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Abstract

Driven by successes in several application ar-
eas, maximum entropy modeling has recently
gained considerable popularity. We general-
ize the standard maximum entropy formula-
tion of classification problems to better han-
dle the case where complex data distributions
arise from a mixture of simpler underlying
(latent) distributions. We develop a theoret-
ical framework for characterizing data as a
mixture o] maximum entropy models. We for-
mulate a maximum-likelihood interpretation
of the mixture model learning, and derive a
generalized EM algorithm to solve the corre-
sponding optimization problem. We present
empirical results for a number of data sets
showing that modeling the data as a mixture
of latent maximum entropy models gives sig-
nificant improvement over the standard, sin-
gle component, maximum entropy approach.
Keywords: Mixture model, maximum en-
tropy, latent structure, classification.

1. Introduction

Maximum entropy (maxent) modeling has a long his-
tory, beginning as a concept in physics and later work-
ing its way into the foundations of information the-
ory and Bayesian statistics (Jaynes, 1979). In re-
cent years, advances in computing and the growth

" Work conducted at NEC Laboratories America, 4
Independence Way, Princeton, NJ 08540 USA.

of available data contributed to increased popularity
of maxent modeling, leading to a number of success-
ful applications, including natural language process-
ing (Berger et al., 1996), language modeling (Chen
& Rosenfeld, 1999), part of speech tagging (Ratna-
parkhi, 1996), database querying (Pavlov & Smyth,
2001), and protein modeling (Buehler & Ungar, 2001),
to name a few. The maxent approach has several at-
tractive properties that have contributed to its popu-
larity. The method is semi-parametric, meaning that
the learned distribution can take on any form that ad-
heres to the constraints. In this way, maxent modeling
is able to combine sparse local information encoded
in the constraints into a coherent global probabilistic
model, without a priori assuming any particular dis-
tributional form. The method is capable of combin-
ing heterogeneous and overlapping sources of informa-
tion. Under fairly general assumptions, maxent mod-
eling has been shown to be equivalent to maximum-
likelihood modeling of distributions from the exponen-
tial family (Della Pietra et al., 1997).

One of the more recent and successful applications
of maxent modeling is in the area of classifica-
tion (Jaakkola et al., 1999), and text classification 
particular (Nigam et al., 1999). In this case, condi-
tional maxent distributions (i.e., probabilities of the
class labels given feature values) are learned from the
training data and then used to automatically classify
future feature vectors for which class membership is
unknown.

Note that being maximally noncommittal can some-
times be a hindrance in cases where exploitable hidden
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structure exists in the data beyond the expressed con-
straints. Many data sets with seemingly complex dis-
tributional structures can be seen as generated by sev-
eral simpler latent distributions that are not directly
observable. As an example, the distribution of text in
a broad document collection may have a complex joint
structure, but if broken up into meaningful topics, may
be well modeled as a mixture of simpler topic-specific
distributions. Mixture models (McLachlan & Basford,
1988) are designed to handle just such a case, where it
is assumed the full distribution is composed of simpler
components. In a sense, discovering the underlying
structure in a data set can be thought of as an un-
supervised learning subtask within a larger supervised
learning problem.

In this paper, we generalize the maxent formalism to
handle mixtures of maxent models. In cases where data
can be decomposed into latent clusters, our framework
leverages this extra structural information to produce
models with higher out-of-sample log-likelihood and
higher expected classification accuracy. We formulate
a maximum-likelihood interpretation of the mixture
model learning, and derive a generalized EM (GEM)
algorithm (Dempster et al., 1977) to solve the corre-
sponding optimization problem. We present empirical
results on several publicly available data sets showing
significant improvements over the standard maxent ap-
proach. On the data sets tested, our mixture technique
never performs worse than standard maxent (within
noise tolerance), and often performs significantly bet-
ter.

In contrast to numerous dimensionality reduction tech-
niques employed in supervised learning, which can be
regarded as techniques exploiting latent structure in
the space of features, the mixtures of conditional max-
imum entropy models directly exploit the latent struc-
ture in the space of original examples (e.g. documents,
not words, in text classification).

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss some of the related work. In Sec-
tion 3 we review the definition of a standard maxent
model. Section 4 presents a definition of the mixture
of maxent models and the main update equations for
the GEM algorithm used to fit the mixture. Experi-
mental results are discussed in Section 5. In Section 6
we draw conclusions and describe directions for future
work.

