hence, Bayes classifiers typically assume
a parametric distribution P(x|y) = Pe,(x|y) where
©, describes the distribution’s parameters that need
to be determined (e.g., mean and covariance matrix if
the likelihood model is a Gaussian distribution).

If P(x,y) = P(x,y), the Bayes classifier achieves the
optimal (Bayes) error (Duda et al., 2001). However,
with limited data, one has to carefully choose the
model assumed for the likelihood and the algorithm
for their estimation. We are interested in two different
ways of learning Bayes classifiers, which correspond to
two ways of estimating ©. They are described in the
next subsection.

2.2. Generative vs. discriminative training

The conventional way of estimating © is through max-
imum likelihood estimation (MLE). MLE classifiers
seek O, = argmaxe R,y(0), where

N A
Rg(e) = H P(xnlyn),

n=1

Such classifiers are called generative (Ng & Jordan,
2002) or informative (Rubinstein & Hastie, 1997).

The term generative is used because if the estimated
P(x,y) is “close” to the true distribution P(x,y), we

We use P to denote both probability mass functions
and densities.
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could use P(x,y) to generate samples with statistics
similar to the ones of our original training set. How-
ever, for the sake of classification, we do not need to
keep ©. For example, one cannot generate samples
out of a linear discriminant analysis (LDA) classifier
after simplifying the expressions (Rubinstein & Hastie,
1997) that define f. In such cases, the term informa-
tive seems more appropriate.

By contrast, discriminative Bayes classifiers seek @4 =
arg maxg R4(©), where

R4(0) = H P(y|x).

ol
Note that

N A
P( xnlyn P(yn)

Ry(0) = s

=5y
ﬂ P(xq|7)P(5) >

( J#yn
P(xn Iyn)P(yn)

It follows that discriminative procedures try not only
to maximize the likelihood of examples (x,y), but, at
the same time, minimize the likelihood of competing
classes j # y. As for other generative-discriminative
pairs of classifiers, training a discriminative Bayes clas-
sifier is harder than a generative. There are no closed-
form solutions and iterative optimization algorithms
are needed.

Sometimes a generative classifier is more appropri-
ate, specially when the likelihood model is correct and
P(y) = P(y). However, in many practical cases, the
discriminative classifier performs better (Nddas et al.,
1988; Rubinstein & Hastie, 1997) unless training data
is scarce (Ng & Jordan, 2002).

3. DGMM

GMM classifiers adopt a mixture of M, multivariate
Gaussians N (x|, £) for modeling class y, namely

M,

Z wym/\/(xluym, Zym)- (3)

m=1

P(xly) =

In this work we assume diagonal covariance matri-
ces Xy, for computational reasons. We call GMM
the classifier that uses MLE to learn the mixtures,
and DGMM the one that adopts Eq. (3) as likelihood
model and is trained through maximizing Rq(©).

We note that other likelihood models have been
adopted for generative classifiers. Assuming P(x|y) =



N (xlp.y, ¥) has only one Gaussian, where X is a full
covariance matrix shared by all Y likelihoods leads to
the LDA classifier (homoscedastic model) (McLachlan,
1992). If the (full) covariance matrices are different,
namely, P(x|y) = N (x|pey, Zy), one has the quadratic
DA (QDA) classifier (heteroscedastic model). Re-
stricting QDA to use diagonal covariance matrices cor-
responds to the so-called naive Bayes classifier. The
mixture DA (MDA) classifier (Hastie & Tibshirani,
1996) adopts mixtures of Gaussians with X being a
full matrix that is shared by all distributions.

The next subsections describe DGMM training. For
historical reasons, we start by making a connection to
HMM-based speech recognition. Then, the last two
subsections discuss an algorithm for discriminatively
reestimating discrete distributions and its modification
to support GMMs.

3.1. MMIE

A speech recognition system is typically based on
HMMs. These systems do not fall in our definition
of classifier, especially because their input x (associ-
ated with, e.g, a phrase or word) has variable-length.
But if we assume that a class y can be represented by
an HMM that provides P(x|y), most of our discussion
in this section is valid for both HMM-based systems
and classifiers f.

