
Using Linear-threshold Algorithms to Combine Multi-class Sub-experts

Chris Mesterharm MESTERHA@CS.RUTGERS.EDU

Rutgers Computer Science Department 110 Frelinghuysen Road Piscataway, NJ 08854 USA

Abstract

We present a new type of multi-class learning al-
gorithm called a linear-max algorithm. Linear-
max algorithms learn with a special type of at-
tribute called a sub-expert. A sub-expert is a vec-
tor attribute that has a value for each output class.
The goal of the multi-class algorithm is to learn a
linear function combining the sub-experts and to
use this linear function to make correct class pre-
dictions. The main contribution of this work is to
prove that, in the on-line mistake-bounded model
of learning, a multi-class sub-expert learning al-
gorithm has the same mistake bounds as a related
two class linear-threshold algorithm. We apply
these techniques to three linear-threshold algo-
rithms: Perceptron, Winnow, and Romma. We
show these algorithms give good performance on
artificial and real datasets.

1. Introduction

In this paper, we define a new type of inductive learning al-
gorithm called a linear-max algorithm. This is an algorithm
that learns using a special type of attribute called a sub-
expert. We define a sub-expert as a vector attribute that has
a value for each possible output class. The value for each
class corresponds to the prediction strength the sub-expert
gives to each class. A hypothesis prediction can be viewed
as a sub-expert. At a minimum, if the hypothesis predicts a
single class, the sub-expert can predict � for that class and
� for the remaining classes. Some learning algorithms can
use information, such a class probability estimates, to give
prediction values for all the sub-expert classes. The linear-
max algorithm takes a weighted sum of all the sub-experts
and predicts the class that has the maximum value. We call
this a linear-max function. The goal of the algorithm is to
learn good weights for the sub-experts.

This paper deals with the problem of classifying a sequence
of instances. Each instance belongs to one of � classes and
is composed of sub-experts. After the algorithm predicts

a label for an instance, the environment returns the correct
classification. This information can then be used to im-
prove the prediction function for the next instance in the
sequence. These three steps, getting an instance, predict-
ing the class, and updating the classifier, are called a trial.
The goal of the algorithm is to minimize the total number
of prediction mistakes made during the trials. This is com-
monly referred to as the on-line mistake-bounded model of
learning (Littlestone, 1989).

It is intuitive to think of sub-experts as individual classify-
ing functions that are attempting to predict the target func-
tion. Even though the individual sub-experts may not be
perfect, the linear-max algorithm attempts to learn a linear-
max function that combines them and does well on the tar-
get. In truth, this picture is not quite accurate. The reason
we call them sub-experts and not experts is because even
though an individual sub-expert might be poor at predic-
tion, it may be useful when used in a linear-max function.
The term experts more commonly refers to the situation
where the performance of the algorithm is measured with
respect to a single best expert (Cesa-Bianchi et al., 1997;
Littlestone & Warmuth, 1994) as opposed to a combination
of sub-experts.

Linear-max algorithms are related to linear-threshold al-
gorithms and were motived by a desire to extend linear-
threshold functions from two class prediction to multi-class
prediction. We accomplish this by using a linear-threshold
algorithm to help solve a linear-max problem. This tech-
nique is useful both theoretically and practically. It allows
the existing mistake bounds from the linear-threshold algo-
rithms to be carried over to the linear-max setting. With
no extra work, one can the apply the bounds of existing
or future linear-threshold learning algorithms to multi-class
problems.

This paper is based on work in Mesterharm (2001) which
gives a general framework and proof to extend a wide range
of linear-threshold algorithms to multi-class problems. In
this paper, we give a slightly less general result due to space
considerations; please refer to the technical report for more
details. While the proof deals with sub-experts, in Mester-

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

harm (2001) we give a technique to use sub-experts to solve
multi-class problems dealing with real-valued attributes.
This produces algorithms that are similar to algorithms that
can be derived with techniques given in Nilsson (1965) and
Har-Peled et al. (2003). For this reason, we will focus on
sub-experts in this paper, however, it is straightforward to
combine the two techniques to get hybrid algorithms that
combine sub-experts and attributes.

