
Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

Combining TD-learning with Cascade-correlation Networks

François Rivest FRANCOIS.RIVEST@MAIL.MCGILL.CA
Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, CP 6128 succursale Centre Ville,
Montréal, QC H3C 3J7 CANADA

Doina Precup DPRECUP@CS.MCGILL.CA
School of Computer Science, McGill University, 3480 University st., Montreal, QC H3A 2A7 CANADA

Abstract

Using neural networks to represent value
functions in reinforcement learning algorithms
often involves a lot of work in hand-crafting the
network structure, and tuning the learning
parameters. In this paper, we explore the
potential of using constructive neural networks
in reinforcement learning. Constructive neural
network methods are appealing because they can
build the network structure based on the data that
needs to be represented. To our knowledge, such
algorithms have not been used in reinforcement
learning. A major issue is that constructive
algorithms often work in batch mode, while
many reinforcement learning algorithms work
on-line. We use a cache to accumulate data, then
use a variant of cascade correlation to update the
value function. Preliminary results on the game
of Tic-Tac-Toe show the potential of this new
algorithm, compared to using static feed-forward
neural networks trained with backpropagation.

1. Introduction

One of the important questions in reinforcement learning
(RL) research regards the successful use of non-linear
function approximators, such as neural networks, in
combination with temporal-difference (TD) learning
algorithms (Sutton & Barto, 1998). From a theoretical
point of view, it is known that some reinforcement
learning algorithms oscillate or even diverge with
particular non-linear approximators (e.g., Baird, 1995;
Tsitsiklis & Van Roy, 1996). On the other hand, some of
the most successful applications of RL to large scale
tasks, such as the elevator dispatching system (Crites &
Barto, 1996) and TD-Gammon (Tesauro, 1995) use TD-
learning together with neural networks. In both of these
cases, a significant amount of engineering went into
setting up the configuration of the neural network,
choosing the input parameters and tuning the learning
parameters. A lot of anecdotal evidence supports the fact

that getting RL to work well with artificial neural
networks involves a significant amount of hand-crafting.

In this paper we explore the possibility of using RL
algorithms together with constructive neural network
algorithms. Constructive neural networks have the
desirable property of being able to build the necessary
network architecture by themselves, based on the training
data provided; hence, such algorithms require less
engineering of the network representation and are easier
to use. Several empirical studies using supervised
learning tasks (e.g., Yang & Honavar, 1998) showed that
constructive algorithms perform at least as well or better
than hand-tuned feed-forward backpropagation networks.

Although static feed-forward neural networks are often
used with RL algorithms, to our knowledge, there have
been no published results combining constructive neural
networks and RL. The closest attempt is the work of
Anderson (1993), combining Q-learning with resource-
allocation networks (Platt, 1991). However, in his
algorithm the network structure was fixed from the
beginning, and hidden units were re-started rather than
being added dynamically. A possible reason for this lack
of algorithms is that constructive algorithms generally
operate in batch mode, over a whole data set, while RL
algorithms typically use on-line training. In this paper,
we use a variant of the cascade correlation algorithm
(Fahlman & Lebiere, 1990; Baluja & Fahlman, 1994), in
combination with TD-learning. The neural network is
treated like a slow memory, with a cache attached to it.
This allows data from the TD-learning algorithm to
accumulate in the cache before being used to train the
network further. We compare the performance of the
constructive algorithm to that of a static backpropagation
network in a simple game playing task, that of playing
Tic-Tac-Toe. The learning algorithms are tested against
different fixed opponents, and different training regimens.

The paper is organized as follows. In Section 2 we
present background on the use of reinforcement learning
with neural networks. Section 3 describes cached training
of neural networks, and the constructive algorithm we are
proposing is described in Section 4. In Section 5 we
describe the Tic-Tac-Toe domain used as an illustration.

Sections 6 and 7 contain a presentation and discussion of
the empirical results. In Section 8 we conclude and
present avenues for future work.

