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Abstract 
 

Using neural networks to represent value 
functions in reinforcement learning algorithms 
often involves a lot of work in hand-crafting the 
network structure, and tuning the learning 
parameters.  In this paper, we explore the 
potential of using constructive neural networks 
in reinforcement learning.  Constructive neural 
network methods are appealing because they can 
build the network structure based on the data that 
needs to be represented.  To our knowledge, such 
algorithms have not been used in reinforcement 
learning.  A major issue is that constructive 
algorithms often work in batch mode, while 
many reinforcement learning algorithms work 
on-line.  We use a cache to accumulate data, then 
use a variant of cascade correlation to update the 
value function.  Preliminary results on the game 
of Tic-Tac-Toe show the potential of this new 
algorithm, compared to using static feed-forward 
neural networks trained with backpropagation. 

1.  Introduction 

One of the important questions in reinforcement learning 
(RL) research regards the successful use of non-linear 
function approximators, such as neural networks, in 
combination with temporal-difference (TD) learning 
algorithms (Sutton & Barto, 1998).  From a theoretical 
point of view, it is known that some reinforcement 
learning algorithms oscillate or even diverge with 
particular non-linear approximators (e.g., Baird, 1995; 
Tsitsiklis & Van Roy, 1996).  On the other hand, some of 
the most successful applications of RL to large scale 
tasks, such as the elevator dispatching system (Crites & 
Barto, 1996) and TD-Gammon (Tesauro, 1995) use TD-
learning together with neural networks.  In both of these 
cases, a significant amount of engineering went into 
setting up the configuration of the neural network, 
choosing the input parameters and tuning the learning 
parameters.  A lot of anecdotal evidence supports the fact 

that getting RL to work well with artificial neural 
networks involves a significant amount of hand-crafting. 

In this paper we explore the possibility of using RL 
algorithms together with constructive neural network 
algorithms.  Constructive neural networks have the 
desirable property of being able to build the necessary 
network architecture by themselves, based on the training 
data provided; hence, such algorithms require less 
engineering of the network representation and are easier 
to use.  Several empirical studies using supervised 
learning tasks (e.g., Yang & Honavar, 1998) showed that 
constructive algorithms perform at least as well or better 
than hand-tuned feed-forward backpropagation networks. 

Although static feed-forward neural networks are often 
used with RL algorithms, to our knowledge, there have 
been no published results combining constructive neural 
networks and RL.  The closest attempt is the work of 
Anderson (1993), combining Q-learning with resource-
allocation networks (Platt, 1991).  However, in his 
algorithm the network structure was fixed from the 
beginning, and hidden units were re-started rather than 
being added dynamically.  A possible reason for this lack 
of algorithms is that constructive algorithms generally 
operate in batch mode, over a whole data set, while RL 
algorithms typically use on-line training.  In this paper, 
we use a variant of the cascade correlation algorithm 
(Fahlman & Lebiere, 1990; Baluja & Fahlman, 1994), in 
combination with TD-learning.  The neural network is 
treated like a slow memory, with a cache attached to it.  
This allows data from the TD-learning algorithm to 
accumulate in the cache before being used to train the 
network further. We compare the performance of the 
constructive algorithm to that of a static backpropagation 
network in a simple game playing task, that of playing 
Tic-Tac-Toe.  The learning algorithms are tested against 
different fixed opponents, and different training regimens.  

The paper is organized as follows.  In Section 2 we 
present background on the use of reinforcement learning 
with neural networks.  Section 3 describes cached training 
of neural networks, and the constructive algorithm we are 
proposing is described in Section 4.  In Section 5 we 
describe the Tic-Tac-Toe domain used as an illustration.  



 

 

Sections 6 and 7 contain a presentation and discussion of 
the empirical results.  In Section 8 we conclude and 
present avenues for future work. 

2.  TD Learning and Neural Networks 

Temporal-difference (TD) learning (Sutton, 1988; Sutton 
& Barto, 1998) is an algorithm used to learn a value 
function ℜ→S:πV  over the state space S , for a given 
policy (way of choosing actions) π . In an episodic task 
(i.e., a task that terminates), within an episode, TD-
learning works as follows:  

1- Initialize state s .
2- Choose action a using policy π and

observe reward r and next state s′ .
3- Update ( )sV such that

( ) ( ) ( ) ( )[ ]sVsVrsVsV −′++← γα , where α is

the learning rate and γ the discount

factor (both between 0 and 1).
4- 'ss ←
5- Repeat steps 2-4 until episode ends.

