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Abstract

Committees of classifiers with learning capa-
bilities have good performance in a variety of
domains. We focus on committees of agents
with learning capabilities where no agent is
omniscient but has a local, limited, individ-
ual view of data. In this framework, a major
issue is how to integrate the individual re-
sults in an overall result—usually a voting
mechanism is used. We propose a setting
where agents can express a symbolic justi-
fication of their individual results. Justifica-
tions can then be examined by other agents
and accepted or found wanting. We propose
a specific interaction protocol that supports
revision of justifications created by different
agents. Finally, the opinions of individual
agents are aggregated into a global outcome
using a weighted voting scheme.

1. Introduction

Lazy learning can provide multiagent systems with
the capability to autonomously learn from experience.
We present a framework where agents that use lazy
learning can collaborate in order to solve classifica-
tion tasks. All the agents in our systems are able to
solve the problems individually, but the incentive for
collaboration is to improve the classification accuracy.
The main topic here is how to aggregate the predic-
tions coming from different agents into a global predic-
tion. We propose a multiagent collaboration scheme
called the Justification Endorsed Collaboration policy
in which the agents provide a symbolic justification
of their individual results. These justifications can be
then examined by other agents in the system to as-
sess a measure of confidence on each individual result.
The individual results are finally aggregated by means

of a weighted voting scheme that uses these computed
confidence measures as weights.

A strongly related area is the field of multiple model
learning (also known as multiclassifier systems, en-
semble learning, or committees of classifiers). A gen-
eral result in multiple model learning (Hansen & Sala-
mon, 1990) proved that combining the results of mul-
tiple classifiers gives better results than having a sin-
gle classifier. Specifically, when the individual classi-
fiers make uncorrelated errors, and have an error rate
lower than 0.5, the combined error rate must be lower
than the one made by the best of the individual classi-
fiers. The BEM (Basic Ensemble Method) is presented
in (Perrone & Cooper, 1993) as a basic way to com-
bine continuous estimators by taking the average of
all the predictions. Since then, many methods have
been proposed: Cascade Generalization (Gama, 1998),
where the classifiers are combined in a sequential way;
or Bagging (Breiman, 1996) and Boosting (Freund &
Schapire, 1996), where the classifiers are combined in
parallel, are good examples.

The main difference of our approach is that ensem-
ble methods such as Bagging or Boosting are central-
ized methods, that have control over the entire train-
ing set, and that they artificially create different clas-
sifiers with the only goal of improving classification
accuracy. In our approach, we assume that we have
several individual agents, and that each one has col-
lected experience on its own. Therefore, we don’t have
any control over the contents of the individual agents’
training sets. Moreover, the agents will keep private
their individual data, so no agent can have access to
the internal experience of the other agents. In Bag-
ging, for instance, each individual classifier is created
starting from a sample of cases of the original train-
ing set, but with repetitions, i.e. there is overlapping
among the training sets of the individual classifiers,
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and it is this that enables Bagging to improve the ac-
curacy over a single classifier. However, in our system,
the agents do not know if there is some overlapping
among the training sets of the individual agents or
not. Therefore, the collaboration method to be used
has to be strong enough to work with or without over-
lapping, and whatever the individual training sets are.
In the experiments section, we present experimental
results showing that our method works well in differ-
ent scenarios, while standard voting fails in some of
them.

The structure of the article is as follows: Section 2
succinctly defines the multiagent systems with which
we work. Then, Section 3 defines the learning method
that the individual agents use in our system to solve
the classification problems and to build the sym-
bolic justifications. Section 4 presents the justification
mechanism used by the agents in order to aggregate
the individual predictions, and finally Section 5 shows
an experimental evaluation of the justification method.
The paper closes with the conclusions section.