2. Related Work

The latent maximum entropy principle was introduced
in a general setting by Wang et al. (2002). In par-

ticulax, they gave a motivation for generalizing the
standard Jaynes maximum entropy principle (Jaynes,
1979) to include latent variables and formulated a con-
vergence theorem of the associated EM algorithm. In
this paper, we present a derivation of the EM algo-
rithm for a specific mixture model latent structure as
well as describe and discuss empirical results of such
an approach.

Modeling of the latent structure in document space
was previously employed in a classification setting by
Nigam et al. (2000, unpublished commercial project),
where distributional clustering (Baker & McCallum,
1998; Pereira et al., 1993) and maxent modeling were
combined to improve document classification accuracy.
The fundamental distinction between their approach
and ours is that our latent structure mixture modeling
is fully integrated into an EM algorithm designed to
maximize a single objective function.

The generalized linear mixed models (Wolfinger 
O’Connell, 1993) widely used in marketing research
are similar to our approach. However, our model mix-
ture components are non-linear, and as such, poten-
tially more powerful. For binary classification prob-
lems the conditional maximum entropy models can
be shown to be equivalent to logistic regression mod-
els, however for multi-class problems such relationship
does not hold. Mixtures of multinomial logistic regres-
sion models have also been studied in the past (Mc-
Fadden & Train, 1997; David L: Kenneth, 1998).

3. Conditional Maxent Model

Consider a problem of estimating the distribution
p(c[d) of a discrete-valued class variable c for a given
vector of observations d in the presence of constraints
on the distribution. To define constraints, we repre-
sent each vector d as a set of (in general real-valued)
features. Typically, we allow each class to be charac-
terized by a separate set of features. For a given vector
of observations d and class label c, we set to 0 all fea-
tures from classes other than c. A formal definition
of the feature s in class d is as follows (Nigam et al.,
1999):

0 if c i~ c’Fs,c,(c, d) = d8 otherwise,

where d~ is the value of the s-th component of the vec-
tor d. For example, in a text classification task, d is a
document, s could be the word "surgery", ds--a fre-
quency of the word "surgery" in the document d and
d = "Medicine" the class label for d. In what follows,
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we omit d to simplify the notation but emphasize that
there might be a separate set of features for each class.

A constraint based on the feature Fs prescribes that
the empirically observed frequency of this feature
should be equal to its expectation with respect to the
model p(c[d):

y’~ EP(cld)Fs(c,d) = E F,(c(d),d), (1)
d c d

where s = 1,..., S runs across all features, and c(d)
is the class label of the vector d. The left-hand side
of Equation 1 represents the expectation (up to a nor-
malization factor) of the feature Fs(c, d) with respect
to the distribution p(cid) and the right-hand side is the
expected value (up to the same normalization factor)
of this feature in the training data.

The set of features supplied with maximum entropy as
an objective function can be shown to lead to the fol-
lowing form of the conditional maxent model (Jelinek,
1998)

S
1

Fp(cld)- ZjTd)exp[E~sc~ ~(c,d)], (2)

where Z:~(d) is a normalization constant ensuring that
the distribution sums to 1. In what follows we drop
the subscript in Zx to simplify notation.

There exist efficient algorithms for finding the pm’am-
eters {A} from the set of Equations 1 (e.g., general-
ized iterative scaling (Darroch & Ratcliff, 1972) or im-
proved iterative scaling (Della Pietra et al., 1997)).

4. Mixture of Conditional Maxent
Models

As we pointed out above, it might be advantageous to
assume that the data points are generated from a set
of K clusters, with each cluster described by its own
distribution:

K

p(cld) = ~P(cld, k)ak, (a)
k=l

where ak = p(k) is a prior probability of cluster k,

~]kak = 1 and for each k = 1,...,K, p(cld,k) has a
maximum entropy form

S

P(cid, k) _ exp[ d)].
Zk (d)

8.~-1

We derive the generalized EM algorithm for finding
parameters A and a in Appendix A. Here we present

the update equations for the maximum likelihood es-
timates of parameter values. The treatment of the
MAP estimates (obtained by imposing a Gaussian
prior (Chen & Rosenfeld, 1999)) is given in Appendix
A.