2. TD Learning and Neural Networks

Temporal-difference (TD) learning (Sutton, 1988; Sutton
& Barto, 1998) is an algorithm used to learn a value
function ℜ→S:πV over the state space S , for a given
policy (way of choosing actions) π . In an episodic task
(i.e., a task that terminates), within an episode, TD-
learning works as follows:

1- Initialize state s .
2- Choose action a using policy π and

observe reward r and next state s′ .
3- Update ()sV such that

() () () ()[]sVsVrsVsV −′++← γα , where α is

the learning rate and γ the discount

factor (both between 0 and 1).
4- 'ss ←
5- Repeat steps 2-4 until episode ends.

The value function learned this way is an estimate of the
expected total reward received for an episode from a
given state s under policy π .

Read V(s)

Write T(s)

Multilayer
Feedforward

Network

One step gradient descent.

Evaluate V(s)

Figure 1. On-line backpropagation network training model.

The usual way to combine TD with neural networks is to
represent the value function πV using a multi-layer feed-
forward neural network. The state s is described as a
vector of input features. The update rule from step 3
above is used to compute the new desired value for state
s , denoted ()))'(()()1(sVrsVsT γαα ++−= . This will
be used as target value for state s to generate an error
signal () ()[]2sVsTE −= for the neural networks. The
weights of the neural network are modified such as to
minimize this error. Typically, this step is achieved by
simply applying gradient descent once. So using the
derivative of the error of the network with respect to the
weights, these are updated using

s
WEWW ∂∂−= . Note

that no learning rate is necessary here, because it was
already incorporated in the TD target. Typically, no
momentum is used either, since it may interfere with TD
bootstrapping. This model of updating, which we will
call OnlineBP (for on-line backpropagation) is illustrated
in Figure 1. We assume at this point that the network
architecture is static, and designed at the beginning of

learning. The learning algorithm will change only the
network parameters.

3. Cached network training

Because our goal is to use constructive neural network
algorithms, we need a mechanism to accumulate patterns
without losing the bootstrap effect of on-line learning.
We use a simple approach, in which the neural network is
treated as a slow memory and a look-up table is used as a
cache on it. When the estimated value)(sV for a state s
needs to be read, the system first looks it up in the cache.
If state s is found, then its cached value is returned. If s
is not found, then the network is evaluated for s and the
value is saved in the cache before being returned. When a
new target value ()sT is computed for a state s , it
overwrites the current estimate ()sV in the cache. Hence,
the cache always contains a single value ()sV for each
state s on which a request was made. This helps to keep
the cache small. Also, note that if a state is revisited, its
cached value will be updated multiple times, according to
the TD update rule. Once in a while, the system needs to
be consolidated, by training the neural network on the
cache data. In this case, all the values for the different
states that appear in the cache are used as targets for the
network. Once the system is consolidated, the cache is
emptied. This model is illustrated in Figure 2.

Read V(s)

Write T(s)

Multilayer
Feedforward

Network

Write V(s) = T(s)

Look-up Table
(Cache)

Consolidate

Train network on
Look-up table’s data

Evaluate V(s) Evaluate V(s)

Figure 2. Cached neural network.

Of course, the idea of the cache can be used with static
neural networks trained with backpropagation, as well as
with constructive algorithms. In the experiments, we use
a cache version of backpropagation in addition to the on-
line algorithm described above.

4. Constructive Neural Network Learning

The constructive learning algorithm that we use in this
paper is a variation of the Cascade-Correlation (CC)
algorithm developed by Fahlman and Lebiere (1990). It
uses the sibling-descendant pool of candidates suggested
by Baluja and Fahlman (1994), which allows a network to
grow by adding nodes to the same layer, as well as by
adding more layers. This approach allows networks to be
less deep than standard CC. We also use a generalization
of its candidate objective function (Rivest & Shultz,
2002).