Estimating ©g is known in speech recognition as maxi-
mum mutual information estimation (MMIE) because,
assuming the input z € {1,...,X} is discrete, the con-
ditional entropy of label Y given X is

H(Y|X) = —E[log P(yl2)] = — . P(,3) log P(y]z).

As we do not know P(z,y), we use the sample average

1
X)=—= 1 =—-—1 .
H(Y|X) z_jl 0g P(yn|zn) = — 77 0B Ra(©)
By maximizing R4(®), we minimize H(Y|X) and, con-
sequently, maximize the estimated mutual information

I(X;Y) = H(Y) - H(Y|X)
because H(Y) is fixed.

We note that MMIE is strongly related to other maz-
imum conditional likelihood estimation techniques,
e.g., (N4das et al., 1988; Jebara & Pentland, 1998).

MMIE was developed by the IBM speech group (Bahl
et al., 1986). More precisely, according to (Nadas
et al., 1988), MMIE was proposed by Robert Mer-
cer. In speech recognition, the most popular algorithm
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for MMIE is the extended Baum-Welch, e.g., (Wood-
land & Povey, 2002), which has outperformed some
standard optimization methods (Valtchev, 1995).
The extended Baum-Welch algorithm was proposed
in (Gopalakrishnan et al., 1991) for reestimating dis-
crete HMMs, and extended in (Normandin, 1991) to
continuous HMMs with mixtures of Gaussians as out-
put distributions.

" 3.2. Extended Baum-Welch

Using EM to learn a GMM classifier is equivalent to
using Baum-Welch for HMMs with only one state,
where the o and 3 variables (Rabiner, 1989) are not
needed. Similarly, our method for training DGMM
corresponds to applying the extended Baum-Welch al-
gorithm to GMM classifiers, and we call it discrimina-
tive EM (DEM). The base of both DEM and extended
Baum-Welch algorithms is the following theorem.

Theorem 1 (Baum & Eagon, 1967) Let S(0) =
5({0;:}) be a homogeneous degree d polynomial with
nonnegative coefficients. Let © = {6;;} be any pomt
of the domain D : 8; >0, 3% ,6;;=1,=1,...,p
such that, V7,

Zj (72 ®) #0.

where £ ] J(©) denotes the value of 8%&,0) at ©. Let
© = T(©) = T({6;:}) denote the point of D whose j,1
coordinate is

0~ aji _3% (_—)
i —
‘1.1 ( i 59;: (@))

Then, S(T(0)) > S(©) unless T(0) = ©. o

(4)

The denominator in Eq. (4) guarantees the growth
transformation T leads to distributions. We illustrate
the use of Theorem 1 with the following simple exam-
ple.

Example 1  Assume the likelihood of class y is a
probability mass distribution over {1,...,X} given by
P(zly) = Oyq, with 39, = 1,Vy. Let Ny; be the

number of occurrences of example (i, §), such that

Y X ~ SR .
Ry(©) = [ [ 65" and 9 (@) R,(©)

j=1i=1 Ji

| 3:2

Applying Theorem 1 to maximize the polynomial
S(0) = Ry(O) leads to the MLE solution

O5i = =x—
2o Nii



Initialization: pick ©
Repeat until convergence:

¢ Calculate the value of R4(O)
¢ Create the polynomials

Q(O)
5(0)

Num(0) — R4(®)Den(0)
Q(0) + C(0),

It

il

where
d
c®) =c (Ze,-.- + 1) ,
gt

c is the smallest magnitude that cancels all the
negative coefficient of Q(®) (¢ = 0 if no negative
coefficient exists) and d is the degree of Q(©).

e Use Theorem 1 on S(©) to find @ = T(©)

e Update for next iteration ©® « ©

Figure 1. Algorithm proposed in (Gopalakrishnan et al.,
1991).

in the first iteration, independently of ©. O

Note that we want to use T to iteratively maximize
Ry, which is not a polynomial, but a rational function

Num(0)
Ra(0) = Den(©) °

Gopalakrishnan et al. (1991) studied how to apply
the growth transformation 7" to rational functions. As
an intermediate result, they showed that Theorem 1
also applies when S(0) is inhomogeneous. Then, they
proved that the algorithm in Figure 1 locally maxi-
mizes Rg.