The value function learned this way is an estimate of the 
expected total reward received for an episode from a 
given state s  under policy π .  
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Figure 1. On-line backpropagation network training model. 

The usual way to combine TD with neural networks is to 
represent the value function πV using a multi-layer feed-
forward neural network.  The state s is described as a 
vector of input features.  The update rule from step 3 
above is used to compute the new desired value for state 
s , denoted ( ) ))'(()()1( sVrsVsT γαα ++−= . This will 
be used as target value for state s  to generate an error 
signal ( ) ( )[ ]2sVsTE −=  for the neural networks.  The 
weights of the neural network are modified such as to 
minimize this error. Typically, this step is achieved by 
simply applying gradient descent once. So using the 
derivative of the error of the network with respect to the 
weights, these are updated using 

s
WEWW ∂∂−= .  Note 

that no learning rate is necessary here, because it was 
already incorporated in the TD target.  Typically, no 
momentum is used either, since it may interfere with TD 
bootstrapping.  This model of updating, which we will 
call OnlineBP (for on-line backpropagation) is illustrated 
in Figure 1.  We assume at this point that the network 
architecture is static, and designed at the beginning of 

learning.  The learning algorithm will change only the 
network parameters. 

3.  Cached network training 

Because our goal is to use constructive neural network 
algorithms, we need a mechanism to accumulate patterns 
without losing the bootstrap effect of on-line learning.  
We use a simple approach, in which the neural network is 
treated as a slow memory and a look-up table is used as a 
cache on it. When the estimated value )(sV  for a state s  
needs to be read, the system first looks it up in the cache.  
If state s  is found, then its cached value is returned.  If s  
is not found, then the network is evaluated for s  and the 
value is saved in the cache before being returned. When a 
new target value ( )sT  is computed for a state s , it 
overwrites the current estimate ( )sV  in the cache. Hence, 
the cache always contains a single value ( )sV  for each 
state s  on which a request was made.  This helps to keep 
the cache small.  Also, note that if a state is revisited, its 
cached value will be updated multiple times, according to 
the TD update rule.  Once in a while, the system needs to 
be consolidated, by training the neural network on the 
cache data. In this case, all the values for the different 
states that appear in the cache are used as targets for the 
network. Once the system is consolidated, the cache is 
emptied. This model is illustrated in Figure 2. 
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Figure 2. Cached neural network. 

Of course, the idea of the cache can be used with static 
neural networks trained with backpropagation, as well as 
with constructive algorithms.  In the experiments, we use 
a cache version of backpropagation in addition to the on-
line algorithm described above. 

4.   Constructive Neural Network Learning 

The constructive learning algorithm that we use in this 
paper is a variation of the Cascade-Correlation (CC) 
algorithm developed by Fahlman and Lebiere (1990).  It 
uses the sibling-descendant pool of candidates suggested 
by Baluja and Fahlman (1994), which allows a network to 
grow by adding nodes to the same layer, as well as by 
adding more layers.  This approach allows networks to be 
less deep than standard CC.  We also use a generalization 
of its candidate objective function (Rivest & Shultz, 
2002).  



 

 

Like CC, the network starts with only inputs and outputs, 
which are fully connected.  The algorithm starts in output 
phase, in which the weights connecting the output units 
(the output weights) are trained to minimize the sum of 
squared error (as in backpropagation).  This phase stops 
when a required accuracy is reached.  Exactly like in CC, 
if the optimization process stagnates, or after a maximum 
number of epochs, the algorithm shifts to the input phase. 
The first step of the input phase is to initialize a pool of 
candidate units that could potentially be added to the 
network.  In standard CC, the pool of candidates consists 
solely of hidden units that could be cascaded before the 
output of the network (called descendant units), hence 
creating a new layer.  Instead of this approach, we use the 
variation of Baluja and Fahlman (1994), which also 
allows candidate units that could be connected in parallel 
to the current top-most hidden unit, on the same layer 
(called sibling units).  The weights connecting candidate 
units are trained to minimize the square of the covariance 
between their activation and the output residual error 
normalized by the sum of squared error, i.e. 