In the E-step, we find the posterior distribution over
the clusters:

p( c( d) Id, k )o~k
Pk ~ P(duster = kic(d),d) 

E~.=t p(c(d)ld, k)a~"

hi the M-step, we maximize the likelihood by finding
the new values of parameters using the cluster mem-
berships obtained in the E-step:

a ,~w 1
- y~ P(cluster = klc(d),d);

IDI
dED

5s, c,k, = E Pk’Fs’(c’,d)[I(c(d) = c’) - p(c’id, k’)];
dED

new ~old¯ "ks’c’k’= "’s’c’k’ + ¢~s’c’k’,

where ¢ is a snmll step in the direction of the gradi-
ent of the log-likelihood, ensuring that the likelihood
increases, and I 0 is the indicator function. As we
discuss in Appendix A, finding exact values of param-
eters A that maximize the likelihood is difficult since
it requires solving the system of non-linear equations.
However, for the GEM algorithm to converge, it is
sufficient that the likelihood only increases in the M-
step (McLachlan & Krishnan, 1997). We employ this
form of the generalized EM algorithm and do a sin-
gle step of the gradient ascent for parameters A in the
M-step.

The worst-case time complexity of the algorithm per
iteration in an Nc-class problem is O(KSNcIDI). The
worst-case is achieved on the computation of 5,,c,k,,
and a straightforward speed-up can be gained by notic-
ing that some of the feature values F,,(d,d) can be
equal to 0, thus making the corresponding terms on
the right-hand side of the update equation for 5~,~,~.,
vanish. As we show in Section 5, on sparse data the
improvements can be quite significant. Purther speed-
ups might be achieved by employing the recent work
by (Goodman, 2002), though we have not explored this
direction at present.

5. Experimental Results

We ran experiments on several publicly awailable data
sets. The names and parameters of the data sets are
given in Table 1. Among the parameters we report the
number of classes Are, the number of features S and
the number of data records IDI. Note that as we men-
tioned in the end of the previous section, the product of
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TaMe 1. Parameters of the data sets used in experiments. S is the number of features (attributes), ID] is the number 
training records, Arc is the number of classes, SNcIDI is the product of the 3 previous columns and represents the major
factor in the time complexity (reported on the loglo scale) and Sparsity is the percent of data entries with 0 values (out
of total IDI ® S). Experiments on the WebKB data were conducted with subsets of attributes, containing 50, 200, 500,
1000 most frequent attributes; sparsity index for each subset is r~ )orted.

Ns/71e S IDI NC log~o(SNolDI)Sparsity, %
WebKB 50 1919 6 5.76 41.51
WebKB 200 1919 6 6.36 65.99
WebKB 500 1919 6 6.76 80.60
WebKB 1000 1919 6 7.06 87.74

Letter recognition 16 10000 26 6.62 2.61
Yeast 8 732 10 4.76 12.43

MS Web 294 16000 2 6.97 99.08
Vehicle 18 593 4 4.63 1.18
Vowel 11 726 11 4.94 3.39
Cover 54 11340 7 6.63 77.99

Segmentation 19 1155 7 5.18 10.79

these three quantities factors in along with the number
of mixture components into the worst-case time com-
plexity of the algorithm. We report the logarithm of
the product in the fifth column to show the anticipated
order of magnitude of the complexity. The last column
shows the sparsity of the data set that also affects the
time complexity. If one imagines the data organized
as a matrix with S columns corresponding to features
and I DI rows corresponding to data records, then spar-
sity reports the percentage of 0 entries in this matrix.
As we mentioned above, the higher the sparsity, the
more time-efficient the algorithm is.

The WebKB data (Craven et al., 1998) contains a set
of Web pages gathered from university computer sci-
ence departments. We used all classes but others and
different numbers (up to 1000) of the most frequent
words. The Letter recognition, Yeast, MS Web,
Vehicle and Vowel data sets were downloaded from
the UC Irvine machine learning repository (Blake 
Merz, 1998). In the MS Web data set, we predicted
whether a user visited the "free downloads" web page,
given the rest of his navigation on microsoft.co~ For
all remaining data sets, we solved the classification
task as posted on the UC Irvine web site.