2. Multiagent Case-Based Learning

Each agent in our systems use case based reasoning
(CBR) in order to solve classification tasks, and each
individual agent owns a private case base. There-
fore, a multiagent system is a collection of pairs:
{Ai, Ci}i=1...n, where Ci is the local case base of agent
Ai and n is the number of agents. As we have said,
each agent is able to completely solve a problem by its
own, but it will collaborate with other agents if this
can improve the classification accuracy.

In previous work, we presented the committee collabo-
ration policy (Ontañón & Plaza, 2001) for multiagent
systems. When solving a problem using this strategy,
each agent can vote for one or more solution classes
and the final solution is the most voted solution. Using
this method, the agents were able to obtain higher clas-
sification accuracies than working individually. The
committee collaboration policy uses a variation of Ap-
proval Voting called Bounded Weighted Approval vot-

ing.

3. Lazy Induction of Descriptions

In this section we describe LID(Armengol & Plaza,
2001), the CBR method used by the agents in our
experiments. LID is a CBR method that can pro-
vide a symbolic justification of why it has classified a
given problem in a specific solution class. We will first
present the representation of the cases in LID, then the
heuristic measure used for guiding search, and finally

the main steps of LID.

LID uses the feature term formalism for representing
cases. Feature Terms (ψ-terms ) are a generalization
of the first order terms. The main difference is that in
first order terms (e.g. person(barbara, john, dianne))
the parameters of the terms are identified by posi-
tion, and in a feature term the parameters (called fea-

tures) are identified by name (e.g. person[name
.
=

barbara, father
.
= john,mother

.
= dianne] ). An-

other difference is that feature terms have a sort, for
instance, the previous example belongs to the sort per-

son. These sorts can have subsorts (e.g. man and
woman are subsorts of person ). Feature terms have
an informational order relation (v) among them called
subsumption, where ψ v ψ′ means all the information
contained in ψ is also contained in ψ′ (we say that
ψ subsumes ψ′). The minimal element is ⊥ and is
called any, that represents the minimum information.
All the feature terms of other sorts are subsumed by
any. When a feature term has no features (or all of
its features are equal to ⊥) it is called a leaf. A path

ρ(ψ, fi) is defined as a sequence of features going from
the term ψ to the feature fi.

Figure 1 shows a graphical representation of a feature
term. Each box in the figure represents a node. On
the top of the boxes the sort of the nodes is shown,
and on the lower part, all the features that have a
value different than any are shown. The arrows mean
that the feature on the left part of the arrow takes
the node on the right as value. In Figure 1 the two
nodes labelled with No and the Tylostyle node are leaf
nodes. The path from the root to the Tylostyle node in
the example is Spiculate-Skeleton.Megascleres.Smooth-

form.

LID only considers the leaf features of the terms and
uses a heuristic measure to decide which are the most
discriminatory leaf features contained in a problem de-
scription. The heuristic used is the minimization of the
RLM distance (López de Mántaras, 1991). The RLM
distance assesses how similar are two partitions over a
set of cases (less distance, more similarity). Given a
feature f , its possible values induce a partition Πf over
the set of cases. Therefore, we can measure the dis-
tance between the correct partition Πc (given by the
solution classes) and the partition induced by a fea-
ture. We say that a feature f is more discriminatory

than the feature f ′ if RLM(Πf ,Πc) < RLM(Πf ′ ,Πc).
In other words, a more discriminatory feature classifies
the cases in a more similar way to the correct classifi-
cation of cases.

LID uses a top-down heuristic strategy to build a sym-
bolic description D for a problem P . The partial de-



Figure 1. Example of symbolic justification returned by
LID in the marine sponge classification problem.

scription D satisfies the following three conditions: D
subsumes P , D contains the most discriminatory fea-
tures of P and D subsumes a subset of the case base:
SD (called the discriminatory set). We can consider D
as a similitude term, i.e. a symbolic description of sim-
ilarities between a problem P and the retrieved cases
SD.

