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Abstract

The use of domain knowledge in a learner
can greatly improve the models it pro-
duces. However, high-quality expert knowl-
edge is very difficult to obtain. Traditionally,
researchers have assumed that knowledge
comes from a single self-consistent source.
A little-explored but often more feasible al-
ternative is to use multiple weaker sources.
In this paper we take a step in this direc-
tion by developing a method for learning the
structure of a Bayesian network from multi-
ple experts. Data is then used to refine the
structure and estimate parameters. A simple
analysis shows that even relatively few noisy
experts can produce high-quality knowledge
when combined. Experiments with real and
simulated experts in a variety of domains
show the benefits of this approach.

1. Introduction

The accuracy of a learner can be greatly improved
by explicitly incorporating domain knowledge into it.
A learner’s output will also generally be much more
comprehensible if the learner takes existing knowl-
edge into account (Pazzani et al., 1997). Recognizing
this, extensive research on combining empirical learn-
ing with domain knowledge has been carried out (e.g.,
Bergadano and Giordana (1988); Pazzani and Kibler
(1992); Ourston and Mooney (1994); Towell and Shav-
lik (1994)). However, the use of knowledge-intensive
learning has not become widespread in practice. The
chief cause of this is the high cost and difficulty of
obtaining domain knowledge (Scott et al., 1991; Mar-
cus, 1989; Henrion, 1987). Typically, the knowledge
provided by an expert is initially very buggy and in-
complete, and a laborious process of interaction with
the knowledge engineer is required to refine it to the
point where it becomes useful. As a result, most learn-
ers in wide use today employ only very weak forms of
knowledge (e.g., a similarity or smoothness bias), and

this can significantly limit their accuracy, particularly
in large, complex domains.

In this paper we attempt to find a way out of this
dilemma by exploring a new approach to knowledge-
intensive learning, inspired by the success of model en-
semble methods like bagging (Breiman, 1996), boost-
ing (Freund & Schapire, 1996) and stacking (Wolpert,
1992). In essence, these methods combine many
"weak" (i.e., not very accurate) models into a "strong"
one. This can produce surprisingly large improve-
ments in accuracy. Our approach is to combine the
knowledge of many "weak" experts into a "strong" col-
lective knowledge base. In particular, in this paper we
propose a method for combining statements about the
structure of a Bayesian network from multiple experts
into a single structure that more closely captures the
dependencies in the domain. This structure is then
refined, and its parameters estimated, using standard
Bayesian network learning algorithms. The core of our
method is to postulate a simple generative model for
what an expert says given the actual dependencies in
the domain, and use Bayes’ theorem to obtain a pos-
terior distribution over those dependencies given what
the experts say.

The necessary knowledge can be gathered from ex-
perts using traditional interview methods. A more re-
cent alternative is to solicit it over an organization’s
intranet, or from the relevant community of inter-
est over the Internet, with an appropriate interface
for knowledge entry. This avenue makes it possible
to gather knowledge from more contributors at lower
cost. The knowledge obtained in this way is likely
to be more diverse, but also of more variable qual-
ity, than that gathered by traditional means. This
makes it well suited to our approach. Its promise
is shown by the success of online forecasting mar-
kets (Pennock et al., 2001), knowledge-sharing sites
like epinions.com (Frauenfelder, 2000), and PC man-
ufacturers’ Web sites for mutual customer help (Mor-
ris, August 2001). The research described in this pa-
per is part of our CKB (--Collective Knowledge Bases)
project, which is developing tools for the construction
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of large knowledge bases by collaboration over the In-
ternet, and for their refinement using machine learn-
ing (Richardson & Domingos, 2003). Related efforts
include the Open Mind Initiative (www.openmind.org
(Stork, 2000)) and OpenCyc (www.opencyc.org), 
open-source version of Cyc (Lenat & Guha, 1990).

The combination of beliefs from multiple experts has
received some attention in the statistical literature
(Lindley, 1985; French, 1985; Genest & Zidek, 1986;
Pennock & Wellman, 1999). However, this litera-
ture assumes that each expert provides a complete,
self-contained probability distribution. This assump-
tion is problematic, because h~man beings are no-
toriously poor at estimating probabilities or reason-
ing with them (Tversky & Kahneman, 1974). Our
approach assumes a division of labor between hu-
mans and machines that better reflects their respec-
tive strengths and weaknesses (cf. Jaeger (2001)): 
mans provide qualitative statements that might be dif-
ficult for machines to discover unaided, and machines
refine these statements and compute parameter esti-
mates from data.