To understand the role of the polynomials ) and C,
let us consider that we could apply the transforma-
tion T of Theorem 1 to Q, obtaining Q(6) > Q(®).
This may not be possible because Q(@) can have
negative coefficients, which would violate an assump-
tion in Theorem 1. Ignoring this for a moment, we
note that Q(O) = 0, because Q(O) is defined using
Rd(@) Hence, if Q(@) > Q(©), we have Q(O) =
Num(®) — R4(0©)Den(®) > 0 and R4(0) > Ry(®), as

desired. To overcome the negative coefficients of @,
we use the polynomial C. Every possible monomial of
Q(O) occurs in C(O) and the coefficients of S(0) =
Q(®) + C(©) are nonnegative. Note that 3°..60;i =Y
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and C(O) is effectively a constant that is independent
of 8;;. Therefore, the values {6;;} that maximize S(©)
also maximize Q(©). In fact, (Gopalakrishnan et al.,
1991) suggest for ¢ the largest negative coefficient mag-
nitude in Q(®), which is an upper-bound for canceling
negative terms. We use the following example to illus-
trate this algorithm.

Example 2 Assume a Bayes classifier with the
same likelihood as in Example 1, but trained accord-
ing to the algorithm of (Gopalakrishnan et al., 1991).
Also, assume that X =Y = 2 and let Nj; = M(j, 1),
4 5
where M = 6 2|
P(y). In this case,

We use my, for prior probability

0110503, 63

Ra(®) = (M18yy + m265,)10 (16,5 + m2655)""

where k = 7{7§ =~ 8 x 1078, At each iteration we form

S(©) = C(O©)+k6},67,05,63, —

R4(©) ((m10yy + m2051) "0 (w1615 + m2655)7) .
In this example,
C@) =c¢ (E.jB,J)”, and the optimal constant is
given by ¢ = Rd(G)m—&’(‘{,—')")—.

the optimal constant is easy to obtain in this example,
as opposed to the magnitude of the highest negative
coefficient in Q(®) which would require numerical op-
timization.

Q(©) is homogenous, so we can use

It is interesting that

In this case, if we estimate the priors m, from the
training set using MLE, the same set of parameters
© maximizes both R, and R4 because (if the priors
are estimated with MLE) maximizing both R4 and R,
lead to the MLE of the joint distribution P(z,y). O

Note that we can use

d5(®) ONum(0O)
90;; 08y

9Den(O)
d0;;

— R4(0) + D',

and the algorithm still has guaranteed convergenée as
long as D' > cd(Y + 1)4~1. Also note that

dlog Ry —~ 1 (aNum BDen )
= — €]
0 0= Num(@) \ a0 © ©) - Ra(®) (@) ’
hence
8S(0)

— (OlogRq — D! )
= Num(© €] — 1. (&
805 m )( 3050 Num(o) )
In practical implementations, we want to adopt some
value D < D'/Num(O) for faster (but not guaran-



teed) convergence.?2 Hence, we can choose an empirical
value D according to some heuristic, and substituting
Eq. (5) in Eq. (4) (the term Num(©) cancels) we get

G 0,. (M(@HD)
a 5, (0:29552(8) ) + D (©)

where D should be large enough for convergence. One
can observe from this equation that, the greater D,
the less the new parameters will differ from ©, which
implies in more iterations (i.e., slow convergence).