The main steps of LID are shown in Figure 2. LID ini-
tially receives these parameters: SD0

is the case base
Ci of the agent, the problem P to solve, an initially
empty similitude term D0 = ⊥, and the set of solu-
tion classes K. The goal of LID is to find the right
solution class for the problem P . LID works as fol-
lows: the first step is to check the stopping-condition,
that tests whether all the cases in SDi

belong to the
same solution class or not. If this stopping condition is
not satisfied, LID selects one of the features (the most
discriminant feature according to the RLM distance)
of the problem P and adds it to the current simili-
tude term Di (specializing it with the value found in
P ) to construct the new similitude term Di+1. Next,
LID is recursively called using the new similitude term
Di+1 and a new discriminatory set SDi+1

containing
only those cases in SDi

subsumed by Di+1. This pro-
cess continues until the similitude term Di is specific
enough to be able to satisfy the stopping condition or
until there are no more possible features to add to Di.

The output of LID for a problem P is the tuple
〈SD,D,KD〉, where KD is the predicted solution class
(or solution classes if LID has not been able to se-
lect a single solution class), i.e. KD = {Sk| ∃x ∈
SD∧solution(x) = Sk}. As the similitude term D con-
tains the common information between the retrieved
cases (discriminatory set) and the problem P (the rel-
evant information that LID has used to classify the
problem into the predicted solution class), D will be
used as the symbolic justification for having classified
the problem P in the class (or classes) KD.

Function LID (SDi
, P,Di,K)

if stopping-condition(SDi
)

then return (SDi
,Di, KDi

)
else fd := Select-leaf (P,SDi

)
Di+1 := Add-path(ρ(P, fd),Di)
SDi+1

:= {x ∈ SDi
| Di+1 v x}

LID (SDi+1
, P,Di+1,K)

end-if
end-function

Figure 2. The LID algorithm. Di is the similitude term,
SDi

is the discriminatory set of Di, K is the set of solution
classes. Select-leaf uses the RLM distance to select the
most discriminatory feature.

Example: Let us illustrate the LID method with
an example. Imagine that we have a case base of
252 cases of the marine sponge identification problem.
Each sponge can belong to one of three classes: As-

trophorida, Hadromerida or Axinellida and we have
a problem P to solve. Let’s call the initial simili-
tude term D0 = ⊥. The first discriminatory set SD0

will contain the entire case base of 252 cases (95 As-

trophorida cases, 117 Hadromerida cases and 68 Ax-

inellida cases).

The first leaf feature selected by LID as the most
discriminatory feature according to the RLM dis-
tance is the feature identified by the path “External-

features.Gemmules”. This path has the value
“No” in the problem P , so the path “External-

features.Gemmules” with the value “No” is added
to the similitude term D0 to build the new simili-
tude term D1 as we see in Figure 1 (that shows the
similitude term returned by LID at the end of ex-
ecution). The new discriminatory set SD1

contains
now only those cases subsumed by D1 (i.e. all those
cases from SD0

having the value “No” in the fea-
ture “External-features.Gemmules”): 16 Astrophorida

cases, 35 Hadromerida cases and 8 Axinellida cases.

The next path selected by LID is “Spiculate-

skeleton.Megascleres.Smooth-form” which has the
value Tylostyle in the problem P , so this path with
this value is added to the similitude term D1 to build
the new similitude term D2. The new discriminatory
set SD2

contains now only 5 Astrophorida cases and 25
Hadromerida cases.

LID now selects the path “Spiculate-skeleton.Uniform-

length” with value “No”, which is also added to D2 to
build the new similitude term D3. The new discrimina-
tory set SD3

now contains only 25 Hadromerida cases.