Like CC, the network starts with only inputs and outputs,
which are fully connected. The algorithm starts in output
phase, in which the weights connecting the output units
(the output weights) are trained to minimize the sum of
squared error (as in backpropagation). This phase stops
when a required accuracy is reached. Exactly like in CC,
if the optimization process stagnates, or after a maximum
number of epochs, the algorithm shifts to the input phase.
The first step of the input phase is to initialize a pool of
candidate units that could potentially be added to the
network. In standard CC, the pool of candidates consists
solely of hidden units that could be cascaded before the
output of the network (called descendant units), hence
creating a new layer. Instead of this approach, we use the
variation of Baluja and Fahlman (1994), which also
allows candidate units that could be connected in parallel
to the current top-most hidden unit, on the same layer
(called sibling units). The weights connecting candidate
units are trained to minimize the square of the covariance
between their activation and the output residual error
normalized by the sum of squared error, i.e.

() ∑= pcc EEVCovC 2, . As in CC, at the end of the input
phase, which is reached when the optimization process
stagnates or after a maximum number of epochs, the best
candidate is kept and installed into the network by
connecting it to the output units. This candidate will be
trained in the next output phase, together with the other
output weights. Only output weights are trained in the
output phase; the other weights in the network are frozen.
In the input phase, descendant candidates that complicate
the network architecture are penalized by a given factor
(the score cC of candidate units to be placed on a new
layer is multiplied by 80%).

As described in Section 3, a cache is used in addition to
the neural network, and the CC-style training uses all the
data stored in the cache. The cache targets are computed
by TD-learning, as described in Section 2.

5. An illustration: Tic-Tac-Toe

In order to assess the potential of using constructive
neural network learning in combination with TD-learning,
we experimented with the algorithm described above, and
with several other neural network algorithms, in the
context of learning to play Tic-Tac-Toe. The main reason
for choosing this domain is that it was fairly simple to
have automated opponents of different levels of
competence. The value function being learned in this
case is defined on after-states (Sutton & Barto, 1998).
Given the board state s and the possible actions
{ }naa ,,1 � , in order to choose an action, the player
evaluates the possible board states is resulting from each
action (also called after-states). The move to make is
selected based on their values. Once the TD player has
selected an action, the opponent takes a turn. An update
to the value function happens only after the opponent has
played and the learning player has chosen its next action,

and landed in a new after-state 'is . Then, the value of the
previous after-state, is , is updated based on the value of

'is , using usual TD-learning.

An episode is a single game and a non-zero reward is
given at the end of the game only. Rewards are -1, 0 and
1 for a loss, a tie and a win respectively. The learning
player always plays first. The state of the player is
described by 9 features, which constitute the inputs to all
the learning algorithms. Each feature corresponds to a
location on the board, and its value is 1, if the player
occupies the corresponding location, -1, if the opponent
occupies the location, and 0 if the location is empty.

The discount factor was set to 0.1=γ (meaning that the
length of the game does not matter). The behavior of the
player is generated using an ε-Greedy policy, which
consists of taking the best action based on)(isV with
probability (ε−1), but selecting an action randomly with
probability ε . The probability of choosing a move
randomly was set to 01.0=ε , which means that the
learning players make a random move roughly once in 20
games. In preliminary experiments, we tried several
values of { }1.0,05.0,01.0∈ε but higher values bounded
performance. We also tried decreasing exploration
schedules, but for the sake of simplicity we are not
reporting them here.

We experimented with three learning algorithms: on-line
backpropagation, as described in section 2 (OnlineBP),
batch backpropagation using a cache (CachedBP), and the
constructive algorithm described in Section 4
(CachedCC). Based on some of the results obtained with
the constructive algorithm in preliminary trials, in order to
make all architectures comparable, the static neural
network (used with both on-line and cached
backpropagation) was configured to have 9 inputs,
followed by 20 layers of 7 symmetric sigmoidal units
each (with activation function () 5.011)(−+= −xexf).
The network is fully connected (every unit receives input
from every unit on the previous layer, like in CC). There
is a single symmetric sigmoidal output unit with range
[]0.1,0.1− . This configuration makes the static network
structure of the two BP algorithms and the final network
structure of the constructive algorithm as close as possible
(the final CachedCC networks had around 140 hidden
units distributed on an average of 20 layers). Single layer
backpropagation networks were also tested with different
numbers of hidden units (140, 210, 280, and 315), but
none achieved the performance of the topology described
above.

For all the learning algorithms, the cache size was set to
hold 10 games before consolidating the system. This
setting is used in order to keep the cache relatively small,
an important requirement for using the algorithm in large
state spaces.