3.3. Extension to mixture of Gaussians

In this subsection we assume the likelihoods are
mixtures of Gaussians with diagonal covariance ma-
trices. We have to learn the parameters @ =
{¥jmk;s O jmk, Wim }, where |O] = 2M (K + 1). The in-
dices (j,m, k) specify the class, the mixture compo-
nent and the dimension, respectively. It is convenient
to create, for each iteration of the algorithm, a model
that would output the evidence P(x) of Eq. (1), which
is associated with the denominator of R;. In other
words, we conceptually treat the marginal distribution

Y
=Y P(xly)P()

v=1

P(x)

as a denommator model. Here it has a mixture with

al M = Zy_.l M, Gaussians, namely
Y My
= Z Z N(x““ymi Eu)w;m’
y=1m=1
where w,,, = P(y)wym is the original weight scaled

by the associated prior.

We define the notation for this subsection by briefly
describing the EM algorithm, as applied to GMM es-
timation. For each class j, the “expectation” step of
EM passes through all N; examples of this class, cal-
culating

N(xﬂ‘l‘ymi Ey)wjm
M; ’
Zm:’:l N(xnlﬂym: 2z,l)w:im

and accumulating the intermediate results needed to
compute the occupation counts A = {Vjmk, (Gimks Vim})

Pj(m|xn) =

2In Example 2, the smallest constant that guaranteed
17(9/17)17 216 hich i lativel
_rr)-l_)e_(GT’ wilch 1s a relatively
large number. If we start the estimation from a random
point, Den(0©) is going to be a poor description of the data,
and D will be large, slowing the convergence.

convergence was D =
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where [A| = |O],
Vimk = Z P;(m|x,)xn(k),
niyn=j
Gme = Y Pi(mlxn)x;(k),
niYn=j
Yim = Z Pj(mlxn)1
niyn=j

and x(k) is the k-th component of x. These counts
allow for calculating a new set of parameters in the
“maximization” step as, e.g.:

A — and fijms =

Vimk
M; o
Zm'J:I ’YJm 7_1m

Djm =

The DEM algorithm uses two set of occupation

- den —
counts: Anum Vi s Cmis Yim ™} and A%en =
Vi, Chens d,‘;"} In the expectation step, each ex-

ample is used to update the counts in A" indepen-
dent of the value of y,, and the counts in A"*™ that
correspond to the correct class y,,. In other words, we
compute P(m|x,) for the denominator model using all
M Gaussians, while P, (m|x,) associated with the nu-
merator is computed using only the Gaussians of the
correct class y,. Hence, in the end of each epoch, the
counts in A™™ are exactly the same as the ones that
would be obtained with EM.

In the maximization step, the component weights are
reestimated according to Eq. (6), namely

num den

’me ’ng + Dw]mk
o .
Sty (g = gen) + D

Djm =

The means and variances are reestimated according to
the equations derived in (Normandin, 1991):

pynum __ den +Dll’_1mk

~ jmk Jmk
Himk = 7;17|;\‘m ,),den +D
and
~2 _ ;lrunrlxc] Cden + D(ajmk + u‘]mk) ~9
amk = Y ~ Yger + D - e

In our implementation we use a different D;,, for each
Gaussian, which depend on a learning rate 7 that
varies over time. We also reduce training time by us-
ing a K-d tree to avoid calculating the value of all M
Gaussians for each training example. More details can
be found in (Klautau, 2003) and Java code is available
at www.deec.ufpa.br/aldebaro/dgmm.



4. Kernel classifiers

Here we briefly describe the kernel classifiers used in
the experiments in Section 5. We note that GMM can
be seen as a “kernel” method (see, e.g., page 188 in
Hastie et al., 2001). However, by kernel classifier we
mean the ones obtained through kernel learning, as
defined, e.g., in (Scholkopf & Smola, 2002).

We assume a Gaussian radial-basis function (RBF)
kernel

K(x,x') = e~ M=%
which allows for a more direct comparison with
DGMM. Two of the kernel classifiers (RVM and IVM)
that we consider are based on Bayesian learning, while
the others (SVM and PSVM) are non-probabilistic.