Our early results are quite promising. With both sim-
ulated and real experts, our method produces net-
works that are more accurate than the main alterna-
tives: purely empirical learning, learning with knowl-
edge from a single expert, and learning a separate
model from each expert plus data and combining these.

The next section briefly reviews Bayesian network ba-
sics. We then describe our method and analyze it.
This is followed by a section reporting our experimen-
tal results, and discussion.

2. Learning Bayesian Networks

A Bayesian network (Pearl, 1988) encodes the joint
probability distribution of a set of d discrete variables,
{xl,... ,Xd}, as a directed acyclic graph and a set of
conditional probability tables (CPTs). Each node cor-
responds to a variable, and the CPT associated with
it contains the probability of each state of the vari-
able given every possible combination of states of its
parents. The set of parents of xi, denoted par(xi),
is the set of nodes with an arc to xi in the graph.
The structure of the network encodes the assertion
that each node is conditionally independent of its non-
descendants given its parents. Thus the probability of
an arbitrary event X = (xt,...,Xd) can be computed
as P(X) = liT=, P(xilpar(x{)).

When the structure of the network is known, learn-
ing reduces to estimating the CPT parameters. A
widely-used algorithm for the case where the struc-
ture is unknown or imperfectly known is described by

Heckerman et al. (1995). It performs a search over
the space of network structures, starting from an ini-
tial network which may be random, empty, or derived
from prior knowledge. At each step, the algorithm gen-
erates all variations of the current network that can be
obtained by adding, deleting or reversing a single arc,
without creating cycles, and selects the best one using
the Bayesian Dirichlet (BD) score

P(S,D) = P(S)P(D[S) (1)

= P(S) r(. j +.ij) r(%,)
i=lj=l k=l

where S is a network structure, D is a training set ofn
iid examples without missing values, 1"0 is the gamma
function, q~ is the number of states of the Cartesian
product of xi’s parents, rl is the number of states of xi,
nijk is the number of occurrences of the kth state of xl

---- Ek----1 ?~ijk"with the jth state of its parents, and nlj r~

P(S) is the prior probability of the structure, which
Heckerman et al. set to an exponentially decreasing
function of the number of different arcs in S and the
initial (prior) network. Each multinomial distribution
for xi given a state of its parents has an associated

!Dirichlet prior distribution with parameters nljk, with
n~j = ~-’~-k=lri nij k’ . These parameters can be thought
of as equivalent to seeing n~j k occurrences of the cor-
responding states in advance of the training exam-
ples. The BD score is the result of integrating over
the resulting posterior distribution for the parameters
of each multinomial. The search ends, and returns the
current network, when no variation achieves a higher
BD score. See Heckerman et al. (1995) for more de-
tails on learning Bayesian networks.

This paper proposes and evaluates a method for find-
ing the structure of a Bayesian network from a multi-
tude of expert statements about it, or more generally
for computing the prior distribution P(S) over possi-
ble structures.

3. Approach

Our approach is summarized in Figure 1. The world,
assumed modelable by some Bayesian network, gen-
erates both data and the imperfect knowledge of m
experts about the structure of the network. The ex-
pert knowledge is used to compute a probability dis-
tribution over structures. Given the most probable
structure and the data, we learn the parameters of the
network. Optionally, given the data and the expert-
induced distribution over structures, the learner finds
the a posteriori most probable structure and the poste-
rior distribution over parameters. (Ideally, the learner
would average over all structures, but this is compu-
tationally infeasible.)
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Figure 1. Learning with knowledge from multiple experts.

3.1. Basic Framework

We represent the structure of a Bayesian network with
d nodes as a vector S = (st,...,sj,...,Sd,) of d~ --
d(d- 1)/2 structure variables, where sj corresponds to
the jth node pair in some arbitrary ordering of all the
possible node pairs. For any two nodes X and Y, only
one of the two pairs (X, Y) and (Y,X) is considered,
the choice of which being arbitrary. Pairs of the form
(X,X) are not considered. If sj corresponds to the
pair (X, Y), then sj = (~ if there is no arc between 
and Y in the network, sj =--* if there is an arc from
X to Y, sj =~ if there is an arc from Y to X, and
sj =~ if there is an arc from to X to Y and an arc
from Y to X. (Although the latter cannot happen in 
real network, it may be stated by a noisy expert, and
therefore we need to allow for it.)