( ) ∑= pcc EEVCovC 2, . As in CC, at the end of the input 
phase, which is reached when the optimization process 
stagnates or after a maximum number of epochs, the best 
candidate is kept and installed into the network by 
connecting it to the output units.  This candidate will be 
trained in the next output phase, together with the other 
output weights. Only output weights are trained in the 
output phase; the other weights in the network are frozen.  
In the input phase, descendant candidates that complicate 
the network architecture are penalized by a given factor 
(the score cC of candidate units to be placed on a new 
layer is multiplied by 80%). 

As described in Section 3, a cache is used in addition to 
the neural network, and the CC-style training uses all the 
data stored in the cache.  The cache targets are computed 
by TD-learning, as described in Section 2. 

5.  An illustration: Tic-Tac-Toe 

In order to assess the potential of using constructive 
neural network learning in combination with TD-learning, 
we experimented with the algorithm described above, and 
with several other neural network algorithms, in the 
context of learning to play Tic-Tac-Toe.  The main reason 
for choosing this domain is that it was fairly simple to 
have automated opponents of different levels of 
competence.  The value function being learned in this 
case is defined on after-states (Sutton & Barto, 1998). 
Given the board state s  and the possible actions 
{ }naa ,,1 � , in order to choose an action, the player 
evaluates the possible board states is  resulting from each 
action (also called after-states).  The move to make is 
selected based on their values.  Once the TD player has 
selected an action, the opponent takes a turn.  An update 
to the value function happens only after the opponent has 
played and the learning player has chosen its next action, 

and landed in a new after-state 'is .  Then, the value of the 
previous after-state, is , is updated based on the value of 

'is , using usual TD-learning. 

An episode is a single game and a non-zero reward is 
given at the end of the game only.  Rewards are  -1, 0 and 
1 for a loss, a tie and a win respectively.  The learning 
player always plays first.  The state of the player is 
described by 9 features, which constitute the inputs to all 
the learning algorithms.  Each feature corresponds to a 
location on the board, and its value is 1, if the player 
occupies the corresponding location, -1, if the opponent 
occupies the location, and 0 if the location is empty. 

The discount factor was set to 0.1=γ  (meaning that the 
length of the game does not matter). The behavior of the 
player is generated using an ε-Greedy policy, which 
consists of taking the best action based on )( isV  with 
probability ( ε−1 ), but selecting an action randomly with 
probability ε .  The probability of choosing a move 
randomly was set to 01.0=ε , which means that the 
learning players make a random move roughly once in 20 
games.  In preliminary experiments, we tried several 
values of { }1.0,05.0,01.0∈ε  but higher values bounded 
performance.  We also tried decreasing exploration 
schedules, but for the sake of simplicity we are not 
reporting them here.   

We experimented with three learning algorithms: on-line 
backpropagation, as described in section 2 (OnlineBP), 
batch backpropagation using a cache (CachedBP), and the 
constructive algorithm described in Section 4 
(CachedCC). Based on some of the results obtained with 
the constructive algorithm in preliminary trials, in order to 
make all architectures comparable, the static neural 
network (used with both on-line and cached 
backpropagation) was configured to have 9 inputs, 
followed by 20 layers of 7 symmetric sigmoidal units 
each (with activation function ( ) 5.011)( −+= −xexf ). 
The network is fully connected (every unit receives input 
from every unit on the previous layer, like in CC).  There 
is a single symmetric sigmoidal output unit with range 
[ ]0.1,0.1− . This configuration makes the static network 
structure of the two BP algorithms and the final network 
structure of the constructive algorithm as close as possible 
(the final CachedCC networks had around 140 hidden 
units distributed on an average of 20 layers). Single layer 
backpropagation networks were also tested with different 
numbers of hidden units (140, 210, 280, and 315), but 
none achieved the performance of the topology described 
above.  

For all the learning algorithms, the cache size was set to 
hold 10 games before consolidating the system.  This 
setting is used in order to keep the cache relatively small, 
an important requirement for using the algorithm in large 
state spaces. 