4.1. Non-probabilistic kernel classifiers

SVM and other kernel methods can be related to reg-
ularized function estimation in a reproducing kernel
Hilbert space (RKHS) (Tikhonov & Arsenin, 1977).
One wants to find the function f that minimizes

N
5 0 L0 Gxn) ) + A 7)
n=1

where Hx is the RKHS generated by the kernel K,
f=h+b, h€Hg,be Rand L(f(Xn),yn) is a loss
function. The solution to this problem, as given by
the representer theorem (Kimeldorf & Wahba, 1971),
is

N
fx) = ) wak(x,x0) +b. (8)
n=1
This expression indicates that SVM and related classi-
fiers are example-based (Scholkopf & Smola, 2002). In
other words, assuming a Gaussian kernel, the mean of
a Gaussian is restricted to be a training example x,,.

Some examples x,, may not be used (e.g., the learn-
ing procedure may have assigned w, = 0). We call
support vectors the examples that are actually used in
the final solution, even for classifiers other than SVM.
For saving computations in the test stage, it is con-
venient to learn a sparse f, with few support vectors.
We can obtain sparse solutions only if the loss func-
tion L is zero over an interval (see, e.g., problem 4.6
in Scholkopf & Smola, 2002). SVM achieves a sparse
solution (at some degree) by choosing the loss

L(f(Xn),yn) = (1 — F(Xn)yn)4s

where (z)4+ = max{0,z}. The PSVM classifier is ob-
tained by choosing

L(f(xn)s yn) = (f(xn) — yn)2
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and, consequently, ends up using all the training
set as support vectors. Motivated by the discussion
in (Rifkin, 2002), hereafter we refer to PSVM as regu-
larized least-square classifier (RLSC).

4.2. Probabilistic kernel classifiers

Both RVM and IVM are sparse Bayesian learning
methods that can be related to the regularized risk
functional of Eq. (7) (see, e.g., Scholkopf & Smola,
2002). They adopt a model for the posterior given
by g(ynf(%n)), where f is given by Eq (8) and g is a
sigmoid link function that converts scores into proba-~
bilities.

The framework described in (Tipping, 2001) allows for,
e.g., solving multiclass problems and estimating the
variances of each Gaussian. However, the computa-
tional cost is very high. IVM is an alternative with a
fast training procedure.

4.3. DGMM vs. kernel classifiers

Here, we briefly discuss some characteristics of DGMM
and kernel classifiers. Kernel classifiers do not require
that the coefficients w lead to distributions, as DGMM.
But the Gaussians of kernel classifiers are restricted to
share the same spherical covariance matrix 3 = y~!1.

DGMM, as RVM and IVM, provides an indication of
class membership probability. Besides, it can deal with
multiclass problems, while the other classifiers are ei-
ther limited to binary problems by construction, or
have to decompose the multiclass into binary prob-
lems due to the high computational cost of solving the
multiclass case directly (Tipping, 2001).

The training time of DGMM scales with O(NM),
where M is the number of Gaussians (note the actual
time depends on the number of iterations), while for
SVM, RLSC, RVM and IVM, it scales with O(N?),
O(N?), O(N®) and O(NM?), respectively. DGMM
has the smallest memory footprint (assuming SVM
uses a cache of reasonable size), but IVM are often the
fastest to train. Note that computing the value of a
Gaussian with diagonal covariance matrix for DGMM,
takes K more multiplications than computing the ker-
nel.

In terms of model selection, v must be selected for all
kernel classifiers. Unless there are convergence prob-
lems, the specification of the kernel is all that RVM
requires. Both DGMM and IVM require the number
of Gaussians to be specified. IVM also requires select-
ing the bias b and a scalar to be added to the the kernel
matrix (Lawrence et al., 2002). For DGMM, we also
select a floor value for the variances, which can be seen
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Table 1. Description of the datasets.

as a crude regularization procedure. SVM requires se-
lecting the constant C. In the next section we report
the results achieved by these classifiers.