The consolidation process (network training) for the
CachedBP algorithm stops when target values are learned

with 2.5% precision or after 10 epochs. Although 10
epochs may seem low, trials using larger number of
epochs (100, 33, and 25, which leads to a total number of
epochs similar to CachedCC) showed no significant
difference in performance. Moreover, using 10 epochs
makes this algorithm comparable to the other two learners
in terms of computation time during training. Note that
even though CachedBP may seem to require more epochs
to reach the CachedCC level, CachedBP updates the
hidden weights in each epoch, while CachedCC updates a
hidden unit only for a few epochs before freezing it.

For the constructive learning algorithm, the consolidation
process (network training) stops when the target values
are learned with 2.5% precision (05.=pr) (no maximum
epoch is required). In preliminary experiments, we tried
precision values { }1,.075,.05,.025,.01.∈pr . Higher
values often led to significantly slower learning while
lower values often led to bigger variance in the
performance of the learned policy, as well as a larger
topology of the final network. We suspect that these
results are due to overtraining occurring at the lower
settings of the precision. Otherwise, default parameter
values were used (see Shultz & Rivest, 2001).

Three opponents were set up for the training and
evaluation of the learning players: RandomPlayer (RP),
BasicPlayer (BP) and MinimaxPlayer (MP). The random
player simply chooses a move randomly with uniform
probability from the list of available moves. The basic
player is equivalent to a myopic search player. If there is a
move that would win the game, then the player takes it
immediately. Otherwise, if the opponent would have a
winning move in the next turn, the position is blocked. If
neither of these situations applies, the player chooses an
action randomly. The minimax player uses minimax
search with alpha-beta pruning and complete depth (i.e.,
search continues until a final position is reached). The
minimax player is therefore perfect and can only win or
tie. Its move list is randomized before searching so that it
varies its moves.

Table 1. Built-in players’ performance against each other in
percent wins (mean ± standard deviation).

% WINS 2nd
 Random Basic Minimax

Random 58%±5% 9%±3% 0%±0%
Basic 88%±4% 31%±5% 0%±0% 1st
Minimax 97%±2% 77%±4% 0%±0%

Table 2. Built-in players’ performance against each other in
percent looses (mean ± standard deviation).

% LOSSES 2nd
 Random Basic Minimax

Random 30%±4% 69%±5% 78±4%
Basic 2%±1% 18%±4% 15±4% 1st
Minimax 0%±0% 0%±0% 0%±0%

The three opponent players were evaluated by playing
against each other 100 games 30 times. This leads to the
average %wins and %losses shown in Tables 1 and 2.

For the learning players, 30 instances of each model were
trained under each of the conditions listed below:

1- 10000 games against RP.
2- 10000 games against BP.
3- 10000 games against MP.
4- 10000 games against a new randomly

selected opponent for each game.
5- 3000 games against RP, 3000 games

against BP, 3000 games against MP,
1000 games against a new randomly
selected opponent for each game.

6- 3000 games against MP, 3000 games
against BP, 3000 games against RP,
1000 games against a new randomly
selected opponent for each game.

Each learning player was evaluated by playing 100 games
against each opponent in non-learning mode (using the
current greedy policy) before training and after each 1000
training games. Conditions 1, 2 and 3 are aimed at
comparing the performance of the different learning
algorithms against given, fixed players. Conditions 4, 5
and 6 test the influence of the training regime on the
performance of the players. In this case, the learners have
to learn to do well against all players, which is a harder
task. Under condition 5, one would still expect the
learners to do well, since the opponents are presented in
increasing order of difficulty. The order is reversed in
Condition 6, which intuitively should make the task more
difficult.

6. Results

Table 3 contains the mean (and standard deviation) of the
percentage of games lost against each type of opponent
(as evaluated at the end of the training), for each
algorithm under training conditions 1-4. Results are
grouped by training condition and results for each
algorithm are provided in order.

Table 3. Performance against each built-in player under each
training condition in percent lost. Means that are significantly
different using the Scheffe test for the Mix condition are starred.