Finally, the stopping condition is met because the dis-
criminatory set SD3

contains cases with only one so-



lution class. Therefore, LID will return the similitude
term D3, the discriminatory set SD3

and the solution
class KD = {Hadromerida}. The similitude term can
be interpreted as a justification for having classified
the problem P into the class Hadromerida, i.e. “The
problem P belongs to the class Hadromerida because it
has no Gemmules, the spiculate skeleton does not have
a uniform length and the megascleres (in the spiculate

skeleton) have a tylostyle smooth form”. The discrim-
inatory set returned by LID is the set of cases that
endorse the justification.

4. Collaborative Learning

In the committee collaboration policy mentioned in
Section 2, the agents aggregated all the solutions ob-
tained individually through a voting process. However,
this is not always the best way to aggregate the infor-
mation. In this section we present a new collaboration
policy (the Justification Endorsed Collaboration (JEC)
policy) in which each agent can give a symbolic jus-
tification of its individual solution. In this way, the
solutions that are not endorsed by good justification
will not have the same strength in the voting process
as the solutions that are well endorsed.

To create a justification of the individual solution for a
problem P , an agent solves P individually using LID.
The answer of LID is a tuple 〈SD ,D,KD〉. The sym-
bolic similitude term D is used as the justification for
the answer. Specifically, the agent builds a justified

endorsement record:

Definition: A justified endorsement record (JER) J

is a tuple 〈S,D, P, A〉, where S is the solution class for
problem P , D is the similitude term given by LID i.e.
the symbolic justification of the classification of P in
S, and A is the agent creator of the record.

We will use the dot notation to denote an element in
the tuple (i.e. J.D is the similitude term D in J).

Each JER contains the justification that endorses one
solution class as the possible correct solution for a
problem P . When the output of LID contains more
than one possible solution class several JERs are built.
We will denote by JAj

(P ) the set of JERs built by Aj

for a problem P . An agent will generate as many JERs
as solution classes contained in the set KD given by
LID. As we will see later, these JERs are sent to the
other agents in the system for examination. When an
agent receives a JER to examine, the justification con-
tained in the JER is contrasted against the local case
base. To examine a justification J, an agent obtains
the set of cases contained in its local case base that

are subsumed by J.D. The more of these cases that
belong to the same solution class J.S predicted by J,
the more positive the examination will be. All the in-
formation obtained during the examination process of
a JER by an agent is stored in an examination record:

Definition: An examination record (XER) X is a

tuple 〈J, Y
Aj

J
, N

Aj

J
, Aj〉, where J is a JER, Y

Aj

J
=

|{x ∈ Cj | J.D v x ∧ J.S = solution(x)}| is the num-
ber of cases in the agent’s case base subsumed by the
justification J.D that belong to the solution class J.S

proposed by J, N
Aj

J
= |{x ∈ Cj | J.D v x ∧ J.S 6=

solution(x)}| is the number of cases in the agent’s case
base subsumed by justification J.D that do not belong
to that solution class, and A is the agent that has cre-
ated the examination record.

As we will see, those examination records are used to
create a confidence measure about each individual so-
lution. Then, using these confidence measures, the
individual solutions are aggregated to obtain the fi-
nal prediction. In the next section, the JEC policy is
explained in detail.

4.1. Justification Endorsed Collaboration

Policy

When an agent Ai wants to solve a problem P us-
ing the justification endorsed collaboration policy, the
procedure followed consists of:

1. Ai (called the convener agent) broadcasts problem
P to all agents in the multiagent system,

2. each agent Aj in the system solves the problem P
and builds a set of the JERs using LID: JAj

(P ),

3. each agent Aj broadcasts its justified endorsement
records JAj

(P ) to all agent members of the sys-
tem,

4. every agent Aj of the system now has a col-
lection of justified endorsement records J(P ) =⋃

a=1...n JAa
(P ) (notice that all the JERs built

by every agent are contained in J(P ) including
their own JERs);

(a) for each JER J ∈ J(P ) (including their own)
agent Aj examines the justification J.D of
the JER against her case base,

(b) after contrasting the justification against the
local case base, Aj builds a XER XJ =