We assume we have a pool of m experts, and the ith
expert provides a vector Ei = (ei,1,...,eij,...,eid,),
where eij ¯ {0, ~, ~, ~} states the expert’s belief
about the existence of an arc between the nodes in the
jth pair. Thus all the expert knowledge available is
contained in the matrix E = (El,... ,Ei,... ,Era). 
other words, each expert tells us what s/he believes are
the dependencies in the domain. Because an expert’s
knowledge of the world is imperfect, Ei is a noisy ver-
sion of S. We will often slightly abuse notation and
consider Ei to "be" the ith expert.

A Bayesian network is composed of a structure S and
a parameter vector ®. Our goal is to induce a poste-
rior distribution over (S, (9) given expert knowledge 
and a training set D. This distribution can then be
used to find the most probable network (S*,(9"), 
to compute probabilities of interest by averaging over
the possible networks, weighted by their posteriors. To
make the problem tractable, we introduce a number of
simplifying assumptions. By Bayes’ theorem,

P(S, (gIE, 

= aP(S,®)P(E, DIS, 
= aP(S)P((91S)P(EIS,(9)P(DIE, (2)

We use a throughout to represent a normalizing con-
stant (not necessarily always the same one). We as-
sume that P(E[S,(9) = P(E[S) (i.e., expert state-
ments about structure depend only on the struc-
ture, not the parameters) and that P(D[E,S,(9) 
P(D[S, ®) (i.e., the data is independent of the experts
given the actual structure and parameters). Substi-
tuting these equalities into Equation 2 and integrating
both sides over ® yields the posterior over structures

P(S[E,D) = aP(E[S)P(S,D)

= ~P(S)P(E[S)P(D[S) (3)

where P(S,D) is given by Equation 1. The quan-
tity P(E[S)P(S,D) is the new BD score, extended
to take expert statements into account by replacing
the prior P(S) with the "post-expert" prior P(S[E) 
aP(S)P(E[S) (i.e., the distribution over structures af-
ter consulting the experts but before seeing any data).
It can be used as the scoring function in any algorithm
that learns a Bayesian network by searching over struc-
tures.

3.2. Expert Model

P(E[S) is the generative model for expert statements,
and is the key new quantity we introduce. It can be
represented by a "meta-level" Bayesian network with
nodes {sl,...,Sd,,el,1,...,el,d,,...,ern,1,...,emd,},
where the si nodes have known values and no parents.
Thus, if par(eij) denotes the parents of node eij,

flfiP(EIS) P(eijlpar(ei~)) (4)
i=1 j=l

In this paper we assume the simplest useful case, which
is that par(eij) -- {sj}. In other words, an expert’s
probability of stating that an arc exists depends only
on whether the actual arc or its reverse exist, and
not on what other experts state, or what the expert
states about other arcs. In particular, this implies that
the experts are independent given the actual structure
(i.e., that they "distort reality" in independent ways;
note that this is is quite different from the experts be-
ing unconditionally independent). These assumptions
obviously oversimplify the behavior of real experts, but
may lead to better performance than more realistic
ones whose parameters would be hard to estimate.

The expert model is thus fully specified by specifying
P(eij]si) for all (i,j). We assign the same a priori
values to these parameters for all (i, j)J The natural

1The a posteriori estimates, after we have seen E, can
be different for different (i, j). However, making the usual
parameter independence assumption (Heckerman et al.,
1995), observation of one e~j does not affect estimation of
any other. (Notice that, in our treatment, E is composed
of exactly one sample of each e~j variable.)
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Table 1. Parameters of the expert model, P(eqlsj).