EVALUATED AGAINST
Random Basic Minimax

TRAINED
AGAINST MODEL

Mean StdDev Mean StdDev Mean StdDev
Online BP 14% 7% 61% 12% 84% 18%
Cached BP 9% 5% 57% 7% 97% 8% Random
Cached CC 4% 4% 34% 17% 56% 31%
Online BP 9% 3% 54% 6% 100% 0%
Cached BP 9% 3% 55% 5% 100% 0% Basic
Cached CC 8% 5% 17% 10% 37% 41%
Online BP 17% 5% 43% 14% 50% 32%
Cached BP 20% 5% 41% 6% 29% 9% Minimax
Cached CC 18% 9% 39% 15% 17% 24%
Online BP 6% 3% 37% 14% 82%* 21%
Cached BP 8%* 4% 46%* 17% 92%* 19% Mix
Cached CC 5%* 4% 29%* 21% 29%* 33%

It is clear from this table that CachedCC is either as good
as the other learning algorithms, or it outperforms them.
Its loss percentage is always equal or below that of the
other algorithms for every condition (except against RP
under MP training, but this is clearly not a significant
difference, so it can be considered equal). To control the
significance of these results, a one-way ANOVA analysis
was done on the MIX condition performance against each
type of opponent independently. A post-hoc Scheffe test
shows that CachedCC is significantly better (at the .05
level) than CachedBP against every opponent
independently. It also shows that CachedCC is
significantly better than OnlineBP against the MP
opponent.

Table 4 contains the mean (and standard deviation) of the
percent of wins against each type of opponent at the end
of the training, for each algorithm, under training
conditions 1 to 4. Here, CachedCC is outperformed by
OnlineBP once (against BP under MIX training). But in
that condition, CachedBP also performs worse, which
seems to indicate that the caching mechanism may be
partially the cause. To validate the significance of these
results, a one-way ANOVA analysis was done on the
MIX condition performance against each type of
opponent independently. A post-hoc Scheffe test
confirmed that CachedCC is significantly worse (at the
.05 level) than OnlineBP against the BP opponent.
CachedBP is not significantly different than the two
others. Nevertheless, CachedCC is either as good as the
other algorithms or it outperforms them in every other
condition.

Table 4. Performance against each built-in player under each
training condition in percentage of games won. Means that are
significantly different using Scheffe test for the Mix condition
are starred.

EVALUATED AGAINST
Random Basic Minimax

TRAINED
AGAINST MODEL

Mean StdDev Mean StdDev Mean StdDev
Online BP 78% 11% 20% 12% 0% 0%
Cached BP 87% 5% 36% 11% 0% 0% Random
Cached CC 87% 7% 26% 15% 0% 0%
Online BP 80% 5% 23% 4% 0% 0%
Cached BP 81% 4% 23% 4% 0% 0% Basic
Cached CC 82% 6% 32% 14% 0% 0%
Online BP 57% 11% 12% 6% 0% 0%
Cached BP 52% 5% 14% 4% 0% 0% Minimax
Cached CC 69% 10% 12% 8% 0% 0%
Online BP 87% 4% 37%* 13% 0% 0%
Cached BP 86% 4% 30% 16% 0% 0% Mix
Cached CC 87% 6% 27%* 16% 0% 0%

With every learning algorithm, when trained against a
fixed opponent, a few networks learned to never lose
against that particular opponent. But when trained under
the mix or sequential conditions, only a few CachedCC
networks learned to never loose against any opponent.
Results for the networks that never lose against BP and
MP are in Table 5. There were four such networks in the

mix condition 4, four in the sequence condition 5, and one
in the inverse sequence condition 6.

Table 5. Results for the Cached CC networks that never lose
against BP and MP.