For all data sets, we experimented with 1, 3, 5, 7, 9, 11,
13 and 15 components.* We split the data into three
sets: training data, held-out data, and test data. Held-
out data was used to determine when to stop training,
and to choose the best number of components. When
training the mixture model we stopped the GEM algo-
rithm when the relative increase in the log-likelihood

1We used the same algorithm to fit one component mod-
els.

on held-out data became less than 0.0005. We made
five random restarts of GEM to reduce the influence of
starting point initialization. 2 The best model for each
of the starts was selected based on the classification
performance on the held-out data. Neither the mix-
ture model nor the standard maximum entropy model
were smoothed. Performance statistics measured in-
clude the classification accuracy and the log-likelihood
on the test set, and the time taken to learn the model.
For smaller Vehicle and Vowel data sets we also per-
formed respectively 10 and 15 fold cross-validation and
averaged the results.

Table 2 reports results for the WebKB data set. The
first column shows the number of top most frequent
attributes used for training; the remaining columns
are labeled with the number of mixture components.
Within each row block of the table, "A" reports clas-
sification accuracy on the test data, "L" the log-
likelihood on the test data and "T" the time taken
to train the model. The boxed number represents the
classification accuracy of the best model selected based
on the held-out data.

Notice that the classification accuracy of the best mix-
ture model (boxed) is better than the accuracy of the
standard maxent across all selected attribute subsets.
However, as the size of the attribute subset increases
not only the accuracy of the models increases but also
the improvement provided by the mixture becomes
smaller. Notice also that for larger attribute subset
sizes, the log-likelihood scores of the mixture model are

2Note that unlike the optimization problems for fitting
the standard (one component) maxent, the likelihood sur-
face for mixture may have several local maxima.
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Table 2. WebKB data set: Performance of the mixture of maxent models on 3, 5, 7, 9, 11, 13 and 15 components
compared to the standard (1-component) maxent model. "A" stands for accuracy on the test data, "L" for log-likelihood
score on the test data and "T" for time taken to learn the model (in seconds). Different row blocks in the table correspond
to selecting the top 50, 200, 500 and 1000 attributes in the data set with respect to their frequency. The boxed number
is the classification accuracy of the best mixture model selected according to the held-out data.

N. Attributes 1 3 5 7 9 11 13 15
A 49.69 53.34 151.691 53.34 53.08 52.56 51.95 52.38

50 L -1.383 -1.408 -1.375 -1.358 -1.395 -1.383 -1.374 -1.366
T 55 161 219 341 481 570 597 840
A 68.05 69.87 69.87

-0.938 -0.954
70.57 69.79 [71.01[ 70.74 70.65

200 L -0.947 -0.961 -0.904 -0.958 -0.927 -0.909
T 78 305 480 485 677 1380 1205 1750
A 80.81 181.511 79.94 80.03 80.20 80.73 80.47 79.86

500 L -0.686 -0.691 -0.664 -0.698 -0.679 -0.685 -0.665 -0.674
T 151 388 692 804 1254 1474 2157 2100
A 81.85 81.85 81.68

-0.669 -0.663
I 82.03[ 82.03 82.11 82.29 82.20

I000 L -0.689 -0.669 -0.633 -0.637 -0.624 -0.628
T 225 723 1411 1723 2122 2873 3382 4038

typically slightly better than for the standard maxent
model; however, this does not necessarily translate into
improvement in classification. We have also observed a
similar phenomenon on several other data sets, results
for which we report below.

The time taken to train the mixture grows roughly lin-
earl 3, with the number of mixture components. How-
ever, the times are still manageable, and as our experi-
ments suggest, uncovering potential mixture structure
and obtaining the improvement in classification, could
well be worth spending the extra time. Furthermore,
one could employ recent advances in speeding up max-
imum entropy learning (Goodman, 2002) to alleviate
the complexity associated with the learning time. Re-
call that in Table 1 we demonstrated that the sparsity
of the WebKB data increases with the growth of the
size of the attribute set used in learning. Table 2 in
turn shows that sparse data often leads to sublinear
complexity growth. For instance, one might expect the
time complexity of fitting a three component mixture
on 200 attributes to be roughly 4 times higher than on
50 attributes; however, the actual number is roughly
twice as high (305 seconds for 200 attributes versus 161
seconds for 50 attributes), due to the inherent sparsity
of the data and our ability to take advantage of it.