Sj

0 1--2pa--pb Pa Pa Pb
Pd 1--Pd--Pr--Pe Pr Pc
Pd Pr 1--Pd--Pr--Pe Pc

parameters to state P(eij ]sj) in terms of are: p~, the
probability that the expert adds an arc in a particu-
lar direction where there was none; Pd, the probability
that the expert deletes an arc; Pr, the probability that
the expert reverses an arc; Pb, the probability that the
expert creates a cycle (arcs in both directions) where
there was no arc; and Pc, the probability that the ex-
pert creates a cycle where there was an arc. The re-
suiting ~lues of P(eij Isj) for all (i, j) are shown in Ta-
ble 1. (Since si =~ cannot occur, it is not necessary to
specify P(eijlsj) for this case.) A simple and possibly
very useful extension is to have different values of the
parameters for each expert (i.e., P(eij [sj) = P~i, etc.).

Notice that there is nothing to preclude an expert from
specifying a structure with cycles. Even if incorrect,
such a structure will in general still contain useful in-
formation, and our method allows us to extract it.

We also need to specify a prior P(S) over structures.
In this paper we assume that each pair of nodes in-
dependently has some probability P0 of being con-
nected by an arc in a given direction. We also know
that Bayesian networks must be acyclic, and so set
P(S) = for any S containing cycles:

d~

P(S) = (~C(S) H (5)
#4=1

where C(S) = 0 if contains a cycle and C(S) = 
otherwise, and P(sj) = 1 - 2p0 if Sj = 0, P(sj) 
Po if Sj =4 or Sj =~---, and P(sj)= 0 if Sj =~.
Combining Equations 4 and 5 yields

P(S[E) = ~P(S)P(E[S)
dI m

= aC(S) HP(sj)HP(eijlsj) (6)
/=1 i=1

3.3. Analysis

We now derive an expression for the probability that
our method incorrectly predicts the value of a struc-
ture variable sj, assuming that the expert model and
parameters it uses are correct. Viewed another way,
this is the expected fraction of incorrect arcs in the
structure predicted by the ensemble of experts. More
precisely, if ~j is the value of sj with highest pj =
P(sj) ~i~1 P(eij ]sj) (see Equation 6), the expression

o.1 l,,. ’ ’o.2s ’,
I~ ~""--,,. 0.50 -----

0.08 ]~ \ ~... 0.75 .............

o..
i’" "0.02

0
0 5 10 15 20

Number of Experts
Figure 2. Error probability as a function of the number of
experts and their noise level.

is for the probability that ~j ~ sj (i.e., for the probabil-
ity of making an incorrect prediction before breaking
cycles). P($j #sj) can be expanded as follows:

P(gj~sj) = ~ P(sj=vj)P(~j~sj]sj=vj) (7)

In turn, P(~j ~=sj]sj =vj) can be expanded thus:

i=1

where the sum is over the set g of all 4m possible
vectors of expert statements el:mj = (el,j,...,emj)
about sj. The probabilities P(eij]sj = vj) can be ob-
tained from Table 1. P(gj~sjlel:rnS,s j =v j) = 0 if
pj is higher for vj than for any other value (i.e., the
correct prediction is made), and P(gj ¢ sj l el:re,j, sj 
vj) = 1 otherwise. Replacing this into Equation 
and the latter into Equation 7, we obtain a long but
straightforward expression for the error probability
P(~j ~ s j). (The number of terms in Equation 8 can be
greatly reduced by counting and combining all terms
with the same number of experts predicting each value
of s~.) This probability as a function of the number
of experts and the noise level is plotted in Figure 2.
A noise level of p is defined as the expert parameter
settings in which the expert removes or reverses a frac-
tion p of the arcs, and adds the same number between
unrelated nodes. We expect edge deletion to be much
more frequent in practice than edge reversal, so we let
Pd = 4pr. We set the prior P0 to 0.05. As can be seen,
the error probability is low even with few experts and a
substantial noise level. See also the analyses of model
ensembles in Hansen and Salamon (1990) and Perrone
and Cooper (1993).

3.4. Algorithm

We use the hill-climbing search algorithm of Hecker-
man et al. (1995) to find the best structure, initializing
it with the structure that maximizes P(S]E), and re-
placing P(S) by P(SIE) in the BD score (Equation 1),
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as described in the previous section. However, learn-
ing the structure of a Bayesian network can be com-
putationally expensive. A common alternative, if the
expert knowledge is of sufficient quality, is to take the
structure given by the expert(s) as the "true" one, and
simply fit parameters to this structure. In our context,
this means taking the structure with highest P(SIE)
as the "true" one, and learning parameters. We also
explore this alternative in our experiments.