The consolidation process (network training) for the 
CachedBP algorithm stops when target values are learned 



 

 

with 2.5% precision or after 10 epochs. Although 10 
epochs may seem low, trials using larger number of 
epochs (100, 33, and 25, which leads to a total number of 
epochs similar to CachedCC) showed no significant 
difference in performance. Moreover, using 10 epochs 
makes this algorithm comparable to the other two learners 
in terms of computation time during training. Note that 
even though CachedBP may seem to require more epochs 
to reach the CachedCC level, CachedBP updates the 
hidden weights in each epoch, while CachedCC updates a 
hidden unit only for a few epochs before freezing it. 

For the constructive learning algorithm, the consolidation 
process (network training) stops when the target values 
are learned with 2.5% precision ( 05.=pr ) (no maximum 
epoch is required).  In preliminary experiments, we tried 
precision values { }1,.075,.05,.025,.01.∈pr .  Higher 
values often led to significantly slower learning while 
lower values often led to bigger variance in the 
performance of the learned policy, as well as a larger 
topology of the final network.  We suspect that these 
results are due to overtraining occurring at the lower 
settings of the precision.  Otherwise, default parameter 
values were used (see Shultz & Rivest, 2001). 

Three opponents were set up for the training and 
evaluation of the learning players: RandomPlayer (RP), 
BasicPlayer (BP) and MinimaxPlayer (MP). The random 
player simply chooses a move randomly with uniform 
probability from the list of available moves. The basic 
player is equivalent to a myopic search player. If there is a 
move that would win the game, then the player takes it 
immediately.  Otherwise, if the opponent would have a 
winning move in the next turn, the position is blocked.  If 
neither of these situations applies, the player chooses an 
action randomly. The minimax player uses minimax 
search with alpha-beta pruning and complete depth (i.e., 
search continues until a final position is reached).  The 
minimax player is therefore perfect and can only win or 
tie.  Its move list is randomized before searching so that it 
varies its moves. 

Table 1. Built-in players’ performance against each other in 
percent wins (mean ± standard deviation). 

% WINS 2nd 
  Random Basic Minimax 

Random 58%±5% 9%±3% 0%±0% 
Basic 88%±4% 31%±5% 0%±0% 1st 
Minimax 97%±2% 77%±4% 0%±0% 

 

Table 2. Built-in players’ performance against each other in 
percent looses (mean ± standard deviation). 

% LOSSES 2nd 
  Random Basic Minimax 

Random 30%±4% 69%±5% 78±4% 
Basic 2%±1% 18%±4% 15±4% 1st 
Minimax 0%±0% 0%±0% 0%±0% 

 

The three opponent players were evaluated by playing 
against each other 100 games 30 times. This leads to the 
average %wins and %losses shown in Tables 1 and 2. 

For the learning players, 30 instances of each model were 
trained under each of the conditions listed below: 

1- 10000 games against RP.
2- 10000 games against BP.
3- 10000 games against MP.
4- 10000 games against a new randomly

selected opponent for each game.
5- 3000 games against RP, 3000 games

against BP, 3000 games against MP,
1000 games against a new randomly
selected opponent for each game.

6- 3000 games against MP, 3000 games
against BP, 3000 games against RP,
1000 games against a new randomly
selected opponent for each game.

Each learning player was evaluated by playing 100 games 
against each opponent in non-learning mode (using the 
current greedy policy) before training and after each 1000 
training games. Conditions 1, 2 and 3 are aimed at 
comparing the performance of the different learning 
algorithms against given, fixed players.  Conditions 4, 5 
and 6 test the influence of the training regime on the 
performance of the players.  In this case, the learners have 
to learn to do well against all players, which is a harder 
task.  Under condition 5, one would still expect the 
learners to do well, since the opponents are presented in 
increasing order of difficulty.  The order is reversed in 
Condition 6, which intuitively should make the task more 
difficult. 

6.  Results 

Table 3 contains the mean (and standard deviation) of the 
percentage of games lost against each type of opponent 
(as evaluated at the end of the training), for each 
algorithm under training conditions 1-4. Results are 
grouped by training condition and results for each 
algorithm are provided in order.  

Table 3. Performance against each built-in player under each 
training condition in percent lost. Means that are significantly 
different using the Scheffe test for the Mix condition are starred. 