In Table 3 we present results similar to that of Table 2
on the data sets other than WebKB. Again, we can
clearly see the improvement provided by the mixture in
comparison with the standard maxent both in the log-
likelihood scores and the classification accuracy on the
test data. This suggests that in most cases the mixture
model is a more adequate model for the data than the

standard maxent model since the former does a better
job capturing the structure contained in the data. The
improvement varies depending on the data set and for
the classification accuracy ranges from fractions of per-
cent on the Vehicle data set to almost 9 percent on the
\rowel data set. The average accuracy improvement of
selected models (boxed values in Tables 2 and 3) over
the one-component model is 2.94%. The 95% confi-
dence interval of improvement percentage for Table 3
according to a statistical t-test is [0.10%,5.78%], so
the improvement we observe is significant at a greater
than 0.95 confidence level according to this test. 3 We
have focused solely on presenting the improvements re-
sulting from the introduction of mixtures over a single
component maxent model. A common conclusion in
large-scale comparison studies, e.g. (King et al., 1995;
Lira et al., 2000), is that there is no single best al-
gorithm across different datasets; their relative merits
depend on the characteristics of a particular dataset.
The same studies report that logistic regression, which
is equipment to maxent in binary classification case, is
often quite successful. We are not aware of reported
comparisons between maxent and (polytomous) logis-
tic regression for more general multi-class problems.

This set of experiments also confirms our previous ob-
servation that the actual time complexity strongly de-
pends on the sparsity of the data. By looking only
at the complexity terms of Table 1, one could expect

awe also reported a probabilistic measure of general-
ization performance--log-likelihood of the test data; its
average improvement over one-component models is also
significant at a greater than 0.95 confidence level.
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Table 3. Performance of the mixture of maxent models on 3, 5, 7, 9, 11, 13 and 15 components compared to the standard
(1-component) maxent model on various data sets from the UCI repository. "A" stands for accuracy on the test data,
"L" for log-likelihood score on the test data and "T" for time taken to learn the model (in seconds). The boxed number
is the classification accuracy of the best mixture model selected according to the held-out data.

Naxne 1 3 5 7 9 11 13 15
A 72.42 74.65 [76.62[ 76.47 76.45 76.35 76.07

Letter recognition L -1.069 -0.974 -0.862 -0.868 -0.840 -0.870 -0.914
T 3004 11992 20800 29540 40801 45913

A 51.67 154.001 53.33 50.00 50.67 52.00 55.67 54.00
Yeast L -1.264 -1.228 -1.248 -1.280 -1.256 -1.268 -1.237 -1.255

T 33 76 128 188 259 310 376 434

A 72.37 75.09 175.621 75.44 75.62 75.61 75.38 75.73
MS Web L -0.528 -0.504 -0.492 -0.491 -0.488 -0.487 -0.490 -0.485

T 25 126 233 239 358 423 538 585

A 71.11 70.65 71.47 171.351 71.59 71.24 70.76 71.01
Vehicle L -0.771 -0.767 -0.719 -0.736 -0.748 -0.754 -0.749 -0.743

T 15 30 51 67 89 91 122 144

A 43.03 49.89 52.12 49.29 51.31 152.021 49.39 50.10
Vowel L -1.665 -1.448 -1.465 -1.460 -1.471 -1.418 -1.451 -1.485

T 9 49 80 83 105 116 113 240
A 57.55 57.23 56.79 56.88 57.46 57.97 57.99 159.131

Cover L -1.037 -1.016 -0.993 -1.021 -0.982 -0.984 -0.983 -0.957
T 575 637 1563 1845 2410 3542 3758 4554

A 90.18 90.18 89.89 90.47 89.89 89.89 90.33
Segmentation L -0.298 -0.291 -0.282 -0.287 -0.289 -0.288 -0.295 -0.293

T 63 137 245 276 345 455 588 595

that time performance on the Letter Recognition and
Cover data sets would be roughly the same. How-
ever, the Cover data set is substantially more sparse
and this results in an order of magnitude decrease in
actual training time difference.