There has been a large amount of previous work on using
binary prediction for multi-class attribute based problems.
Allwein et al. (2000) and Dietterich and Bakiri (1995) both
look at learning separate binary classifiers to make multi-
class predictions. Crammer and Singer (2001) gives a fam-
ily of multi-class Perceptron algorithms with generalized
update functions. Har-Peled et al. (2003) gives a method
for handling more general multi-class learning problems
such as ranking.

For combining experts in an on-line setting much of the
work focuses on learning a single best expert (Cesa-
Bianchi et al., 1997; Littlestone & Warmuth, 1994). For
learning a combination of experts, Blum (1995) gives a ver-
sion of a multi-class Winnow sub-expert algorithm, while
Mesterharm (2000) generalizes that algorithm and gives a
stronger mistake bound. This paper builds on the previous
work by giving a technique to extend a wide range of linear-
threshold algorithms to a combination of sub-experts while
retaining many of the benefits including mistake bounds.

Another goal of this paper is to show that sub-expert algo-
rithms are useful for practical machine learning problems.
Linear-threshold algorithms have been used successfully
on many practical problems. Since linear-max problems
are solved using linear-threshold algorithms, we should get
similar real-world performance with both types of algo-
rithms. In addition, the Winnow sub-expert extension has
already given state of the art performance on a calendar
scheduling problem in Blum (1995). In this paper, we per-
form experiments to show that it is useful to extend other
algorithms, besides Winnow, with sub-experts. We give ex-
periments with sub-experts using Perceptron (Rosenblatt,
1962), normalized Winnow (Littlestone, 1989), and the
Relaxed On-line Maximum Margin Algorithm (Romma)
(Li & Long, 2000), and we show that both Perceptron
and Romma give superior performance on specific types
of problems.

2. Linear-max Algorithms

In this section, we give the definitions of a linear-max al-
gorithm and its related linear-threshold algorithm. Before
we give the formal definitions we need to cover how sub-
experts work, how they make predictions, and how the pre-
dictions are combined.

2.1. Sub-experts

First we give the definition of a sub-expert. A sub-expert
makes � predictions, one for each possible output class.
These predictions correspond to the rating a sub-expert
gives to each class; higher numbers corresponding to a bet-
ter rating. Let ��� � � be the prediction sub-expert � gives
for class �. Notice that the rating of a class is relative.
Looking at class � and �, a sub-expert prefers class � over �
if ��� ���� � �. It is these differences between class predic-
tions that are crucial to the operations of the multi-class al-
gorithms in this paper. Sometimes, it is useful to bound the
size of these differences. In those cases, assume for each
expert � and all �	 � � ��	

 	 �� that ��

� � ��� � ���	 ��
where � � �.

Here are some examples of the types of knowledge that
sub-experts can encode. For these examples assume that
� � �. A sub-expert that predicts ��	 �	 �� gives max-
imal preference to class 1 over class 2 or 3. This same
sub-expert makes no distinction between class 2 and 3. A
sub-expert that predicts ���	 �	 �� again makes no distinc-
tion between class 2 and 3 but maximally prefers class 2
or 3 over class 1. Lastly a sub-expert that predicts ��	 �	 ��
makes no distinction between any of the classes. Notice
that adding a constant to each prediction class in a sub-
expert does not change the differences between classes. For
example ����	 ���	 ���� is the same prediction as ��	 �	 ��,
and ��	 �	 �� is the same prediction as ���	 �	 ��. In gen-
eral, we can represent all sub-experts by restricting all ��

�

to ��	 ��, but sometimes a wider range of prediction values
is useful for notational economy or algorithm efficiency.

2.2. Prediction

Now we will show how to use several sub-experts to make
a global prediction. Assume there are sub-experts, and
each sub-expert is assigned a weight. Let � be the vec-
tor of weights where �� is the weight of sub-expert �.
We combine the information from the weights and the sub-
experts to compute a vote for each class.

��

�
��

���
...

���

�
��� ��

�
��

���
...

���

�
��� � � �� ��

�
��

���
...

���

�
��

Define the voting function for class � and weights � as
����	 �

��
��� ���

�
� . The algorithm predicts the class with

the highest vote,
��
�� ����	. (On a tie the algorithm
predicts any class involved in the tie.) We call the function
computed by this prediction scheme a linear-max function
since it is the class of the maximum value taken from a
linear combination of the sub-expert predictions.