〈J, Y
Aj

J
, N

Aj

J
, Aj〉 for each JER,

(c) every agent Aj sends the examination record

built for each justification to the convener
agent Ai,



5. the convener agent Ai now has the set X(P ) con-
taining all the examination records for each JER
sent by all other agents as result of examining the
justifications of the member agents against each
individual case base (including all the ones by Ai

itself);

(a) for each justification J a confidence estimate
is computed from the relevant examination
records {X ∈ X(P )| X.J = J}. The confi-
dence estimate C(J) is computed as the ratio
between the sum of the positive cases and the
sum of positive and negative cases recorded
in the examination records for that justifica-
tion:

C(J) =

∑
a=1...n Y

Aa

J∑
a=1...n Y

Aa

J
+NAa

J

(b) agent Ai can now perform a weighted vot-
ing scheme on the solution classes. For each
solution class Sk, agent Ai collects all justifi-
cations for that class and adds the confidence
estimates: C(Sk) =

∑
J∈{J(P )|J.S=Sk}

C(J),

(c) the solution selected is the one with greatest
confidence S(P ) = argmaxk=1...K(C(Sk)).

Of course, we could give a normalized class confidence
by computing the ratio between the sum of positive
cases and the sum of positive and negative cases of all
relevant examination records, but we are only inter-
ested in the partial order that tells us which solution
is the one with greatest confidence.

Notice that the examination process of the JERs is
not sensitive to the distribution of cases among the
agents. In other words, given a JER J, the confi-
dence measure C(J) that the convener agent computes
will not change if we completely redistribute the cases
among the agents. C(J) also remains unchanged if we
change the number of agents. A demonstration can be
found in (Ontañón & Plaza, 2003). This ensures that
the confidence measures computed are robust and that
they are always computed taking advantage of all the
available information in the system. However, the con-
fidence estimated depend on the degree of redundancy
—i.e. if we duplicate a case in the system, the confi-
dence estimates will vary.

Example: Let us illustrate how the process works
with an example. Imagine a system composed of 3
agents: A1, A2 and A3. The agent A1 wants to solve
the problem P of marine sponge classification (thus,
A1 will play the role of convener agent). First, A1

sends the problem P to A2 and A3. All three agents
try to solve the problem individually using LID.

After solving the problem P using LID, the agent A1

has found that the solution class for the problem P
is Hadromerida and the justification is the one shown
in Figure 1. Therefore, A1 builds a justified endors-
ing record J1 = 〈Hadromerida,D1, P, A1〉, where D1

is the justification shown in Figure 1. Then, J1 is
sent to A2 and A3. Analogously, A2 builds the JER
J2 = 〈Axinellida,D2, P, A2〉 and A3 builds the JER
J3 = 〈Hadromerida,D3, P, A3〉, and sends them to
the other agents (notice that each agent could gener-
ate more than one JER if Di covers cases in more than
one solution class).

At this point, each agent (A1, A2 and A3) has the
set of JERs J(P ) = {J1,J2,J3}, containing all the
JERs built by all the agents. It’s time to build the
examination records.

For instance, when A2 starts examining the JER J1

coming from the agentA1, all the cases in the case base
of A2 that are subsumed by the justification J1.D are
retrieved: 13 cases, 8 cases belonging the Hadromerida

solution class, and 5 cases belonging to Astrophorida.
That means that A2 knows 5 cases that completely
satisfy the justification given by A1, but that do not
belong to the Hadromerida class. Therefore, the XER
built for the justification J1 is X1 = 〈J1, 8, 5, A2〉.
Then, A2 continues by examinating the next JER, J2

(its own JER), and finds only 3 cases belonging the
Axinellida class. Therefore, A2 builds the following
XER: X2 = 〈J2, 3, 0, A2〉. Finally, A2 also builds the
XER for the JER J3: X3 = 〈J3, 5, 1, A2〉. Those three
XERs are sent to the convener agent A1. In the same
way, A3 also builds its own XERs and sends them to
A1. The convener agent A1 also builds its own XERs
and stores them.