EVALUATED AGAINST 
Random Basic Minimax 

TRAINED 
AGAINST MODEL 

Mean StdDev Mean StdDev Mean StdDev 
Online BP 14% 7% 61% 12% 84% 18% 
Cached BP 9% 5% 57% 7% 97% 8% Random 
Cached CC 4% 4% 34% 17% 56% 31% 
Online BP 9% 3% 54% 6% 100% 0% 
Cached BP 9% 3% 55% 5% 100% 0% Basic 
Cached CC 8% 5% 17% 10% 37% 41% 
Online BP 17% 5% 43% 14% 50% 32% 
Cached BP 20% 5% 41% 6% 29% 9% Minimax 
Cached CC 18% 9% 39% 15% 17% 24% 
Online BP 6% 3% 37% 14% 82%* 21% 
Cached BP 8%* 4% 46%* 17% 92%* 19% Mix 
Cached CC 5%* 4% 29%* 21% 29%* 33% 



 

 

It is clear from this table that CachedCC is either as good 
as the other learning algorithms, or it outperforms them.  
Its loss percentage is always equal or below that of the 
other algorithms for every condition (except against RP 
under MP training, but this is clearly not a significant 
difference, so it can be considered equal).  To control the 
significance of these results, a one-way ANOVA analysis 
was done on the MIX condition performance against each 
type of opponent independently. A post-hoc Scheffe test 
shows that CachedCC is significantly better (at the .05 
level) than CachedBP against every opponent 
independently. It also shows that CachedCC is 
significantly better than OnlineBP against the MP 
opponent. 

Table 4 contains the mean (and standard deviation) of the 
percent of wins against each type of opponent at the end 
of the training, for each algorithm, under training 
conditions 1 to 4.  Here, CachedCC is outperformed by 
OnlineBP once (against BP under MIX training).  But in 
that condition, CachedBP also performs worse, which 
seems to indicate that the caching mechanism may be 
partially the cause.  To validate the significance of these 
results, a one-way ANOVA analysis was done on the 
MIX condition performance against each type of 
opponent independently.  A post-hoc Scheffe test 
confirmed that CachedCC is significantly worse (at the 
.05 level) than OnlineBP against the BP opponent. 
CachedBP is not significantly different than the two 
others.  Nevertheless, CachedCC is either as good as the 
other algorithms or it outperforms them in every other 
condition. 

Table 4. Performance against each built-in player under each 
training condition in percentage of games won.  Means that are 
significantly different using Scheffe test for the Mix condition 
are starred. 

EVALUATED AGAINST 
Random Basic Minimax 

TRAINED 
AGAINST MODEL 

Mean StdDev Mean StdDev Mean StdDev 
Online BP 78% 11% 20% 12% 0% 0% 
Cached BP 87% 5% 36% 11% 0% 0% Random 
Cached CC 87% 7% 26% 15% 0% 0% 
Online BP 80% 5% 23% 4% 0% 0% 
Cached BP 81% 4% 23% 4% 0% 0% Basic 
Cached CC 82% 6% 32% 14% 0% 0% 
Online BP 57% 11% 12% 6% 0% 0% 
Cached BP 52% 5% 14% 4% 0% 0% Minimax 
Cached CC 69% 10% 12% 8% 0% 0% 
Online BP 87% 4% 37%* 13% 0% 0% 
Cached BP 86% 4% 30% 16% 0% 0% Mix 
Cached CC 87% 6% 27%* 16% 0% 0% 

 

With every learning algorithm, when trained against a 
fixed opponent, a few networks learned to never lose 
against that particular opponent.  But when trained under 
the mix or sequential conditions, only a few CachedCC 
networks learned to never loose against any opponent.  
Results for the networks that never lose against BP and 
MP are in Table 5.  There were four such networks in the 

mix condition 4, four in the sequence condition 5, and one 
in the inverse sequence condition 6. 

Table 5. Results for the Cached CC networks that never lose 
against BP and MP. 