Even though some sub-experts may not individually give
accurate predictions, they may be useful in a linear-max

function. For example, sub-experts might be used to add
threshold weights. This is done by adding an extra sub-
expert for each class. A threshold sub-expert would always
predict with 1 for its corresponding class and 0 for the re-
maining classes. While a threshold expert makes a poor
classifier by itself, when combined in a linear-max algo-
rithm, it gives a useful expansion of the set of target func-
tions.

2.3. Linear-threshold Algorithm Definition

We will show how any linear-threshold algorithm of the fol-
lowing form can be transformed to a linear-max algorithm.

Initialization
� �� �init with �init � ��.

Trials
Instance: Attributes � � ���	 ��� with � � � �	.
Prediction: Predict � � � if

��
��� ���� � �

otherwise predict � � ��.
Update: Let � � ���	 �� be the correct label

� �� ���	 ��	 �	

For the linear-threshold algorithm, the update is a function
of the current weights and the attributes multiplied by the
label. For example, Perceptron uses ���	 ��	 �	 � ����
for updates on mistakes.

2.4. Linear-max Algorithm Definition

Next we define the related linear-max algorithm. The im-
portant thing to note is that the algorithm uses the same
update function � as the linear-threshold algorithm. This is
the key that binds them together. We use the update proce-
dure from a linear-threshold algorithm to perform updates
on the related linear-max algorithm.

Initialization
� �� �init with �init � ��.

Trials
Instance: Sub-experts ���	

 	��	.
Prediction: Let ����	 �

��
��� ���

�
� .

Predict class � such that for all �
� �
����	 � ����	.

Update: Let � � ��	

 	 �� be the correct label.
If �
� � then � �� ���	 ��� � �

�		 �	.

When the linear-max algorithm makes a mistake, we up-
date with an instance that would cause the linear-threshold
algorithm, with the same weights, to make a mistake.
There is some freedom in picking this incorrect instance.
For example, for a problem with � � � classes let
���	 ��	 ��	 ��	 ��	 be the five classes sorted based on the
voting function. The algorithm predicts � � �� and as-
sume the correct label � � ��. Consider the follow-
ing � � � instances for the linear-threshold algorithm:

��� � �	�	, ��� � �	�	, ��� � �	�	, ��� � �	�	 where
all have a label � � �. The first three of these corre-
spond to instances that would be misclassified. For exam-
ple,
��

��� ����
� � �	�	 � �. The last is correct based on

the current weights. We could use any of the first three for
the update, but to keep things simple, we pick �����. We
conjecture that other possible instances, such as linear com-
binations of the above, will give a sub-expert based family
of algorithms similar to the ultraconservative algorithms of
Crammer and Singer (2001).

3. Mistake Bound Proof

In this section, we prove the linear-max algorithm has
the same bounds as the related linear-threshold algorithm.
Throughout this section assume we are running a linear-
max and a linear-threshold algorithm.

First we will show that the algorithms always have the same
weight values. Initialize both algorithms with the same
weights. Assume we are given an instance of the linear-
max problem. Use the linear-max algorithm to make a
global prediction with the sub-experts. This prediction is �
such that for all �
� � ����	 � ����	. The environment
will return the correct label �. If the prediction is a mistake
(�
� �) then create a new instance for the linear-threshold
algorithm of the form �� � ��� � ��� . Because of our ear-
lier assumptions on sub-experts, each �� � ���	 ��. Let the
label for this instance be � � �. Input � and � into the
linear-threshold algorithm and update the weights in both
the linear-threshold and linear-max algorithms. Since both
algorithms have the same update function and now have the
same input parameters, both algorithms will make the same
weight updates. Repeat this procedure for each trial. Using
a simple inductive argument, both algorithms will always
have the same weights.

Now we will show that every time the linear-max algorithm
makes a mistake then the linear-threshold makes a mistake.
This can be seen by looking at the prediction procedure of
the linear-max algorithm. A mistake can only occur in the
linear-max algorithm if the vote for the correct label is less
than or equal to the vote for the predicted label. This means
that
��

��� ���
�
� �
��

��� ���
�
� � �. This can be rewritten

as
��

��� ����
�
� ���� 	 � �
 Because the linear-threshold al-

gorithm uses the same weights, the instance �� � ��� � ���
causes the linear-threshold algorithm to predict ��. Since
we have constructed the instance such that the correct la-
bel for the linear-threshold algorithm is � � �, this causes
a mistake. Therefore the number of mistakes made by the
linear-max algorithm is upper-bounded by the number of
mistakes made by the linear-threshold algorithm. Using
this upper-bound, we can apply any mistake bound from
a linear-threshold algorithm to its related linear-max algo-
rithm.