Consider Equation 6, and ignore for the moment the
problem of cycles (i.e., the C(S) term). Because the
term for each structure variable sj is independent of
all others, the structure with highest P(SIE) can be
found in O(aam) time simply by setting each sj to

r~ pthe value with highest pj = P(sj)rli=l (eljlsj). If
we assume that the structures provided by the experts
have some sparse number of arcs e << aa, and the
expert parameters (Pa,Pd,...) are set reasonably so
that an arc can only be introduced between a pair of
nodes j if ~i sij ~ 0, then this computation takes only
O(em) time. However, the structure S~ found in this
way may contain cycles. We thus heuristically find the
structure with highest P(SIE) by breaking all cycles
in S’ while minimally reducing its score 1-IPj. We use
the procedure of Hulten et al. (2003), which finds the
set of arcs involved in cycles by finding the graph’s
strongly connected components, and breaks cycles by
greedily removing the component arcs with lowest pj.
Though not guaranteed to find the acyclic structure
with highest probability, in our experience this quickly
finds an acyclic structure using very few arc removals.

We set the parametersp~,pd,pr,pb,pc to optimize log-
likelihood, measured by two-fold cross-validation. Op-
timization is done either by sequentially trying a pre-
determined set of values for each parameter, or by
Powell’s method (Press et al., 1992).

A further issue that arises is that the available data
may be insufficient to reliably fit the parameters of the
structure with highest P(SIE), leading to poor perfor-
mance, even if this structure is the "correct" one. In
this case an oversimplified structure (with fewer par-
ents per node, and thus more data for each CPT entry)
might perform better. We address this issue by per-
forming shrinkage of the parameters as follows. For
each node xi, we order the parents par(xi) as follows:
parl(xl) is the parent with highest mutual information
with respect to Xl; parh(xi) is the parent with highest
mutual information given {par1 (xi),...,parh-l(Xi)}.
Let/3iyk0 be the unshrunken estimate ofp/jk = P(xi 
k I par(xi) =j) (i.e., conditioning on all parents). Let
15ijk, be the estimate obtained by ignoring the last s
parents in the ordering. The shrunken estimate is then

~’~[par(xi)l ~sPijks. The shrinkage coefficients ,~!3ijk = z.-,a=0

Table 2. Network characteristics and results, p~ is the true
probability of an arc between two nodes. 6i is the reduction
in K-L distance achieved when using i experts, aa a fraction
of the maximum possible (difference between learning with
the empty network and learning with the the true one).

Network Nodes Edges p$ 61 61o
Alarm 37 46 0.035 47% 93%

Hail finder 56 66 0.021 55% 98%
Insurance 27 52 0.074 57% 98%

Water 32 66 0.067 51% 98%

are found using the EM algorithm, as described in Mc-
Callum et al. (1998). The shrinkage is incorporated
into the parameter estimation and structure search
by appropriately setting the Dirichlet parameters (see
Equation 1): ’ I_ / ~ ~ x",lpar(xl)l /~sPijk8 + ~ijk "~ ~l~iJ/AO) ]---~o=1

4. Experiments

We performed two sets of experiments. In the first,
we used simulated experts and data generated from
benchmark Bayesian networks to study the effect of
training set size, number of experts, and noise level
on our algorithm. In the second, we used knowledge
of printer troubleshooting from nine computer users,
and data from the Microsoft Windows printer diag-
nosis network. In both cases, the domains used are
considerably simpler than those we envisage ultimately
applying our approach to, being generated from known
simple Bayesian networks. Nevertheless, these experi-
ments should be useful as preliminary tests.

4.1. Simulated Experts

We used four networks from the Bayesian net-
work repository at http://www.cs.huji.ac.il/labs/-
compbio/Repository/ as our ground truths. Table 2
lists the networks and some of their characteristics.
Since the correct prior probability of an edge, p~, is un-
known in practice, we set po to be 0.05 for all networks.
Expert parameters were set as in Section 3.3. Unless
specified, the default noise level is 0.5 (p~ = 0.025,
Pd ---- 0.4, Pr = 0.1, Pc = O, Pb ---- 0), and the training
set size is 100 examples.