 %Lost vs RP %Win vs RP %Win vs BP
Mix ½%± ½% 94%±3% 40%±12%
Sequence 3½%±½% 90%±1% 26%±10%
Inv. Seq. 2% 92% 35%

Table 6 contains the mean (and standard deviation) of the
percentage of losses against each type of opponent at the
end of the training for each algorithm under training
condition 4, 5, and 6. Results are grouped by algorithm.
Each algorithm shows some decrease in performance in
the inverse sequence condition compared to the mix
condition. Although OnlineBP is only negatively affected
in the inverse sequence condition, the algorithms using
the cache are affected in various ways. CachedBP is doing
slightly worst against RP (significantly at the .05 level
using independent sample t-test) and it is doing much
better against MP in the incremental setup (significantly
at the .05 level using independent sample t-test).
CachedCC is doing better (but not significantly better)
against each opponent in the sequence condition. Also
note that CachedCC is the only algorithm to reach its
independent training performance: even though only
around 3333 games are played against each opponent,
some of the networks get to the level of play achieved by
playing 10000 games against that opponent (see Table 3).

Table 6. Performance against each built-in player under each
training condition in percentage games lost. Pairs of values
compared with t-test are marked by a star if significantly
different and a hat if not.

EVALUATED AGAINST
Random Basic Minimax MODEL TRAINED

AGAINST
Mean StdDev Mean StdDev Mean StdDev

Mix 6% 3% 37%* 14% 82%* 21%
Sequence 7% 5% 42% 16% 84% 23% Online BP
Inv. Seq. 8% 4% 47%* 15% 93%* 14%
Mix 8%* 4% 46%* 17% 92%* 19%
Sequence 15%* 4% 43% 9% 45%* 22%

Cached
BP

Inv. Seq. 9% 3% 57%* 11% 100% 0%
Mix 5%* 4% 29%* 21% 29%^ 33%
Sequence 5% 3% 18%* 14% 19%^ 29%

Cached
CC

Inv. Seq. 9%* 6% 35% 17% 36% 33%

Table 7 contains the mean (and standard deviation) of the
percentage of games won against each type of opponent at
the end of the training for each algorithm under training
conditions 4 and 5. Results are grouped by algorithm.
Here, OnlineBP is affected by the reverse sequence
condition. CachedBP is clearly negatively affected (t-test
were done for BP and RP and both were significantly
different at the .05 level) in the sequence condition and,
surprisingly, unaffected by the inverse sequence
condition. CachedCC is unaffected and is also, again the

only algorithm that allows some learners to reach the
independent training condition level.

Table 7. Performance against each built-in player under each
training condition in percentage games won. Pairs of values
compared with t-test are marked by a star if significantly
different and a hat if not.

EVALUATED AGAINST
Random Basic Minimax MODEL TRAINED

AGAINST
Mean StdDev Mean StdDev Mean StdDev

Mix 87% 4% 37% 13% 0% 0%
Sequence 86% 6% 31% 15% 0% 0% Online BP
Inv. Seq. 86% 4% 35% 13% 0% 0%
Mix 86%* 4% 30%* 16% 0% 0%
Sequence 61%* 8% 12%* 8% 0% 0%

Cached
BP

Inv. Seq. 85% 4% 28% 10% 0% 0%
Mix 87% 6% 27% 16% 0% 0%
Sequence 85% 6% 25% 14% 0% 0%

Cached
CC

Inv. Seq. 83% 8% 26% 14% 0% 0%

Overall, each algorithm is doing worst in the reverse
sequence, but it seems that OnlineBP is unaffected by the
normal sequence. CachedBP is affected and an analysis of
its learning curves shows that cached BP is strongly
biased toward most recent training. Figure 3, Figure 4 and
Figure 5 show that the performance of CachedBP against
RP and BP decreases when learning to play against MP;
hence, CachedBP seems to show an important forgetting
effect. On the other hand, playing solely against MP in the
sequential condition gives it an advantage over MP that it
does not have in the mix condition, as shown in Figure 6
and Figure 7.

This may also explain why CachedCC is only playing
slightly better under the incremental condition. Its
constructive approach along with the incremental learning
suggests that we should get much better results in the
incremental setup; instead, we only get a small increase in
performance and a huge variation. This may be due to the
overall worse performance of algorithms that use the
cache. Nevertheless, CachedCC is clearly less sensitive
to catastrophic forgetting than CachedBP, certainly due to
its weight freezing.