After having received the rest of examination
records: X4 = 〈J1, 7, 0, A3〉, X5 = 〈J2, 2, 5, A3〉,
X6 = 〈J3, 10, 0, A3〉, X7 = 〈J1, 15, 0, A1〉, X8 =
〈J2, 1, 4, A1〉, X9 = 〈J3, 6, 1, A1〉, A1 builds the set
X(P ) = {X1, ...,X9}. Then, A1 computes the con-
fidence measures for each JER. For the JER J1, the
confidence measure will be obtained from the XERs
X1, X4 and X7 (the XERs that refer to J1): C(J1) =
(8+7+15)/(8+5+7+0+15+0) = 0.85. In the same
way, the confidence C(J2) = 0.40 will be computed
from X2, X5 and X8 and the confidence C(J3) = 0.91
from X3, X6 and X9. Notice how the weakest JER
(J2) has obtained the lowest confidence, while stronger
justifications obtain higher confidence values.

Once all the confidence measures of the JERs have



been computed they can be aggregated to obtain the
confidences of the solution classes. For instance, there
are two JERs (J1 and J2) endorsing Hadromerida as
the solution, and one JER (J2) endorsing Axinellida

as the solution. Therefore, the confidence measures
for the solution classes are: C(Hadromerida) = 0.85+
0.91 = 1.76 and C(Axinellida) = 0.40. The selected
solution class is Hadromerida because it is the one with
highest confidence.

5. Experimental Results

In this section we present experimental results show-
ing the benefits of using the JEC policy versus the
standard committee collaboration policy. We use the
marine sponge classification problem as our testbed.
Sponge classification is interesting because the diffi-
culties arise from the morphological plasticity of the
species, and from the incomplete knowledge of many
of their biological and cytological features. Sponges
have a complex structure, making them amenable to
build complex justifications using LID.

In order to compare the performance of the justifica-
tion based approach and the voting approach, we have
designed an experimental suite with a case base of 280
marine sponges pertaining to three different orders of
the Demospongiae class (Astrophorida, Hadromerida

and Axinellida). In an experimental run, training cases
are randomly distributed to the agents. In the testing
phase, problems arrive randomly to one of the agents.
The goal of the agents is to identify the correct bi-
ological order given the description of a new sponge.
We have experimented with 5, 7, 9, 10 and 16 agent
systems using LID as the classification method. The
results presented here are the result of the average of
5 10-fold cross validation runs. For each scenario, the
accuracy of both the JEC policy (justification) and the
committee are presented. The accuracy of the agents
working in isolation is also presented for comparison
purposes. In the individual results, the individual ac-
curacy of the convener agent is considered.

In order to test the generality of the technique, three
different kind of scenarios will be presented: the un-

biased scenarios, the biased scenarios and the redun-

dancy scenarios. In the unbiased scenarios, the train-
ing set will be divided into several disjoint subsets in
a random way, and each subset will be given to each
one of the individual agents. In the biased scenarios,
those subsets will not be randomly generated, and the
agents will have a skewed view of the problem, i.e.
some agents will receive very few (or no) problems of
some classes, and will receive lots of problems of some
other classes. And finally, in the redundancy scenar-

ios, the subsets of the training set will not be disjoint,
i.e. some of the cases will be present in more than one
subset.

5.1. Unbiased Scenarios

In the unbiased scenarios, the training set is divided
into as many subsets as there are agents in the system.
Then, each one of these subsets is given to each one of
the individual agents as the training set. For instance,
in the 5 agent scenario, the training set of each agent
consists of about 50 sponges and in the 16 agent sce-
nario it consists of about 16 sponges. Therefore, in
the scenarios with many agents, as the individual case
bases are smaller, the individual accuracies will also
be lower, leading to a greater incentive to collaborate.