Of course, the linear-max algorithm only has a good bound
if the the linear-threshold algorithm has a good bound. In
order to get a good bound, the instances sent to the linear-
threshold algorithm need to satisfy certain algorithm and
proof dependent assumptions. For example, if the attribute
�� needs to have a certain distribution, we would need
��� ��� to also have this distribution. This makes it difficult
to use the linear-max transformation for many Bayesian al-
gorithms that make distributional assumptions. Fortunately
many algorithms have bounds that only depend on the ex-
istence of target weights that perfectly classify the data.

Assume there exists a set of target weights that perfectly
classify the sub-experts. These same weights must per-
fectly classify any instance passed to the linear-threshold
algorithm since every instance is of the form ��� � ��	
with label �. These instances will always predict � since��

��� ���
�
� must return the highest vote. Using these

weights for the linear-threshold algorithm will give the
mistake-bound. While this perfect classification assump-
tion may seem overly strong, the proof technique can be
modified to allow noisy instances (Littlestone, 1989; Little-
stone, 1991). Most of these modifications will carry over
to the sub-expert setting, however to simplify our presenta-
tion, any bounds we give in the rest of the paper refer to the
no-noise framework.

4. Specific Linear-max Algorithms

In this section, we give some transformations of linear-
threshold algorithms into linear-max algorithms. This is
done by replacing the generic update function � from
Section 3 with a specific update function from a linear-
threshold algorithm. We also include some relevant details
for the various algorithms such as mistake bounds.

4.1. Perceptron Algorithm

This is the multi-class version of the classic Perceptron al-
gorithm (Rosenblatt, 1962). It fits directly into the linear-
threshold framework of the linear-max transformation.

Initialization
� � ��	

 	 � �� �� �.

Trials
Instance: Sub-experts ���	

 	��	 where �� � ��.
Prediction: Let ����	 �

��
��� ���

�
�

Predict a class � such that for all �
� �
����	 � ����	.

Update: Let � be the correct label. If ����	 � ����	
� � ��	

 	 � �� �� �� � ���� � ��� 	.

The bounds for the linear-max Perceptron algorithm de-
pend on certain problem dependent parameters. These are
the same parameters that are used for the linear-threshold

algorithm, but the values of the parameters come from the
linear-max problem. Let � �
�trials ���

� � �
�	��. Let

� be a weight vector that correctly classifies all instances.
Let Æ � ��trials ���� ��������	� ����			; this is a mar-
gin value where no instance occur. With these parameters,
the number of mistakes is less than or equal to ��������Æ

�

(Duda & Hart, 1973).

4.2. Romma Algorithm

This is the multi-class version of the Romma algorithm (Li
& Long, 2000). Again it is a fairly straightforward to trans-
form Romma to the the linear-max setting.

Initialization
� � ��	

 	 � �� �� �.

Trials
Instance: Sub-experts ���	

 	��	 where �� � ��	 ���

Prediction: Let ����	 �
��

��� ���
�
�

Predict a class � such that for all �
� �
����	 � ����	.

Update: Let � be the correct label. If ����	 � ����	
Let �� �� ��� � ��� .

Let � ��
����

�
����

�
����

����
�
����

�
�������

,

Let � ��
����

�
�������

����
�
����

�
�������

If first update then
� � ��	

 	 � �� �� �������.

Else
� � ��	

 	 � �� �� ��� � ���.

The bounds found in Li and Long (2000) for Romma are
the same as the bounds given above for the Perceptron al-
gorithm.

4.3. Normalized Winnow Algorithm

This is the multi-class version of the normalized Win-
now algorithm that learns linear threshold functions (Lit-
tlestone, 1989). This algorithm is similar to the multi-class
Winnow algorithm in Blum (1995). The main difference is
that it allows expert predictions to be real numbers.

Initialization
� � ��	

 	 � �� �� �.

Trials
Instance: Sub-experts ���	

 	��	 where �� � ��	 ���

Prediction: Let ����	 �
��

��� ���
�
�

Predict a class � such that for all �
� �
����	 � ����	.