 %Lost vs RP %Win vs RP %Win vs BP 
Mix ½%± ½% 94%±3% 40%±12% 
Sequence 3½%±½% 90%±1% 26%±10% 
Inv. Seq. 2% 92% 35% 

 

Table 6 contains the mean (and standard deviation) of the 
percentage of losses against each type of opponent at the 
end of the training for each algorithm under training 
condition 4, 5, and 6.  Results are grouped by algorithm. 
Each algorithm shows some decrease in performance in 
the inverse sequence condition compared to the mix 
condition.  Although OnlineBP is only negatively affected 
in the inverse sequence condition, the algorithms using 
the cache are affected in various ways. CachedBP is doing 
slightly worst against RP (significantly at the .05 level 
using independent sample t-test) and it is doing much 
better against MP in the incremental setup (significantly 
at the .05 level using independent sample t-test).  
CachedCC is doing better (but not significantly better) 
against each opponent in the sequence condition.  Also 
note that CachedCC is the only algorithm to reach its 
independent training performance: even though only 
around 3333 games are played against each opponent, 
some of the networks get to the level of play achieved by 
playing 10000 games against that opponent (see Table 3). 

Table 6. Performance against each built-in player under each 
training condition in percentage games lost. Pairs of values 
compared with t-test are marked by a star if significantly 
different and a hat if not. 

EVALUATED AGAINST 
Random Basic Minimax MODEL TRAINED 

AGAINST 
Mean StdDev Mean StdDev Mean StdDev 

Mix 6% 3% 37%* 14% 82%* 21% 
Sequence 7% 5% 42% 16% 84% 23% Online BP 
Inv. Seq. 8% 4% 47%* 15% 93%* 14% 
Mix 8%* 4% 46%* 17% 92%* 19% 
Sequence 15%* 4% 43% 9% 45%* 22% 

Cached 
BP 

Inv. Seq. 9% 3% 57%* 11% 100% 0% 
Mix 5%* 4% 29%* 21% 29%^ 33% 
Sequence 5% 3% 18%* 14% 19%^ 29% 

Cached 
CC 

Inv. Seq. 9%* 6% 35% 17% 36% 33% 

 

Table 7 contains the mean (and standard deviation) of the 
percentage of games won against each type of opponent at 
the end of the training for each algorithm under training 
conditions 4 and 5. Results are grouped by algorithm. 
Here, OnlineBP is affected by the reverse sequence 
condition. CachedBP is clearly negatively affected (t-test 
were done for BP and RP and both were significantly 
different at the .05 level) in the sequence condition and, 
surprisingly, unaffected by the inverse sequence 
condition. CachedCC is unaffected and is also, again the 



 

 

only algorithm that allows some learners to reach the 
independent training condition level. 

Table 7. Performance against each built-in player under each 
training condition in percentage games won. Pairs of values 
compared with t-test are marked by a star if significantly 
different and a hat if not. 

EVALUATED AGAINST 
Random Basic Minimax MODEL TRAINED 

AGAINST 
Mean StdDev Mean StdDev Mean StdDev 

Mix 87% 4% 37% 13% 0% 0% 
Sequence 86% 6% 31% 15% 0% 0% Online BP 
Inv. Seq. 86% 4% 35% 13% 0% 0% 
Mix 86%* 4% 30%* 16% 0% 0% 
Sequence 61%* 8% 12%* 8% 0% 0% 

Cached 
BP 

Inv. Seq. 85% 4% 28% 10% 0% 0% 
Mix 87% 6% 27% 16% 0% 0% 
Sequence 85% 6% 25% 14% 0% 0% 

Cached 
CC 

Inv. Seq. 83% 8% 26% 14% 0% 0% 

 

Overall, each algorithm is doing worst in the reverse 
sequence, but it seems that OnlineBP is unaffected by the 
normal sequence. CachedBP is affected and an analysis of 
its learning curves shows that cached BP is strongly 
biased toward most recent training. Figure 3, Figure 4 and 
Figure 5 show that the performance of CachedBP against 
RP and BP decreases when learning to play against MP; 
hence, CachedBP seems to show an important forgetting 
effect. On the other hand, playing solely against MP in the 
sequential condition gives it an advantage over MP that it 
does not have in the mix condition, as shown in Figure 6 
and Figure 7. 

This may also explain why CachedCC is only playing 
slightly better under the incremental condition. Its 
constructive approach along with the incremental learning 
suggests that we should get much better results in the 
incremental setup; instead, we only get a small increase in 
performance and a huge variation. This may be due to the 
overall worse performance of algorithms that use the 
cache.  Nevertheless, CachedCC is clearly less sensitive 
to catastrophic forgetting than CachedBP, certainly due to 
its weight freezing. 
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Figure 3. Percent lost of Cached BP against RP trained 
incrementally. It shows a small forgetting of RP when learning 
against BP (4 to 6) and MP (7 to 9). 
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Figure 4. Percent win of Cached BP against RP trained 
incrementally. It shows a small forgetting of RP when learning 
against BP (4 to 6) and MP (7 to 9). 