Table 1 shows the classification accuracies obtained
by several groups of agents using the JEC policy and
the committee collaboration policy. The first thing
we notice is that the agents using justifications ob-
tain higher accuracies. This difference is noticeable
in all the scenarios, for instance in the 5 agent sce-
nario, the agents using justifications obtained an ac-
curacy of 88.50% and the agents using the committee
collaboration policy obtained an accuracy of 88.36%.
The difference is not great in systems with few agents,
but as the number of agents increase, the accuracy
of the agents using the committee policy drops. For
instance, in the 16 agents scenario, the accuracy for
the agents using justifications is of 87.28% and the
accuracy for the committee policy is 85.71%. For test-
ing whether this effect prevails when increasing even
more the number of agents, we have performed an ex-
periment with 25 agents (where each agent have only
about 10 cases and the individual accuracy is 58.21%),
and the result is that the agents using justifications
still obtained an accuracy of about 87.28% while the
agents using the committee collaboration strategy ob-
tained an accuracy of 84.14%. These results show that
even when the data is very fragmented, the confidence
measures (that are not affected by the fragmentation
of the data) computed by the agents are able to select
which of the individual solutions are better based on
the justification given.

Table 1 also shows the accuracy obtained by the agents
when they solve the problems individually (without
collaborating with the other agents). The table shows
that as the number of agents in the experiments in-
creases (and the size of the individual training sets
diminishes) the individual accuracy drops fast. For
instance, in the 16 agents scenario, the individual ac-
curacy is only 67.07% while the accuracy obtained in
the same system using the JEC policy is 87.28%. For



5 Agents 7 Agents 9 Agents 10 Agents 16 Agents

Justification 88.50 88.86 88.00 88.35 87.28
Committee 88.36 87.90 88.00 88.14 85.71
Individual 78.78 76.43 72.07 68.36 67.07

Table 1. Accuracy comparison between the justification and the committee approaches in the unbiased scenarios.

5 Agents 7 Agents 9 Agents 10 Agents 16 Agents

Justification 88.78 88.78 88.36 88.86 87.93
Committee 84.36 85.86 86.50 87.00 85.61
Individual 70.85 68.78 66.07 65.5 63.86

Table 2. Accuracy comparison between the justification and the committee approaches in the biased scenarios.

comparison purposes, we have tested the accuracy ob-
tained if we have a system containing only one agent
(having the whole training set), and we have obtained
an accuracy equal to 88.2%.

5.2. Biased Scenarios

In the biased scenarios, the training set is also divided
in as many subsets as agents in the system, but this
time, each subset in not chosen randomly. We have
forced some of the agents in the system to have more
cases of some classes and to have less cases of some
other classes. There can be also agents that don’t have
cases of some of the classes, or even agents that have
only cases of a single class. This bias diminishes indi-
vidual accuracy (Ontañón & Plaza, 2002).

Table 2 shows the classification accuracies obtained by
several groups of agents using the JEC policy and the
committee collaboration policy in the biased scenar-
ios. As we have said, the individual accuracies when
the agents have biased case bases are weaker than in
the unbiased scenarios. This weakening in the indi-
vidual results is also reflected in the Committee accu-
racy. This can be seen in Table 2, where the accuracy
achieved by the Committee is clearly lower than the
accuracy obtained in the unbiased scenarios shown in
Table 1. However, comparing the results of Tables 1
and 2, we can see that the results obtained by the
agents using the JEC policy are not affected by the
bias of the case bases. Therefore, the increase in ac-
curacy obtained with the JEC policy is greater in the
biased scenarios. For instance, in the 5 agents sce-
nario, the accuracy obtained with the JEC policy is
88.78% and the accuracy with the committee policy is
only 84.36%, while the accuracy for the 10 agents sce-
nario is 87.93% versus 85.62%. Again, we can see here
how the confidence measures are independent of the
case distribution among the agents, ensuring a robust
aggregation of the individual predictions.