Overall, we conclude that the mixture of maximum
entropy models provides a valuable modeling tool with
a power exceeding that of the regular maxent. The
mixture is capable of better capturing the underlying
latent structure of the data if such a structure exists.
The increased modeling power comes at the expense of
higher time needed to fit the model. The actual CPU
times in our experiments are still manageable and can
further be reduced by employing recently published
speed-up techniques for maximum entropy (Goodman,
2002).

6. Conclusions and Future Work

We presented a methodology for classification that ex-
ploits the latent structure in the data using a mixture
of maxent models. We defined a mixture of maximum
entropy models and derived a generalized EM algo-
rithm for solving the corresponding optimization prob-

lem. Our experiments on several publicly available
data sets suggest that the mixture of maxent models
can provide a significant improvement over the stan-
dard maximum entropy model. We also presented up-
date equations for the GEM algorithm for the case
of the mixture of maximum entropy models smoothed
with a Ganssian prior.

The idea of employing the mixture of maximum en-
tropy models to uncover and exploit the latent struc-
ture in the data can be easily generalized to other
domains, such as sequence prediction (Pavlov & Pen-
nock, 2002), chemical naming, Internet user disam-
biguation and others.
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A. Appendix: EM algorithm for
mixture of maxent models

The log-likelihood L of the training data D generated
by Nc classes, each represented by ni, i = 1,...,N
vectors of observations, is

L~logp(D[{~},{a}) = ~logp(c(d)]d), 
deD

where p(c(d)ld) is given by Equation 3.

Assuming for simplicity for now that there are no pri-
ors on parameters {I} and {a}, the objective is to
maximize the log-likelihood in Equation 4 subject to
the constraint ~k ak = 1.

Setting up the Lagrange function and differentiating
it with respect to 18,c,k, yields the following:

OL

A standard trickin setting up the EM procedure is to
introduce the posterior distribution over the clusters,
i.e. define

p( c( d) d, k)Otk
Pk=" P(cluster = k[c(d),d) K

~-]k=l p(c(d)]d, k)ak

With this definition the derivative of the Lagrangian
in Equation 5 can be rewritten as

OL
- EP~,Ol°gak’p(c(d)ld’k’) (6)

OAe’c’k’ dED
OAs’c’k’

Performing the differentiation of the second term un-
der the summation in 6 yields:

0 log ak,p(c(d)[d, = (7)
c91s, e, k,

1 OZk, (d)
+ F¢ (c(d), d)I(c(d) = c’),

zk, (d) O,L,c, 
where I0 is the indicator function. Using the defi-
nition of Z from Equation 2 results in the following
expression for its derivative:

S
OZk, (d) - Fs, (c’, d)exp[E Isc, k, Fs(c’, d)]. (8)
O/ks, c,k, s=l

Substituting the result of Equation 8 into Equation 7
we obtain

O log ak,p(c(d) ld, k’) = (9)
OAs, c,k,

F,, (c’, d)[I(c(d) = c’) - exp[Ess=l ,X,,~,~, Fs(c’, d)].]
Zk, (d)

= F,, (c’, d)[I(c(d) = c’) - p(c’[d, k’)].

Substituting the result of Equation 9 in Equation 6
yields the system of equations for the critical points of
the log-likelihood:

Pk, F,,(c’,d)[Z(c(d) = c’) -p(c’ld, k’)] 
dED

Note that for the EM algorithm to converge it is suffi-
cient to make a step in the direction of the gradient in
the M-step and proceed to E-step (McLachlan & Kr-
ishnan, 1997). Thus, for sufficiently small e and for all
s~ = 1,... ,S (constraints/features) and ~ =1,...,K
(classes) we can do gradient ascent as follows:

5s, c,k, = E Pk, Fs,(c’,d)[I(c(d) = c’) -p(c’[d,k’)];
tiED

new ~, old
)~s’c’k’ = "e’c’k’ -F e.6s, c,k,.

For the case of the mixture model, one could also di-
rectly consider a lower bound B on/(A + A) -/(A) 
B (Chen& Rosenfeld, 1999; Nigam et al., 1999) and
set A so that B > 0. In this case, the derivation goes
along the lines of (Chen& Rosenfeld, 1999) and result
in the following update equation:

EdeD Pk, Fs, (c(d), d)I(c(d) = 5,’c’k’ = log ~-d~,~7)- 

The derivation of the update equation for the mixture
weights ak, k = 1,..., K, follows the steps above and
results in the following rule:




