
472

A Loss Function Analysis for Classification Methods in Text
Categorization

Fan LI
Carnegie Mellon Univ, 4502 NSH, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA

Yiming Yang

Carnegie Mellon Univ, 4502 NSH, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA

HUSTLF~CS.CMU.EDU

YIMING@CS.CMU.EDU

Abstract

This paper presents a formal analysis of pop-
ular text classification methods, focusing on
their loss functions whose minimization is es-
sential to the optimization of those methods,
and whose decomposition into the training-
set loss and the model complexity enables
cross-method comparisons on a common ba-
sis from an optimization point of view. Those
methods include Support Vector Machines,
Linear Regression, Logistic Regression, Neu-
ral Network, Naive Baycs, K-Nearest Neigh-
bor, Rocchio-style and Multi-class Prototype
classifiers. Theoretical analysis (including
our new derivations) is provided for each
method, along with e~-aluation results for all
the methods on the Reuters-21578 bench-
mark corpus. Using linear regression, neural
networks and logistic regression methods as
examples, we show that properly tuning the
balance between the training-set loss and the
complexity penalty would have a significant
impact to the performance of a classifier. In
linear regression, in particular, the tuning of
the complexity penalty yielded a result (mea-
sured using macro-averaged F1) that outper-
formed all text categorization methods ever
evaluated on that benchmark corpus, includ-
ing Support Vector Machines.

1. Introduction

Text categorization is an active research area in ma~
chine learning and information retrieval. A large num-
ber of statistical classification methods have been ap-
plied to this problem, including linear regression, lo-
gistic regression (LR), neural networks (NNet), Naive
Bayes (NB), k-nearest neighbor (kNN), Rocchio-style,

Support Vector Machine (SVM) and other approaches
(Yang & Liu, 1999; Yang, 1999; Joachims, 1998; Mc-
Callum & Nigam; Zhang & Oles, 2001; Lewis et al.,
2003). As more methods are published, we need to
have a sound theoretical framework for cross-method
comparison. Recent work in machine learning focus-
ing on the regularization of classification methods and
on the analysis of their loss functions is a step in this
direction.

Vapnik (Vapnik, 1995) defined the objective function
in SVM as minimizing the expected risk on test exam-
ples, and decomposed that risk into two components:
the empirical risk that reflects the training-set errors
of the classifier, and the inverse of margin width that
reflects how far the positive and negative training ex-
amples of a category are separated by the decision sur-
face. Thus, both the minimization of training-set er-
rors and the maximization of the margin width are the
criteria used in the optimization of SVM. Balancing
between the two criteria has been referred as the regu-
larization of a classifier; the degree of regularization is
often controlled by a parameter in that method (sec-
tion 2). SVM have been extremely successful in text
categorization, often resulting in the best performance
in benchmark evaluations (Joachims, 1998; Yang
Liu, 1999; Lewis et al., 2003).

Hastie et al. (Hastie et al. 2001) presented a more gen-
eral framework for estimating the potential of a model
in making classification errors, and used a slightly dif-
ferent terminology: loss or generalization error corre-
sponding to the expected risk, training-set loss corre-
sponding to the empirical risk, and model complexity
corresponding to the margin-related risk in SVM. Us-
ing this framework they compared alternative ways to
penalize the model complexity, including the Akalke
Information Criterion (AIC), the Bayesian Informa-
tion Criterion (BIC), and the Minimum Description
Length (MDL) criterion. More interestingly, they

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

473

compared the differences in the training-set loss func-
tions for SVM, LLSF, LR and AdaBoost, in a way such
that the sensitivity of those methods with respect to
classification errors on training examples can be easily
compared (section 2).

It would be valuable to analyze a broader range of clas-
sification methods in a similar fashion as presented by
Hestie et al., so that the comparison among methods
can be made explicitly in terms of their inductive bi-
ases with respect to training examples, or in terms of
their penalty functions for model complexity. For this
we need a formal analysis on the optimization criterion
of each method, in the form of a loss function that
decomposes into the training-set error term and the
model complexity term. Such a formal analysis, how-
ever, often is not available in the literature for popular
text categorization methods, such as Nave Bayes, kNN
and Rocchio-style classifiers.

The primary contribution we offer here is a loss-
function based study for eight classifiers popular in
text categorization, including SVM, linear regression,
logistic regression, neural networks, Rocchio-style,
Prototypes, kNN and Nave Bayes. We provide our
own derivations for the loss function decomposition
in Rocchio-style, NB, kNN and multi-class prototypes
(Prototypes), which have not been reported before.
We also show the importance of properly tuning the
amount of regularization by using controlled examina-
tions of LLSF, LR and NNet with and without reg-
ularization. Finally, we compare the performance of
the eight classifiers with properly tuned regulariza-
tion (though validation) using a benchmark corpus
(Reuters-21578) in text categorization.

The organization of the remaining parts of this pa-
per is aa follows: Section 2 outlines the classifiers and
provides a formal analysis on their loss functions. Sec-
tion 3 describes the experiment settings and results.
Section 4 summarizes and offers the concluding re-
marks.

2. Loss functions of the classifiers

In order to compare different classifiers on a common
basis, we need to present their loss functions in the
unified form: Lc = gl(YJ(,~i,~)) g2(/~). Wecal

the first term gl (ylf (Ei, fl) the tr aining-set loss and
the second term g2(/~) the complexity penalty or the
regularizer. The following notation will be used in the
rest of this paper:

¯ The training data consL~ts of N pairs of (El,y1),
(~’2,y2),...,(X.N,YN). Vector ~i = (Xil,...,Xlp)

represents the values of the p input variables in the
ith training example. Scalar Yl E {-1,1} (unless
otherwise specified) is the class label.

¯ Vector ~ = (ill,...,/~v) T consists of the parame-
ters in a linear classifier, which are estimated us-
ing the training data.

¯ A linea scalar f(a~i,/~) = ~’i/~is the classifier’s out-
put given input gi, and the quantity Yif(~i,/~)
shows how much the system’s output agrees with
the truth label

¯ The 2-norm of/~ is represented as [[/~1[and the
1-norm of/~ is represented as IIEII

Note that we purposely chose to define gi as a hori-
zontal vector and fl as a vertical vector, so that we can
conveniently write xi~ for the dot product ~-]~=1 x~/~k
(and vice versa), which will be frequently seen in our
derivations.

2.1. SVM

SVM has been extremely successful in text categoriza-
tion. Multiple versions of SVM exist; in this paper we
only use linear SVM for our analysis, partly for clarity
and simplicity of our analysis, and partly because lin-
ear SVM performed as well as other versions of SVM in
text categorization evaluations(Joachims, 1998). SVM
emphasizes the generalization capability of the classi-
fier (Hastie et al. 2001), whose loss function (for class
c) has the form of

fl

Lc : E(1 - yiEi/~)+ + ~11/~[12 (1)
i=1

in which the training-set loss on a single training ex-
ample is defined to be

le (1 ~ ~ (1 Yi ~i~ wh en Yl Xi~ <_ 1= -Yi i~)+ = 0 otherwise

The first term in the right hand side of formula 1 is the
cumulative training-set loss and the second term is the
complexity penalty and both are functions of vector
/L The optimization in SVM is to find/~ that mini-
mizes the sum of the two terms in formula 1. In other
words, the optimization in SVM is not only driven by
the training-set loss, but also driven by the 2-norm
of vector fl, which is determined by the squared sum
of the coefficients in /~ and reflects the sensitivity of
the mapping function with respect to the input vari-
ables. The value of A controls the trade-off between
the two terms, that is, it is the weight (algorithmically

474

determined in the training phase of SVM) of the sec-
ond term relative to the first term. Formula 1 can be
transformed into dual form and solved using quadratic
programming.

This kind of analysis on the loss function in SVM is
not new, of course. In fact, it is a part of the SVM
theory, and has been presented by other researchers
(Vapnik, 1995; Hastie et al. 2001). Our point here
is to start with a good framework and carry out the
formal analysis for the other classifiers chosen for this
study in a consistent fashion; some of those classifiers
have not been formally analyzed in this manner.

2.2. Linear Least Squares Fit (LLSF)

Linear regression, also called Linear Least Squares Fit
(LLSF) in the literature, has performed competitively
to SVM and other high performing classifiers (includ-
ing kNN and logistic regression) in text categorization
evaluations (Yang, 1999). LLSF is similar to linear
SVM in the sense that both leaxn a linear mapping
](~, fi) = ~fi based on tile training data. Its optimiza-
tion criterion in estimating fi, however, is strictly the
minimization of the training-set error in terms of the
sum of squared residuals. The loss function is defined
to be: Lusl = ~in=l (Yi - Y.ifl) 2. Expanding the right
hand side and rearranging, we obtain the equivalent
formula in the desired form of gl(yi~.ifl):

n

L,,,~ = ~d + (eJ)~ - 2~,ed
i=t

Adding the regularizer ,kl]flll 2 to the training-set loss,
we obtain the loss functions of the regularized LLSF
(which is also called Ridge Regression):

2.3. Rocchlo-style

Rocchio-style classifiers are widely used in text catego-
rization for their simplicity and relatively good perfor-
mance(Lewis et al., 2003). They construct a prototype
vector for each category using both the centroid of pos-
itive training examples ff and the centroid of negative
training examples ft. When documents are normalized,
Rocchio-style classifier can be seen as a linear classifier

with the scoring function](~, fi) = ~fl where fi is the
prototype vector, defined to be:

1 by" = ~-~=~ ~, ~,-~,
~ Ecj ~i ~c

1 b: ~ ~ j, + ~ ~ v,~, (3)
yi:l yi:--I

where b is a parameter which can be tuned. Now we
show that the rcgularized loss function in the Rocchio-
style classifier is

Lc =- ~ yi~,ifi bg~ E (4)
yi:l y~=--i

In order to minimize the loss function, we need to take
the first order derivative of formula 4 with respect to
fi and set it to zero,

dLc bhr

,¢ = - ~, Y’~’ N~ ~C Y’~’ + Jvd: o
yl---1 y~=--I

It is easy to see that fi in formula 3 is just the solu-
tion. In other words, formula 4 is the loss function that
the Rocchio-style classifier is trying to minimize. Pre-
senting its loss function in this fashion enables us to
compare the Rocchio-style approach with other classi-
fication methods on the same basis, i.e., loss-function
based analysis.

Observing formula 4 is interesting. The loss function
consists of three parts, instead of two as in the other
classifiers we analyzed so far. The first part is the
training-set loss on positive examples; The second part
is the training-set loss on negative examples; the third
part is the complexity penalizer []fl]]2.

The training-set loss on a single training example de-
pends on whether it is a positive or negative example.
That is,

{-Yi~ifl when Yi = 1
--bN-~Yi~i ~ when Yi = -1

2.4. Multi-class Prototype Classifier

Multi-class Prototype classifier, or just "Prototype" as
an abbreviation, is even simpler than Rocchio-style. It
is the same as Rocchio-style except that only positive
examples are used to construct the prototype of each
category. That is, the method is defined by setting the
parameter b to zero in the formula 3 and 4. Accord-
ingly, the regularization loss in the Prototype method
is:

Lc = - E YiZifi + Ncyllfill2 (51
y¢:l

475

Including Prototype in this study gives us a good base-
line.

2.5. kNN

kNN has been popular in text categorization, both
for its simplicity and for the good performance in
benchmark evaluations(Yang & Liu, 1999; Lewis et al.,
2003). kNN is very similar to Prototype except that
only the training examples inside of the neighborhood
local to each test example have a non-zero loss. The
nearness of each neighbor in kNN is often measured
using the cosine similarity between the test example
and the training example, which is equivalent to using
dot product after both vectors axe normalized. For
simplicity of analysis, we restrict our discussion under
the assumption of using normalized vectors. Under
this assumption, kNN has a locally linear classifica-
tion function with the vector of coefficients

where Rk (~) is the k training examples nearest to test
example ~, and/~= is the local centroid of the positive
examples in category c. The classification decision on
test exampleE is obtained by thresholding on the dot
product g. flz. Now we need to formally analyze ex-

;actly what kNN is optimizing. Defining a loss function
in the following form

and setting the first order derivative of the right hand
side to zero yields the coefficient vector in formula 6.
This is to say that the optimization criterion in kNN
is the minimization of loss function Lc in formula 7
which has both the training-set error component (the
first term) and the complexity penalization component
(the second term). Accordingly, the training-set loss
on a single training example is:

(-YlX.ifl-’= when Yi = 1 A Zi E kNN(~.)
lc~ = 0 Otherwise

Analyzing kNN’s optimization criterion in the form
of the loss function presented above has not been re-
ported before, to our knowledge. Note that we use/~=
instead of/~ to emphasize the local nature of the clas-
sification in kNN. The loss function depends on each
test example, which strongly differentiates kNN from
the other classifiers.

2.6. Logistic Regression (LR)

Logistic regression methods have also shown good per-
formance (competitive to SVM, LLSF and kNN)
the evaluations on benchmark collections(Yang, 1999;
Zhang & Oles, 2001). It estimates the conditional
probability of y given Z in the form of

P(yl~.) = 7r(y~.~) d~j
1

1 + e=p(-ye
and learns the regression coefficients/~ in order to max-
imize l-Iin=l P(Yl [Zi). This is equivalent to minimizing
the training-set loss defined in the logarithmic form:

n log 1 ~
n

Lo = = log(1 + xp(-y e fi))
i=l

The regularized version of LR (Zhang & Oles, 2001)
has the loss function in the form of

n

L~ = ~log(1 + exp(-yiEi~)) , llfill= (s)
i=l

2.7. Neural Networks (NNet)

Neural networks have also shown competitive perfor-
mance in text categorization evaluations(Yang & Liu,
1999; Yang, 1999). We restrict our analysis to a two-
level (no hidden layers) neural network in this paper.
NNets without hidden layers are very s_.imilar to LR in
the sense that they estimate P(y = l[f~, ~) in the form
of

1
- 7r (Z/~)P(y = 1 [fl, Z) -- 1 + exp(-~.fl)

However, the objective function is to minimize Lc =
)-~(y~ - 7r(Z~f~))2 where y~ is 1 or 0. To make its loss
function in a form consistent and comparable to those
in other classifiers, we need to write it using yi instead
of y~ where Yl -- 1 when y~ --- 1 and y~ -- -1 when
y~ -- 0. The training-set loss is:

n 1
Lc = El=l(- 7r(xifi)) ~ when Yl = 1

~-~in=~(O - ~r(:Fifi)) = when yl = -I

{y]~__l(1 -- ~r(fflxifi)) 2 when Yl : 1
= ~-].7=l(Tr(-yiZi/~)) 2 when Yl = -1

= Z(1 - ~r(y, Zd~))~ (9)
i=l

Adding an regularization term AH/~H2 yields the loss
function of the regularized NNet:

L~ = Z(I - ~r(y, Eifl)) 2 + Al[/~[[2 (10)
i=1

476

2.8. Naive Bayes (NB)

We restrict our analysis to the most popular multi-
nomial NB classifier(McCallum & Nigam). It esti-
mates the posterior probability of test document D
as a member of category c using the following formula

p(c[D) P(c) l- I~=, P(W~lc)n"%’D)
v(D) where P(c) is the

prior probability of the category, P(D) is the proba-
bility of D occurring by chance, P(Wk I c) is the prob-
ability of word Wk conditioned on category c, and
n(D, Wk) is the count of word Wk in document D.
Then

P

log P(clD) ~-~ n(Wk,D) lo g P(Wklc)
k=t

+ log(P(c)) - log(P(D)) (11)

Rewriting formula 11 using Xk = n(Wk,D), Ok
P(Wk[c) and flk = lOg0k, we have

P

logP(c[D) : ~ Xk log0k +log(P(c)) - logP(D)
k=t

P

-: ~ Xk~k "4- log(P(c)) log P(D)

k=l

= ~fl+ log(P(c)) lo gP(D) (12)

Optimization in NB regards the estimation of the

model parameters based on training data t : /5(c) =
~- and Ok = -~ where Nc is the number of positive
training examples for category c, Fck is the frequency
of word Wk in those positive training examples, and
Sc = Y]fk=t Fck is the total number of word occur-
rences in category c.

We now show how to relate the parameter estimates in
NB to a loss function in the form of L = gl (Yi~i~)

g2(fl) so that we can compare NB with other classi-
tiers on the same basis. Let us use vector ~i to repre-
sent the ith training document whose elements are the
within-document term frequencies of individual words,
the vector sum ffc = Y~.~,ec ~i to represent the within-
category term frequencies in category c, and 0k to de-
note P(Wklc). We define the loss function in the fol-
lowing form:

P p

L~ = -- C Fck logOk + S~ ~-~ Sk (13)
k=l k=t

To minimize this loss function, we take the first-order
partial derivative with respect to Ok and set it to zero:

aL~
00~ - Fck. +S~=0

tNow we only consider NB without smoothing for sim-
plicity. We will consider NB with Laplace smoothing next.

Clearly, Ok = ~ is just the solution. This means that
the loss function in formula 13 is the optimal objec-
tive function NB is using to estimate its parameters
P(Wk [c)(it is also equivalent to maximizing the likeli-
hood 1-I~=1 8F°~ subject to)-’].~=t Ok = 1).

We now rewrite formula 13 as a function of Fc =
(F~I,..., F~p) and fl = (fit, ..., flp)T where flk = log0k.
Since Ok is a word probability, all the elements in
are positive numbers. This means)-’]~P=t 0k = l[0~[h is

the norm-1 of vector 0’. Substituting those terms in 13
yields the loss function in the form of

Lc = -_~,8 + &llffllx (14)

Furthermore, from fo = ~,~o~, we have f~g =
C~o:r’~fi, and from fi = loggwe have g= J where
e~ de.j (efll,...,eBp). Substituting those terms in 14
yields the loss function in the form of

Lo = - ~,j+&lleallx
~Ec

C Yi il ~ q- &lleZll~ (15)
y~----I

Now we have successfully decomposed NB’s loss func-
tion into the form of L = gt (yi£1/?) + g2(/~). Note

we only discussed NB without any smoothing which is
known to be important for the effectiveness of NB. It
is easy to see in the second term of formula 15 that
Ile~ll, would be overly sensitive to estimation errors in
the elements flk = log P(Wk Ic) ff those numbers (nega-
tive) have large absolute values, that is, when the word
probabilities are near zero.

We now present the loss function for NB with Laplace
smoothing which is common in NB. Here the estimate

I+Fo~ let us use i" to represent vectorof Ok is Ok = v+so "
(1,1,...,1). Note that the elements in/~ are all negative
numbers because fl = log 0 and 0 are probabilities. So
-f/7 = Ilfilll, Then we have the loss function for NB
as the following:

P P

s~ = - ~(1 + £ck)logOk + (p + So)
k=l k:l

= -(i’+ L)fi+ (P + &)(llgll~)
-- -(f+ ~ y~e,)lT+ (p+ &)lle~ll~

yi=l

-: -- ~ yix, i~’4- (t9"4- &)llegl[1 + Ilfill~ (16)

yi=l

Comparing this to formula 15 of NB without smooth-
ing, we can see the correction by Laplace smoothing

477

Table 1. The training-set loss functions and the regularizers of eight classifiers
Classifier
Regularized LLSF

Regularized LR
Regularized 2-layer NNet
SVM

Rocchio

Prototype

kNN

NB without smoothing

NB with Laplace smoothing

regularizer: g2(~)

~llfill2
~llfill2
~llt~ll~
~11~11~

11/311
1 ~ 2~11/3=11
S~lle~lll

(p + S0)llJIl~ + IIEII~

~z.

o.:

n
w i°~n x ~ o~ o

_~° - :
--1.5

-=-. - o o
- o

Figure 1. The training-set loss functions of eight classifiers

in the third term, which prevents the coefficients in/~
from being too large. In other words, it prevents the
classification decisions from being overly sensitive to
small changes in the input.

Also, both formulas 15 and 16 show a unique prop-
erty of NB classifiers, that is, the influence of term
Sc in the loss functions, which causes the amounts of
regularization to vary for different categories. To our
knowledge, this is the first time that this property is
made explicit in loss-function based analysis. Whether
this is a theoretical weakness or a desirable property
of NB requires future research.

2.9. Comparative Analysis

The loss functions of the eight classifiers are summa-
rized in Table 1. All the regularized classifiers, except
NB, have their regularizers in the form of the vec-
tor 2-norm 1[/3[[2 multiplied to a constant or a weight
(category-specific). Among those, regularized LLSF,
NNet and LR have exactly the same regularizer as that

in SVM, so the differences among those methods are
only in their training-set loss functions. Prototype and
NB, on the other hand, are exactly the same in terms
of their training-set loss, but fundamentally different
in their regularizer terms.

The curve of the training-set loss on individual train-
ing examples is shown for each classifier in Figure 1;
the 0-1 misclassification loss is also shown for compar-
ison. The Y axis represents the loss, and the X axis
is the value of Yi,~i/3. Examples with YiX, ifl >-- 0 are
those correctly categorized by a classifier assuming the
classification decisions are obtained by thresholding at
zero; examples withd/iZif~ < 0 are those misclassified.
Examples with Yigi/3 = 1 are those perfectly scored in
the sense that the scores (gift) by the classifier is in
total agreement with the true scores of Yi.

From Figure 1, we can see that LLSF gives the highest
penalty to the misclassified examples with a negative
and very large absolute value of YiZi/3 while NNet gives
those errors the lowest penalty. In other words, LLSF

478

tries very hard to correctly classify such outliers (with
relatively small scores) while NNet does not focus on
those outliers. As for the correctlyclassified examples
with a large positive ~ue of YiX.ifl, LLSF is the only
method which penalizes them heavily. SVM, NNet and
LR tend to ignore these examples by giving them zero
or near zero penalties. On the other hand, Rocchio,
NB, Prototype and kNN give these examples minus
loss rather than neglecting them.

It should be noticed that we have two lines for Proto-
type and NB’ a linear function with a non-zero slope
for the positive examples, and the other with a flat
slope for the negative examples. This reflects the fact
that only the positive training examples of each cate-
gory are used to train the category-specific models in
those methods, kNN is similar in this sense except that
its loss functions are local, depending on the neighbor-
hood of each input example; we omit the lines of kNN
in this figure. Rocchio-style, on the other hand, uses
both positive and negative examples to construct the
category prototype, should have two linear lines (with
non-zero slopes) as its loss flmctions. For convenience,
we show a specific case of Rocchio-style when parame-
ter b = g~ in this figure, i.e., the two lines for positiveN~
and negative examples become the same.

3. Empirical Evaluation

We conducted two sets of experiments: one set was
for the global comparison of the eight classifiers in
text categorization using a benchmark collection, the
Reuters-21578 corpus ApteMod version(Yang & Liu,
1999) (http: //www-2.cs.cmu.edu/~yiming), and
other set was for examining the effectiveness of regu-
larization in individual classifiers. For the latter, we
chose LLSF, LR and NNet. Figure 2 shows the results

i

O9 0 e-e~7 oa74e 0 e.eo~ oee06
0 e474 0 e,.s~7 "

; o.eco~ 0.7e~
°’sI
0171 0 ~ 14 0 ’ ~ ~8
061 0"5914 0.~57 0.~76 0-e084 -

’ii "
NB Pr~o~ P.oo~ SV’M KNN Rog LR P,O~NN.m Rog_LLS.~

F/gure 2. Performance of eight classifers on Reuters-21578

pus. Both macro- and micro-averaged F1 are reported,
which have been the conventional performance mea-
sures in text categorization evaluations (Yang & Liu,
1999). All the parameters are tuned using five fold
cross-validation on the training data. Feature selec-
tion was applied to documents as a preprocessing step
before the training of the classifiers; the X2 criterion
was used for feature selection in all the classifiers. For
NB, we selected the top 1000 features. For Rocchio-
style (implemented using the version in (Lewis et al.,
2003)) we used the top 2000 features and set parameter
b = -2. For Prototype we used the top 2000 features.
For kNN we set k = 85 and used the top 2000 features
that when micro-avg. F1 was the performance mea-
sure, and the top 1000 features when macro-avg. F1
was the performance measure. For regularized LLSF,
LR, NNet (2-layer) and SVM, we used all the features
without selection. We used T-test to compare the
macro F1 scores of regularized LLSF and SVM and
found regularized LLSF was significantly better.

Figure 3 shows the performance curves of the regular-
ized LLSF, NNet and LR on a validation set (a held-
off subset of the training data), with respect to the
varying value of ,k that controls the amount of reg-
ularization. Clearly, the performance of those clas-
sifters depends on the choice of the value for A: all
the curves peak at some A values larger then zero.
For LLSF and NNet, in particular, having regnlariza-
tion (with a properly chosen A) can make a signifi-
cant improvements over the cases of no regularization
(A = 0). Based on macro-averaged F1 curves, we chose
,k = 10-4 for regularized LLSF and ,k = 10-7 for regu-
larized NNet and LR for the evaluation of those meth-
ods on the test set.