5.3. Redundancy Scenarios

In the redundancy scenarios, the training set is divided
into subsets that are not disjoint, i.e. there are cases
that are present in more than one subset. To create
these disjoint subsets, we have duplicated 50% of the
cases in the training set before distributing it among
the agents. This means that if the original training set
had 252 cases, the new training set has 378 cases (126
of them occur twice). We have said that the compu-
tation of the confidence values of the JERs is not sen-
sitive to the distribution of cases among the agents,
however the amount of redundancy in the system does
affect it. These scenarios have been created to test the
sensitivity of the computation of the confidence values
of the JERs to redundancy.

Table 3 shows the accuracy obtained by both the JEC

policy and the committee policy (the individual accu-
racy is also shown for comparison purposes). The first
thing we see is that the JEC policy again outperforms
the committee policy. This difference is very clear in
the scenarios with many agents (9, 10 and 16). For
instance, in the 16 agents scenario, the JEC policy ob-
tained an accuracy of 88.28% and the committee policy
just 87.71%. However, in these scenarios, the two poli-
cies are closer than in the previous two. For instance,
in the 5 and 7 agent scenario, it is not so clear which
policy works better: 89.64% for the JEC policy versus
89.78% in the 5 agents scenario, and 89.57% versus
89.50% in the 7 agents scenario.

If we look at the individual results in Table 3, we notice
that they are much better than the individual results
without redundancy: this is due to an increase of size
in the individual case bases. This greater individual
accuracy also enables the committee and JEC policies
to obtain higher accuracies.

Notice that in the redundancy scenario there is over-
lapping among the agent’s case bases. The examina-



5 Agents 7 Agents 9 Agents 10 Agents 16 Agents

Justification 89.64 89,57 89.64 88.57 88.28
Committee 89.78 89.50 88.75 88.42 87.71
Individual 83.00 81.00 78.21 76.64 70.92

Table 3. Accuracy comparison between the justification and the committee approaches in the redundancy scenarios.

tion process is sensitive to the degree of overlapping
because there are cases that (as present in several case
bases) may be counted more than once for computing
confidence estimates. However, as the results show,
the JEC policy is robust enough to keep performance
equal or better than the committee policy.

6. Conclusions and Future Work

We have presented a method to aggregate predictions
coming from several agents into a single prediction
using symbolic justifications. Allowing the agents to
give a justification of their individual results is crucial
in multiagent systems since in an environment where
one’s conclusions may depend on knowledge provided
by third parties, justifications of these conclusions be-
come of prime importance (van Harmelen, 2002).

In the experiments section, we have shown that both
Committee and JEC policies obtain higher accuracies
than the individual accuracy. However, the JEC policy
is more robust than the Committee policy. Commit-
tee works well when the individual agents can provide
good individual predictions. However, as our experi-
ments show, when the individual accuracy drops, the
accuracy of the Committee also drops. The JEC policy
is more robust because the accuracy decreases much
less (as can be seen in all the 16 agents scenarios).
Moreover, when the distribution of the data among
agents is not uniform and the individual agents have a
skewed view of the data, the JEC policy is still able to
keep the accuracy at the same level. More favorable
scenarios for the Committee policy are the redundancy
scenarios, where the individual agents have higher in-
dividual accuracies —although the JEC policy is still
equal or better than the Committee.

We have only tested our method using LID as the clas-
sification algorithm, but in fact, any method that can
provide a symbolic justification of the prediction can
be used. As future work, we plan to evaluate the ap-
proach with decision trees, from which a symbolic jus-
tification can be constructed.

We have seen that the confidence estimation is inde-
pendent of both the number of agents in the system
and the distribution of cases among them. However, it
is dependent on the degree of redundancy among the

agent’s case bases. In the future, we plan to use a new
confidence estimation system that takes into account
the redundancy level among the agent’s case bases.
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