We generated expert statements from the true net-
works according to the model described in the previ-
ous section. The parameters for the structure infer-
ence algorithm were not set to the true values, but
optimized as they would need to be in a real-world
situation. 2 After optionally performing a search over

2Sequential search performed slightly better than Pow-
ell’s method, and is the one we report. Both methods take
negligible time compared to the structure learning.
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Figure 3. Experimental results for simulated experts: varying training set size (top) and varying noise level (bottom).
The left-hand graphs were obtained by finding the best structure using our method with 3 to 20 experts, and estimating
parameters for it. "0" is the empty structure, "1" is a single expert’s structure (with cycles removed), and "True" is the
true structure. The middle and right-hand graphs were obtained by finding the initial structure and prior over structures
using our method with 3 to 20 experts, and applying Heckerman et al.’s (1995) structure-learning algorithm. In "0" the
initial structure is empty, in "1" it is a single expert’s structure, and in "True" it is the true structure; in these three cases,
Heckerman et al.’s algorithm was applied with their prior. In all cases, network parameters were learned with shrinkage.

structures (guided by P(SIE, D)), the resulting net-
work was evaluated using two measures: a) the av-
erage K-L distance from the true network, estimated
using 100k samples,3 and b) the structural difference
between the learned network and the true one, mea-
sured as the number of arcs added or removed, with
reversals counting as two differences.

We compared expert combination with three other
cases: zero experts (purely empirical learning, start-
ing from an empty network), one expert (the network
provided by one expert), and true (purely empirical
learning, starting from the true network). For these
we used the same prior P(S) as in Heckerman et al.
(1995), which is a discount of a factor of ~ for every
structural change from the initial model. We searched
for the best a in {0.01,0.1,0.2,...,0.8,0.9,0.99} us-
ing two-fold cross-validation: Results are averaged

aThis is equivalent to the negative log-likelihood on
these samples, minus the entropy of the true distribution
estimated from the samples.

4Notice that the cross-validation for ~ was performed
with structure search, while for the parameters of our ex-
pert model it was only performed with parameter learning,
the results being used for structure learning as well.

over 20 runs; each has independent training sets and
experts, but all share the test set. Results for each
run were on varying subsets of a fixed set of 20 ex-
perts. Within each run, each successively larger set
of experts was obtained by adding randomly-chosen
experts to the previous (smaller) set.

Results were qualitatively similar in all four domains.
Table 2 shows summary results for parameter learn-
ing in the four domains. A single expert is useful,
but still quite error-prone. In contrast, ten experts
are sufficient to essentially recover the true network.
Full results for hailfinder, the most complex domain,
are shown in Figure 3: With or without structure
learning, multiple experts systematically outperform
a single expert, as well as purely empirical learning, in
both K-L distance and structural difference. This illus-
trates the potential of our approach. A single expert
outperforms structure learning in K-L distance but not
in structural difference, suggesting that using multiple
experts is particularly important when the goal is to

understand the structure of the domain, rather than
just obtain accurate predictions.

5Notice K-L distances for "true" are not zero, because
they refer to learning starting from the true structure.



63O

Parameter Learning Structure Learning Structure Learning
t2 5b ’

12 5b ~ 300 ,.. 56
10 ~ 100 ----,.-- 10 I00 , " - ~ 250 -"... I00 - ,.

8 8 ’~ 8
0,

200 ,
6 ~ 6 ~ 150-

j .a ~,.5 4 ~ 4 ~ 100

2 2 - ~ 50

0 , , , , , 0 ’ , ’ ’ ’ 0 .....
1 3 5 7 9 True 0 1 3 5 7 9 True 0 1 3 5 7 9 True

Number of Experts Number of Experts Number of Experts

Parameter Learning Structure Learning Structure Learning
12

50 ’ 12
50 ’ 300 ,

56 ,’
~o ~oo----- ~o loo .... ~ 250 "~-, .... ~oo-----

~, 4~’~~=~ 68 ~ .................. "~ 4~ 68 ~

500 .............

~ "~’-~ 100~ 200 150
.~500 .........2 2 50

"1 ......... ~ ..........̄  ..........̄  ..........̄  .........¯ ....... "
0 .... ’ 0 ’ ’ ’ 0 ’ ’ ’ ’ ’

0 1 3 5 7 9 True 0 1 3 5 7 9 True 1 3 5 7 9 True

Number of Experts Number of Experts Number of Experts

Figure 4. Experimental results in printer domain: low expertise (top) and high expertise (bottom). Please see the previous
figure’s caption for details of the experimental procedure.