Figure 4 compares our results of the regularized LLSF
and regularized NNet with the published results of
LLSF and NNet without regularization on the same
data collection(Yang & Liu, 1999). Clearly, our new
results are significantly better than the previous re-
sults of those methods, and the regularization played
an important role in making the difference. Note that
in (Yang & Liu, 1999), the LLSF used truncated SVD
to get the solution and the NNet had 3 layers. Thus,
those scores are not directly comparable, but rather
just indicative.

4. Concluding Remarks

In this paper, we presented a loss-function based anal-
ysis for eight classifications methods that are popular
in text categorization. Our main research findings are:

of the eight classifiers on the test set of the Reuters cor- * The optimization criteria in all the eight meth-

479

= : ~ Hog LLSFo°L,:,og-,.,.,¯ j ,------;,-,, ,
1o4 lO4 to~ Io4

Value of ~.

0.7 , : : I
o.e i !

&~!

r, o T : i

0.4 ~ : i ~
o.~sF I

co 0.2 i ~ Reg NNot ~ !

F/gure 3. Performance of classifers with respect to varying
, amounts of regularization

1

0.9

o,8

0.7

o.e

~ o.s

0.4

o.a

o.2

o.I

o

Figure 4. Perfromance of LLSF and NNet with and with-
out regularization

ods can be presented using a loss function that
consists of two terms: the training-set loss and
the regularizer (i.e., the complexity penalty). The
proofs for four of those methods, Rocchio, Proto-
type, kNN and NB, are new in this paper. Such
decomposition enables an insightful comparison of
classification methods using those two terms.

Regularized LLSF, NNet and LR have exactly
the same regularizer as that in SVM, so the dif-
ferences among those methods are only in their
training-set loss functions. Our evaluation results
on the Reuters corpus show that the performance
of the four methods are quite competitive, in both
macro- and micro-averaged F1 scores, despite the
theoretical differences in their loss functions.

Regularization made significant performance im-
provements in LLSF and NNet on Reuters. Reg-
ularized LLSF, in particular, performed surpris-
ingly well although its training-set loss function

is not monotonic, which has been considered as
a weakness of this method in some theoretical
analysis(Hastie et al. 2001). Its macro-averaged
F1 performance (0.6398) is the best score ever
reported on the Reuters-21578 corpus, statisti-
cally significantly outperforming SVM that was
the best until this study.

Our new derivation shows that NB has the regu-
larizer in a form of (p + Sc)lle~lll + Ilfilll, which
is radically different from the Ilflll 2 regularizer in
the other classification methods. Whether or not
this would be an explanation for the suboptimal
performance of NB requires future research.

References

Hastie T., Tibshirani, R. & Friedman, J. (2001) The
Elements of statistical learning, data mining, Infer-
ence, and Prediction. In Springer Series in Statis-
tics.

Joachims, T. (1998) Text Categorization with Support
Vector Machines: Learning with Many Relevant
Features. Proceedings of the European Conference
on Machine Learning (ECML), Springer.

Lewis, D., Yang, Y., Rose, T. & Li, F. (2002) RCVI:
A New Text Categorization Test Collection to be
appeared in Journal of Machine Learning Research.

McCallum, A. & Nigam, K. (1998) A comparison
event models for Naive Bayes text classification. In
AAAI-98 Workshop on Learning for Text Catego-
rization.

Vapnik, V. (1995) The nature of statistical learning
Theory. Springer, New York.

Yang, Y. & Chute, C.G. (1994) An example-based
mapping method for text classification and retrieval.
In A CM Transactions on Information Systems.

Yang, Y. & Lin, X. (1999) A re-examination of text
categorization methods. A CM Conference on Re-
search and Development in Information Retrieval,
pp 42-49.

Yang, Y. (1999) An ewluation of statistical ap-
proaches to text categorization. Journal of Infor-
mation Retrieval, Vol 1, pp 67-88.

Zhang, T. & Oles, F.J. (2001) Text Categorization
Based on Regularized Linear Classification Meth-
ods. In Information Retrieval 4(1): 5-31.