Cached BP  trained against SEQ

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Games (K)

%
 W

in
s 

ag
ai

ns
t B

as
ic

 
Figure 5. Percent win of Cached BP against BP trained 
incrementally. It shows a small forgetting of BP when learning 
against MP (7 to 9). 
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Figure 6. Percent lost of Cached BP against MP trained in mix 
condition. It does not improve successfully against MP. 
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Figure 7. Percent lost of CachedBP against MP trained 
incrementally. It improves only near the end when learning 
against MP itself (7 to 9). 

7.  Discussion 

There are few interesting things to note about the 
constructive approach and how the networks grow under 
the various training conditions. Considering how poorly a 
learner trained against RP or BP only performs against 
MP, one would expect systems trained against a sequence 
of opponents of increasing difficulty to show a sudden 
jump in size when they start playing against a new 
opponent.  However, this does not happen at all in our 
experiments, as shown in Figure 8.  In fact, such size 
increases only happen in the inverse sequence condition 
(Figure 9).  Structural graphs show that, in fact, the 
structure developed while playing against RP is almost 
sufficient to learn to play against BP and MP, even 
though the non-output weights of the network are frozen.  
More interestingly, the structural curves under the 
randomly selected opponent condition show a slower 
increase in the number of nodes, over a longer period of 
time, than the curves trained with a sequence of 
increasing difficulty, as shown in Figure 10 and Figure 8.  
The latter exhibit a jump in the beginning, then more or 
less stagnate for the rest of the training.  

Figure 10 and Figure 11 show growth curves in number of 
hidden units and in number of layers (network depth) 
respectively. 
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Figure 8. CachedCC network growth curve while learning in the 
sequence condition. 
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Figure 9. CachedCC network growth curve while learning in the 
reverse sequence condition. 
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Figure 10. CachedCC network growth curve while learning in 
the mix condition. 
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Figure 11. CachedCC network depth curve while learning in the 
mix condition. 

It is also interesting to note that slight variations in the 
behavior of the cache can change the performance of the 
learners significantly. In the model used, every time a 
value ( )sV  is read, it is placed in the cache.  When the 
agent selects its move using its current policy, it looks at 
every possible move, and hence, at multiple after-states.  
From these, only the after-state based on the move chosen 
will be updated (or corrected). A different variation is to 
have the cache hold only the values that need to be 
updated. But in preliminary trials, this approach led to 
less successful results.  One of the reasons is certainly the 
natural rehearsal that the read cache places in the training 
set.  That is, the training set does not only contain patterns 
that need correction, but also patterns that do not need to 
change. This restricts the way in which the network may 



 

 

change, and has the effect of avoiding catastrophic 
forgetting of the current knowledge (which could result 
from learning only corrections).  

This kind of rehearsing has already been successfully 
used in transfer of knowledge in neural networks in the 
task rehearsal method (Silver, 2000). It was also used by 
Ans & Rousset (2000) in their self-refreshing memory, a 
model in which two neural networks used rehearsing to 
learn multiple tasks one after the other, while reducing 
catastrophic forgetting.  

In a similar fashion, if the player is doing some search 
before choosing its move, like in the TD-Leaf algorithm 
(Baxter, Tridgell, & Weaver, 1998), it is possible to place 
search information into the cache, in order to bootstrap 
the learning prior to taking real actions. This may help 
generate a richer training set for the network.  

8.  Conclusion 

In this paper we explored the use of constructive neural 
networks with reinforcement learning algorithms.  The 
particular algorithm we used is based on Cascade-
Correlation, and uses a short-term look up table as cache 
to accumulate a batch of data.  Our empirical results 
indicate a strong potential for this combination.  The 
algorithm did not exhibit any catastrophic forgetting, like 
batch backpropagation.  Also, the constructive algorithm 
was the only one to reach the same performance when 
trained against a mix of opponents, as when training took 
place against one opponent only.  Of course, a lot more 
experimentation is needed to assess the merits of this 
approach, in particular given that we observed some 
variance in its performance under different conditions. 
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