Update: Let � be the correct label. If ����	 � ����	

� � ��	

 	 � �� �� �
���
�� ��.

Again the bounds for the linear-max Winnow algorithm de-
pend on certain problem dependent parameters. Let � be a

weight vector that correctly classifies all instances. Let Æ �
��trials ���� ��������	� ����			 and � � �� � Æ	����.
The number of mistakes is less than or equal to ���	�Æ �

(Littlestone, 1989). Mesterharm (2000) has a specific anal-
ysis that derives the same mistake bound for this linear-max
algorithm.

4.4. Other Linear-max Algorithms

Of course, these are not the only linear-threshold algo-
rithms that can be transformed into linear-max algorithms.
For example, Quasi-additive algorithms are a recent and
relatively unexplored class of linear-threshold learning al-
gorithms (Grove et al., 1997) that include an uncount-
ably infinite number of algorithms including Perceptron
and normalized Winnow. The linear-max setting is suffi-
ciently flexible to include all the Quasi-additive algorithms
and more. In this paper, we only talk about Perceptron,
Romma, and Winnow since these are popular efficient al-
gorithms that have performed well in practice.

We can also change the linear-max definition to allow more
updates. If there are � classes, consider the � � � in-
stances mentioned in Section 2.4. These instances can be
used for updates. This is suggested in (Har-Peled et al.,
2003) for on-line learning of the attribute based problem.
We can even go further and repeatedly cycle through these
instances until all are correctly classified. While these tech-
niques should improve performance for problems without
noise, it could lead to problems when noise becomes ex-
cessive.

Another variation is to use nonconservative algorithms. A
nonconservative linear-threshold algorithm makes updates
on some instances even though the algorithm has not made
a prediction mistake on the instance. These more aggres-
sive updates will not improve performance against an ad-
versary, but often improve performance in practice (Block,
1962; Li & Long, 2000). If the linear-threshold algorithm
is nonconservative, we can make the linear-max algorithm
nonconservative by passing some of the correctly classified
instances mentioned above.

Last, we can use these instances with a Support Vector Ma-
chines (SVM) (Cortes & Vapnik, 1995). These instances
encode the information about the correct sub-expert pre-
dictions. After � trials there will be a total of � �� � �	
instances, and we can pass all these instances to the SVM
to learn weights for the sub-experts. We can then use the
weights or the support vectors to make predictions in the
linear-max setting. This allows us to use a SVM to com-
bine multi-class hypotheses. It may also be possible to use
a SVM with a kernel function or even a wider range of
learning algorithms to expand beyond simple linear com-
binations of sub-experts, but one needs to be careful about
the effects of nonlinearity.

5. Experiments

In this section, we give experiments to show that multi-
class algorithms give good performance, and that the var-
ious versions, that correspond to different linear-threshold
algorithms, give different and non-dominating results on
realistic problems. We perform experiments with normal-
ized Winnow, Perceptron, and Romma. For all these algo-
rithms, we include a set of experts described in the problem
and a set of threshold experts. For a � class problem there
are � threshold experts with each expert always predicting
1 for its respective class.

The problems we look at are often sparse in the number of
experts active on a given trial and in the number of non-zero
predictions made by an active expert. An expert is active
if at least one of it’s label predictions is non-zero. Let �
be the number active experts in an instance. Let � be the
maximum number of label predictions that are non-zero in
any expert. All three algorithms use ����	 time to predict
and update on a trial.

These predictions and updates are fairly straightforward to
implement using a sparse representation for the instances.
An instance is internally represented by a list of active ex-
perts. Furthermore, for each active expert, the algorithm
keeps a list of the labels that have non-zero predictions
and their value. This representation allows an efficient im-
plementation of any linear-max algorithm that is based on
a linear-threshold algorithm that can perform predictions
and updates in ���	 time where � is the number of active
real-valued attributes. Most algorithms, including Percep-
tron and normalized Winnow, are already in this form, and
many other algorithms can be modified to get ���	 up-
dates. For example, even though the update function of
the linear-threshold Romma depends on the norm of the to-
tal number of attributes, we store extra information to allow
���	 updates. Using these efficient algorithms, the running
time for all of the following experiments combined is a few
minutes on a 700 MHz machine.