Cached BP trained against SEQ

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Games (K)

%
 L

os
ts

 a
ga

in
st

 R
an

do
m

Figure 3. Percent lost of Cached BP against RP trained
incrementally. It shows a small forgetting of RP when learning
against BP (4 to 6) and MP (7 to 9).

Cached BP trained against SEQ

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Games (K)

%
 W

in
s

ag
ai

ns
t R

an
do

m

Figure 4. Percent win of Cached BP against RP trained
incrementally. It shows a small forgetting of RP when learning
against BP (4 to 6) and MP (7 to 9).

Cached BP trained against SEQ

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Games (K)

%
 W

in
s

ag
ai

ns
t B

as
ic

Figure 5. Percent win of Cached BP against BP trained
incrementally. It shows a small forgetting of BP when learning
against MP (7 to 9).

Cached BP trained against MIX

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Games (K)

%
 L

os
ts

 a
ga

in
st

 M
in

im
ax

Figure 6. Percent lost of Cached BP against MP trained in mix
condition. It does not improve successfully against MP.

Cached BP trained against SEQ

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Games (K)

%
 L

os
ts

 a
ga

in
st

 M
in

im
ax

Figure 7. Percent lost of CachedBP against MP trained
incrementally. It improves only near the end when learning
against MP itself (7 to 9).

7. Discussion

There are few interesting things to note about the
constructive approach and how the networks grow under
the various training conditions. Considering how poorly a
learner trained against RP or BP only performs against
MP, one would expect systems trained against a sequence
of opponents of increasing difficulty to show a sudden
jump in size when they start playing against a new
opponent. However, this does not happen at all in our
experiments, as shown in Figure 8. In fact, such size
increases only happen in the inverse sequence condition
(Figure 9). Structural graphs show that, in fact, the
structure developed while playing against RP is almost
sufficient to learn to play against BP and MP, even
though the non-output weights of the network are frozen.
More interestingly, the structural curves under the
randomly selected opponent condition show a slower
increase in the number of nodes, over a longer period of
time, than the curves trained with a sequence of
increasing difficulty, as shown in Figure 10 and Figure 8.
The latter exhibit a jump in the beginning, then more or
less stagnate for the rest of the training.

Figure 10 and Figure 11 show growth curves in number of
hidden units and in number of layers (network depth)
respectively.

Cached CC trained against SEQ

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

0 1 2 3 4 5 6 7 8 9 10

Games (K)

N
um

be
r o

f U
ni

ts

Figure 8. CachedCC network growth curve while learning in the
sequence condition.

Cached CC trained against INVSEQ

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

0 1 2 3 4 5 6 7 8 9 10

Games (K)

N
um

be
r o

f U
ni

ts

Figure 9. CachedCC network growth curve while learning in the
reverse sequence condition.

Cached CC trained against MIX

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

0 1 2 3 4 5 6 7 8 9 10

Games (K)

N
um

be
r o

f U
ni

ts

Figure 10. CachedCC network growth curve while learning in
the mix condition.

CachedCC trained against MIX

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0 1 2 3 4 5 6 7 8 9 10

Games (K)

N
um

be
r o

f L
ay

er
s

Figure 11. CachedCC network depth curve while learning in the
mix condition.

It is also interesting to note that slight variations in the
behavior of the cache can change the performance of the
learners significantly. In the model used, every time a
value ()sV is read, it is placed in the cache. When the
agent selects its move using its current policy, it looks at
every possible move, and hence, at multiple after-states.
From these, only the after-state based on the move chosen
will be updated (or corrected). A different variation is to
have the cache hold only the values that need to be
updated. But in preliminary trials, this approach led to
less successful results. One of the reasons is certainly the
natural rehearsal that the read cache places in the training
set. That is, the training set does not only contain patterns
that need correction, but also patterns that do not need to
change. This restricts the way in which the network may

change, and has the effect of avoiding catastrophic
forgetting of the current knowledge (which could result
from learning only corrections).

This kind of rehearsing has already been successfully
used in transfer of knowledge in neural networks in the
task rehearsal method (Silver, 2000). It was also used by
Ans & Rousset (2000) in their self-refreshing memory, a
model in which two neural networks used rehearsing to
learn multiple tasks one after the other, while reducing
catastrophic forgetting.