5. Simulation results

We evaluated the performance of different classifiers
using the eight standard datasets listed in Table 1.
The datasets pima and synth were made available
by B. Ripley®. The waveform dataset is described
in (Breiman et al., 1984). The pbvowel dataset cor-
responds to a version of the Peterson and Barney’s
vowel data described in (Klautau, 2002). Two binary
problems (digits 0 vs. 6 and 7 vs. 9) were extracted?
from MNIST, which is a dataset of handwritten digits
available from Y. LeCun. Two other binary problems
(phones d vs. t and iy vs. ih) were extracted from the
TIMIT speech dataset®. We converted each occurrence
of these phones into fixed-length vectors (K = 118)
using a linear warping procedure (see, Klautau, 2003).
The datasets synth and waveform are toy examples,
for which we know the Bayes errors are 8% and 14%,
respectively.

For the two multiclass datasets, we used all-pairs
ECOC with Hamming decoding (Allwein et al., 2000).
For classifiers other than GMM and DGMM, we stan-
dardized each attribute to have mean 0 and variance
1. We use a simple k-means algorithm to initial-
ize DGMM with the same number of Gaussians per
class, while other methods could give better perfor-
mance (Normandin, 1995).

All parameters are selected using ten-fold cross-
validation on the training set. Instead of searching
over a fixed range (as for the other parameters), v
and, for SVM, C were selected as follows. We chose
v by running We start with 4 = 1, then increase (or
decrease) v by multiplying by 2 (or 0.5) until we do
not get improvements for three consecutive times (we
initialize the search with different « if it does not con-

Shttp://www.stats.ox.ac.uk/pub/PRNN.

4We subsampled MNIST to obtain images with 16 x 16
pixels using Matlab’s function imresize.

Shttp://www.ldc.upenn.edu/.

Name train test | classes (Y) | attributes (K) DGMM SVM IVM
synth 250 | 1000 2 2 0-6 0/1.0/80 0.02 / 0.8 / 734 0.4 / 0.6 / 200
waveform 400 | 4600 3 10 79 0.8 / 2.7 / 30 0/ 1.8 / 2130 0.2 / 2.0 / 1000
pima 300 | 332 2 7 dt 12.9 /1.0 / 4 || 12.1 7 13.3 7 2268 || 9.9/ 13.3 / 700
pbvowel 599 | 600 10 2 ty-ih || 9.4 /101/4 6.5 /7.8 /2087 || 6.9/ 11.9 / 800
0-6 (mnist) | 11841 | 1938 2 256

Zl:‘: :‘l:‘li;) 1623281(: 23(:?07 g f?g Table 2. Results for the four largest datasets. The three
iy-ih (timit) | 8874 | 446 3 ii8 entries are training error, test error and number of Gaus-

sians (support vectors).

verge). For SVM, after choosing « with C = 1, we op-
timize C using the same search procedure. This model
selection procedure is computationally intensive (es-
pecially for RVM). Because of that, we used the four
largest datasets only with DGMM, SVM and IVM.

Table 2 shows the results for the full versions of the
four largest (and binary) datasets. In these experi-
ments, the maximum number of Gaussians for IVM
and DGMM was set to 1000. Note that these are bi-
nary, while multiclass problems can favor DGMM.

We created reduced versions of the largest datasets in
Table 2, by keeping only 500 examples of each. These
smaller versions are called s0-6, s0-7, sd-t and siy-ih.
Table 3 shows the results for these and the other small
datasets. In this case, the maximum number of Gaus-
sians for IVM and DGMM was set to 100.

These preliminary results show that DGMM outper-
forms GMM in terms of accuracy and can be compet-
itive with kernel classifiers.

6. Conclusions

We described DGMM and a training method, based
on the extended Baum-Welch algorithm. The exper-
imental results indicate that DGMM is competitive
with kernel classifiers in terms of accuracy and spar-
sity. DGMM can deal with multiclass problems and
provides a probabilistic output.

We note that the DEM algorithm used to train DG-
MMs can substitute EM in finding Gaussians for RBF
networks. Preliminary experiments showed that this
can improve the accuracy of RBF networks but did
not bring improvements over DGMM.

Future work includes a thorough evaluation of mul-
ticlass problems and an investigation of a principled
way to perform model selection and regularization for
DGMM.
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