5.1. Artificial Data

Our first experiments deal with artificial data. Let be the
total number of experts where � of these experts are rele-
vant. For each trial, every relevant expert randomly picks a
class from � classes. The expert predicts 1 for the selected
class and 0 for the other classes. The class that is selected
most often, from the relevant experts, is the class of the in-
stance. We place an order on the relevant experts to handle
ties. If there is a tie in the voting for a class, the instance
is labeled according to the prediction of the lowest expert
that is involved in the tie. The � � irrelevant experts are
active with probability �. If an irrelevant expert is active it
randomly picks a class and predicts 1 for that class and 0
for the remaining classes. In the rest of the paper, we will

0

200

400

600

800

1000

1200

1400

1600

1800

0 25000 50000 75000 100000

M
is

ta
ke

s

Trials

Win-1.14
Per

Romma

0

200

400

600

800

1000

1200

1400

1600

1800

0 25000 50000 75000 100000

M
is

ta
ke

s
Trials

Win-1.05
Per

Romma

0

200

400

600

800

1000

1200

1400

1600

1800

0 25000 50000 75000 100000

M
is

ta
ke

s

Trials

Win-1.01
Per

Romma

Figure 1. All graphs are for the artificial data concept. The first graph has 5 relevant out of 300 total experts, 3 classes and .5 irrelevant
expert probability. The second graph has 10 relevant out of 100 experts, 5 classes and .05 irrelevant expert probability. The third graph
has 2 relevant out of 100 experts, 20 classes and .001 irrelevant expert probability. The multiplier use by Winnow is included in the key.

refer to this as the majority learning problem.

Our primary purpose for the artificial data experiments is to
clearly show that none of the three algorithms dominates.
In figure 1, we show three graphs with a different algo-
rithm giving the best result in each graph. For Winnow, we
picked the multiplier parameter that gives the best perfor-
mance. This multiplier is given in the graph key after the
name Win. The graphs give the number of mistakes on the
y-axis and the the number of trials on the x-axis. The slope
of the graph corresponds to the error rate of the algorithm.
Each experiment was run for 100,000 trials, and was aver-
aged over 20 runs. We give confidence intervals at three
points along the curve using a distribution.

The first graph shows normalized Winnow performing best.
The majority problem is described by � � �, � ���,
� � �, and � �
�. It is fairly easy to get normalized Win-
now to perform best by using a small number of relevant
experts with a large number of irrelevant experts. To fur-
ther separate the algorithms, we made the instances dense
with a large value of �. This will force poor performance
by Perceptron and Romma since their bounds depend on
the 2-norm of the instance.

The second graph is for Romma. The majority problem is
described by � � ��, � ���, � � �, and � �
��. This
problem avoids the region where Winnow dominates.

The last graph shows Perceptron performing the best. The
majority problem is described by � � �, � ���, � � ��,
and � �
���. We had some difficulty in getting Percep-
tron to perform best. Perceptron and Romma have similar
bounds and, for the majority problem, Romma often out
performs Perceptron. Eventually, we were able to get better
performance with a sparse problem that has a large number
of classes and only a few relevant experts.

5.2. Calendar Data

Our second set of experiments deals with the Calendar Ap-
prentice problem (Mitchell et al., 1994). In this problem,
the goal of the algorithm is to predict information about a
meeting that is entered into a calendar application. There
are a total of 34 text features used to describe a calendar
event. The algorithm predicts the day, duration, location,
and start-time of a meeting. When predicting a particular
label we include the other labels as features in the instance.
The dataset is divided into two users. In this paper, we re-
port results for user two with a total of 553 instances.

Our reason for running the Calendar problem is to see if
Perceptron or Romma can improve the performance on any
of the label prediction tasks. Blum (1995) used a multi-
class version of normalized Winnow to show a performance
improvement over C4.5 on these problems. Since our algo-
rithm is essentially the same, we did not expect to see much
difference in the results of the Winnow algorithm. How-
ever, while the Winnow results for user one was similar to
those reported in Blum (1995)1, we did get different results
for user two. We assume the discrepancy can be attributed
to differences in feature selection.

We follow the technique of Blum (1995) to create sub-
experts for the calendar problem. For every trial, we look
at all pairs of features and create an sub-expert that predicts
based on the past occurrences of the feature pair. The sub-
expert predicts 1 for the label that occurred most frequently
over the last five times the feature pair appeared in an in-
stance. In the case of ties, we split the vote evenly across
the labels that tied on the prediction. The first time a feature
pair appears the sub-expert does not make a prediction.