4.2. Real Experts

One focus of our collective knowledge base project has
been the development of a computer troubleshooting
system. A significant number of Usenet newsgroups,
FAQs, and discussion forums are devoted to the task
of helping others diagnose their computer problems,
which suggests that a collective knowledge base for
this domain would be in high demand, and that ex-
perts may be readily found on the Internet to con-
tribute to such a knowledge base. As a simple simula-
tion of a subset of this domain, we used the Microsoft
printer troubleshooting Bayesian network (also in the
Bayesian network repository). This network has 76
nodes and 112 edges, and p~ = 0.02.

We used the same experimental procedure as in the
previous section. Our "experts" were nine computer
users who were familiar with printing but not inti-
mately knowledgeable about the details of Windows
printing. Each expert was given a list of the domain
variables and asked to list the direct causes of each.
To simulate more knowledgeable experts, we let each
expert then study the true structure of the network
for a period of time, asking them to try to understand
the reason why certain variables were causes of other
variables (we assisted in this task by providing an ex-
planation for each).° After this, the experts were asked

~The experts’ instructions are at http://www.cs.wash-
ington.edu/homes/pedrod/lkme-task.pdf.

again to list the causes of each variable. We call these
two cases "low-expertise" and "high-expertise" respec-
tively. The experts spent from two to five hours on
the task. We set Po = 0.02, and tried optimizing the
parameters of the expert model both globally and sep-
arately for each expert. The latter alternative (with
Powell’s method) performed slightly better, and is the
one we report.

The results, averaged over 20 runs, are shown in Fig-
ure 4. In each run, the subset of experts used for each
number of experts was randomly chosen. The boxes
represent the scores of the individual experts with
100 examples, averaged across runs. Without struc-
ture learning, experts always produced better net-
works than the purely empirical approach, and multi-
ple experts combined using our method outperformed
using a single one, on average. With structure learn-
ing, all methods performed similarly in K-L distance.
This can be seen to be due to the lack of room for
improvement between purely empirical learning and
starting with the true network, and can be attributed
to the simplicity of the domain. We expect the benefits
of our approach to be more visible on large, complex
domains where the data is generated by the real world,
instead of by a model network. Experts outperformed
purely empirical learning, and multiple experts out-
performed one, in structural difference, showing the
potential advantages of our method for obtaining in-
sight.
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The average K-L distance of the boxes (in the left and
middle plots) is the K-L distance that would result
from combining expert predictions with a logarithmic
pool (French, 1985) (i.e., from combining the models
that would result from fitting parameters separately
to each expert structure). Without structure learn-
ing, the combined experts outperformed the logarith-
mic pool, and all but the best of the individual experts.
This shows that our method can be preferable to stan-
dard model combination techniques. With structure
learning, the K-L distances of our method and the log-
arithmic pool were similar~ for the reasons described
above. Even in this case, our method may still be
preferable, because it produces a single comprehensi-
ble structure, in contrast to the multiple structures
maintained by a posteriori combination methods.

Even on these simple networks, structure learning was
an order of magnitude slower than parameter learning.
In domains with many thousands of variables, where
expertise combination is likely to be most useful, struc-
ture learning may simply not be feasible. Our method
with only parameter learning is likely to be the best
choice in this case. Given that structure learning is
likely to be faster when starting closer to the true net-
work, there may also be cases where our method with
structure learning is feasible, while purely empirical
structure learning is not.

5. Conclusions and Future Work

This paper proposes that knowledge-intensive learning
can be facilitated by allowing the expert input to be
noisier, and making up for this by using multiple ex-
perts. In particular, we develop a method for combin-
ing a multitude of (possibly inconsistent) statements
about the structure of a Bayesian network into a "best
guess" about the actual structure. Empirical data is
then used to refine and parameterize this structure.
Preliminary experiments with real and simulated ex-
perts indicate that this approach is indeed useful.

Directions for future research include: supporting
more varied types of input from experts; using more
refined models of expert behavior; applying our ap-
proach to other representations besides Bayesian net-
works; testing it in real domains where the ground
truth is unknown; combining it with information ex-
traction techniques to exploit redundancy in online
sources; and incorporating it into our Web-based sys-
tem for collecting and refining expert knowledge.
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