In a similar fashion, if the player is doing some search
before choosing its move, like in the TD-Leaf algorithm
(Baxter, Tridgell, & Weaver, 1998), it is possible to place
search information into the cache, in order to bootstrap
the learning prior to taking real actions. This may help
generate a richer training set for the network.

8. Conclusion

In this paper we explored the use of constructive neural
networks with reinforcement learning algorithms. The
particular algorithm we used is based on Cascade-
Correlation, and uses a short-term look up table as cache
to accumulate a batch of data. Our empirical results
indicate a strong potential for this combination. The
algorithm did not exhibit any catastrophic forgetting, like
batch backpropagation. Also, the constructive algorithm
was the only one to reach the same performance when
trained against a mix of opponents, as when training took
place against one opponent only. Of course, a lot more
experimentation is needed to assess the merits of this
approach, in particular given that we observed some
variance in its performance under different conditions.

Acknowledgements
This research was supported in parts by grants from
NSERC and FQNRT. We also want to thank our
anonymous reviewers for their very helpful comments.

References
Anderson, C.W. (1993) Q-Learning with Hidden-Unit

Restarting. In Advances in Neural Information
Processing Systems 5, pp. 81-88. MIT Press.

Ans, B. & Rousset, S. (2000) Neural Networks with a
Self-Refreshing Memory: Knowledge Transfer in
Sequential Learning Tasks Without Catastrophic
Forgetting. Connection Science 12(1):1-19.

Baird, L.C. (1995). Residual algorithms: Reinforcement
learning with function approximation. In Proceedings of
the Twelfth International Conference on Machine
Learning, pp. 30-37. Morgan Kaufmann, San Francisco.

Baluja, S., & Fahlman, S.E. (1994). Reducing Network
Depth in the Cascade-Correlation Learning

Architecture. Technical Report #CMU-CS-94-209,
School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA.

Baxter, J., Tridgell, A., & Weaver, L. (1998)
TDLeaf(lambda): Combining Temporal Difference
Learning with Game-Tree Search. In Proceedings of the
Ninth Australian Conference on Neural Networks, pp.
168-172, Brisbane QLD.

Crites, R.H. & Barto, A.G. (1996). Improving elevator
performance using reinforcement learning. In D.S.
Touretzky, M.C. Mozer & M.E. Hasselmo (eds.),
Advances in Neural Information Processing Systems:
Proceedings of the 1995 Conference, pp. 1017-1023.
MIT Press, Cambridge MA.

Fahlman, S.E. & Lebiere, C. (1990) The cascade-
correlation learning architecture. In Advances in neural
information processing systems 2, pp. 524-532. Los
Altos, CA: Morgan Kaufmann.

Platt, J.C. (1991) A resource-allocating network for
function interpolation. Neural Computation 3:213-225.

Rivest, F., & Shultz, T.R. (2002). Application of
Knowledge-based Cascade-Correlation to Vowel
Recognition. In Proceedings of the 2002 International
Joint Conference on Neural Networks, pp. 53-58.

Silver, D. (2000). Selective Transfer of Neural Network
Task Knowledge. Ph.D. Thesis, University of Western
Ontario.

Shultz, T.R. & Rivest, F. (2001) Knowledge-based
cascade-correlation: Using knowledge to speed learning.
Connection Science 13:1-30.

Sutton, R.S. (1988). Learning to predict by the method of
temporal differences. Machine Learning, 3:9-44.

Sutton, R.S., & Barto, A.G. (1998). Reinforcement
Learning: An Introduction. The MIT Press: Cambridge,
Massachusetts. 340 p.

Tesauro, G.J. (1995). Temporal difference learning and
TD-Gammon. Communications of the ACM 38, pp. 58-
68.

Tsitsiklis, J.N. & Van Roy, B. (1996). Feature-based
methods for large scale dynamic programming.
Machine Learning, 22:59-94.

Yang, J. & Honavar, V. (1998) Experiments with the
cascade-correlation algorithm. Microcomputers
Applications, 17:40-46.