1For user one on the Calendar problem, Winnow performed
better than Perceptron and Romma for all four tasks.

Table 1. Accuracy of algorithms on 553 data points from calendar domain. The number after Win is the multiplier used for Winnow.

PROBLEM COMBINED PERCEPTRON ROMMA WIN-1.5 WIN-2 WIN-3 WIN-5 WIN-10

DAY 0.468 0.468 0.427 0.407 0.400 0.382 0.382 0.380
DURATION 0.749 0.676 0.644 0.741 0.749 0.741 0.747 0.729
LOCATION 0.700 0.575 0.552 0.698 0.703 0.696 0.682 0.680
START 0.711 0.600 0.557 0.640 0.662 0.673 0.700 0.716

AVERAGE 0.657 0.580 0.545 0.622 0.628 0.623 0.627 0.626

The Calendar problem does present some difficulties for
the formal linear-max setting. At the start of the algorithm,
we do not know the number of classes, and we do not know
the number of experts. There is not enough space to go into
detail, but it is straightforward to add new classes and ex-
perts as they appear. We also need to deal with experts that
do not predict every trial. This is not a problem because
experts who predict zero for all labels do not effect the pre-
diction and do not get updated. For computational speedup,
we just ignore these instances in the sparse instance repre-
sentation.

Table 1 gives the accuracy of the various algorithms on the
four tasks. We include several versions of Winnow that
correspond to different � multiplier parameters. As can
be seen in the table, Perceptron gives better performance
on the day prediction task. In addition, we also find that
choosing a large multiplier can improve normalized Win-
now’s performance on the start task.

Given that different algorithms perform well on different
tasks, we need a way to combine the performance of the al-
gorithms. The entry called Combined in Table 1 gives the
accuracy of the Weighted Majority algorithm (WMA) (Lit-
tlestone & Warmuth, 1994) when combining the results of
all the other algorithms. WMA keeps a weight for each ba-
sic algorithms and predicts according to the weighted sum
of the basic algorithm predictions. Each basic algorithm
predicts one of the labels and every time a basic algorithm
predicts incorrectly, its weight is divided by a multiplier.
We looked at a few multiplier values, and while they all
were similar, 1.5 gave slightly better performance.

The average performance of the combined WMA is a few
percentage points better than the best results for user two
given in Blum (1995). However, we did perform slightly
worse on the day and location problems. We assume this is
due to a difference in representation. However, the point of
our experiments is not to give the best performance possi-
ble. Instead, we want to show, for a realistic problem, that
non-Winnow linear-max algorithms can give good perfor-
mance. We could most likely get better performance by
either combining the algorithms in Blum (1995) with our
own using WMA or further exploring the features that lead

to the differences in performance.

While WMA is similar to the multi-class techniques we
describe in this paper, it has a few important differences.
First, it always updates. It does not matter if the global pre-
diction of WMA is correct, the weights are still updated.
Second, the update only depends on whether the basic algo-
rithm makes the wrong prediction. The update does not de-
pend on the difference between the correct label and the al-
gorithm’s predicted label. These differences are important.
For this second layer of learning, we just want to quickly
find which algorithm is making the least mistakes and pre-
dict with that basic algorithm. Using the algorithms pre-
sented in this paper, we will eventually find the better per-
forming basic algorithm, however since these multi-class
algorithms do not update as aggressively as WMA, they
will make more mistakes in this process. If there is no good
combination of experts to learn, it is better to use WMA. As
can be seen, in Table 1, WMA often performs as well the
best from the group of algorithms. At worst it makes a few
extra mistakes. When no basic algorithm dominates all the
problems, this allows WMA to give a performance average
that exceeds all the basic algorithms.

6. Conclusion

In this paper, we have given a general transformation to
convert a linear-threshold learning algorithm into multi-
class linear-max learning algorithm. The benefit of this
transformation is that it allows the learning of multi-class
functions while preserving the theoretical properties of var-
ious linear-threshold algorithms.

Linear-max algorithms learn target functions that are com-
posed of sub-experts that make predictions on all classes.
They are a natural choice for combining the predictions of
different hypotheses such as those generated by different
learning algorithms. However, for some problems, it may
be difficult to come up with a large set of sub-experts. In
the future, we want to come up with standard way to gen-
erate useful sub-experts for different types of problems.

Experiments in this paper show that a range of linear-max
algorithms are useful in practice. Experiments with Per-

ceptron, Romma, and Winnow show that no single algo-
rithm dominates. In the future, we want to look at ways
to effectively combines the performance of these different
types of algorithms. As a preliminary investigation in this
paper, we looked at combining several basic multi-class al-
gorithms with WMA. The basic algorithms we combined
included several versions of Winnow with different mul-
tiplier parameters, but there are other possibilities for pa-
rameters selection. Romma includes a parameter to make
more aggressive updates on correctly classified instances
(Li & Long, 2000). In fact, all linear-threshold algorithms
could benefit from this type of aggressive updating. The
key problem is how to properly set the parameter. In the
future, we want to look at ways to effectively search an
infinite parameter space to get good performance. As can
be seen with the Calendar experiments, parameter choice
can effect performance on practical problems for these al-
gorithms.

Acknowledgments

We thank Haym Hirsh and Nick Littlestone for stimulating
this work. and Haym Hirsh for reading over the paper and
providing valuable comments and corrections.

References

Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reduc-
ing multiclass to binary: A unifying approach for margin
classifiers. 17th International Conference on Machine
Learning (pp. 9–16). Morgan Kaufmann.

Block, H. D. (1962). The perceptron: A model for brain
functioning. Reviews of Modern Physics, 34, 123–135.

Blum, A. (1995). Empirical support for winnow and
weighted-majority algorithms: Results on a calendar
scheduling domain. Proceeding of the Twelfth Interna-
tional Conference on Machine Learning (pp. 64–72).

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold,
D. P., Schapire, R. E., & Warmuth, M. K. (1997). How to
use expert advice. Journal of the Association for Com-
puting Machinery, 44, 427–485.

Cortes, C., & Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20, 273–297.

Crammer, K., & Singer, Y. (2001). Ultraconservative on-
line algorithms for multiclass problems. 14th Annual
Conference on Computational Learning Theory (pp. 99–
115). Springer, Berlin.

Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass
learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research, 2, 263–286.

Duda, R. O., & Hart, P. (1973). Pattern classification and
scene analysis. New York: Wiley.

Grove, A. J., Littlestone, N., & Schuurmans, D. (1997).
General convergence results for linear discriminant up-
dates. Proceedings of the Tenth Annual Conference on
Computational Learning Theory (pp. 171–183).

Har-Peled, S., Roth, D., & Zimak, D. (2003). Constraint
classification for multiclass classification and ranking.
Neural Information Processing Systems 15. MIT Press.

Li, Y., & Long, P. (2000). The relaxed online maximum
margin algorithm. Neural Information Processing Sys-
tems Twelve (pp. 498–504). MIT Press.

Littlestone, N. (1989). Mistake bounds and linear-
threshold learning algorithms. Doctoral dissertation,
Computer Science, University of California, Santa Cruz.
Technical Report UCSC-CRL-89-11.

Littlestone, N. (1991). Redundant noisy attributes, attribute
errors, and linear-threshold learning using winnow. Pro-
ceedings of the Third Annual Conference on Computa-
tional Learning Theory (pp. 147–156).

Littlestone, N., & Warmuth, M. K. (1994). The weighted
majority algorithm. Information and Computation, 108,
212–261.

Mesterharm, C. (2000). A multi-class linear learning algo-
rithm related to winnow. Neural Information Processing
Systems Twelve (pp. 519–525). MIT Press.

Mesterharm, C. (2001). Transforming linear-threshold
learning algorithms into multi-class linear learning al-
gorithms (Technical Report dcs-tr-460). Rutgers Univer-
sity.

Mitchell, T., Caruana, R., Freitag, D., McDermott, J., &
Zabowski, D. (1994). Experience with a personal learn-
ing assistant. Communications of the ACM, 37, 81–91.

Nilsson, N. J. (1965). Learning machines: Foundations of
trainable pattern-classifying systems. New York, NY:
McGraw-Hill.

Rosenblatt, F. (1962). Principles of neurodynamics: Per-
ceptrons and the theory of brain mechanisms. Washing-
ton, DC: Spartan Books.

