
Text Bundling: Statistics-Based Data Reduction

Lawrence Shih kai@ai.mit.edu

Jason D. M. Rennie jrennie@ai.mit.edu

Yu-Han Chang ychang@ai.mit.edu

David R. Karger karger@lcs.mit.edu

Artificial Intelligence Laboratory; Massachusetts Institute of Technology; Cambridge, MA 02139

Abstract

As text corpora become larger, tradeoffs be-
tween speed and accuracy become critical:
slow but accurate methods may not complete
in a practical amount of time. In order to
make the training data a manageable size, a
data reduction technique may be necessary.
Subsampling, for example, speeds up a classi-
fier by randomly removing training points. In
this paper, we describe an alternate method
for reducing the number of training points by
combining training points such that impor-
tant statistical information is retained. Our
algorithm keeps the same statistics that fast,
linear-time text algorithms like Rocchio and
Naive Bayes use. We provide empirical re-
sults that show our data reduction technique
compares favorably to three other data re-
duction techniques on four standard text cor-
pora.

1. Introduction

There is a great need to find fast, effective algorithms
for text classification. A KDD panel headed by Domin-
gos (2002) discussed the tradeoff of speed and accuracy
in the context of very large (e.g. one-million record)
databases. Most highly accurate text classifiers take a
disproportionately large time to handle a large num-
ber of training examples. These classifiers may become
impractical when faced with large data sets, like the
Ohsumed data set with more than 170,000 training
examples (Hersh et al., 1994).

The standard way to deal with a million point data
set is to reduce the size of the data to a more manage-
able amount. Subsampling, for example, reduces the
data set by randomly removes training points. Fea-
ture selection, another data reduction technique, tries
to retain only the best features of a data set.

One way to understand a large body of data is to sum-
marize them with statistics, which are functions over
the data. Let ~x = {x1, x2, . . . , xn} ∈ Rn be a set of
data. Then a statistic, s(~x), is a function that maps
the data to a single value in R. For example the mean
statistic is simply the average value of the data points.

Subsampling does not preserve the entire set of data,
rather it preserves all statistics on a random subset
of the data. In contrast, we propose to preserve cer-
tain statistics of all the data. For example, in text we
preserve the mean statistic. The mean statistic has
proven useful in Rocchio (Rocchio, 1971)—a standard
text-classification algorithm—and we believe the mean
statistic will be useful for other classifiers. Our “text
bundling” algorithm fully preserves the mean statis-
tics of all the data. Text bundling generates a new,
smaller training set by averaging together small groups
of points. This allows bundling to preserve some of
the overall distribution information beyond simply the
mean of the data. A classifier using this reduced data
set should be able to learn a decision boundary that
is at least as good as Rocchio’s, since it can use addi-
tional information about the data.

We believe this focus on mean statistics will prove to
be a superior data reduction technique than subsam-
pling or feature selection. For example, in a binary
problem where we reduce the data to one point per
class or “maximal bundling,” we are left with one “av-
erage” point in each class. In this average point, the
count for word i is the average number of times word
i appeared in documents of the class. When these
points are given to most learning algorithms, the result
will be a decision boundary equivalent to the Rocchio
classifier: the perpendicular bisector of the two aver-
age points. Thus, due to our focus on statistics, even
maximal bundling results in a good classifier. On the
other hand, reducing to a single point per class via
subsampling yields a single sample document. This
gives almost no information about the nature of the

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

class. Similarly, text classification with the single best
word-feature is often ineffective.

We provide empirical evidence that our bundling tech-
nique works well by comparing it with three other data
reduction techniques: bagging, feature selection, and
subsampling.

2. Related Work

The speed of machine learning algorithms is important
in making learning practical and widely used. Google’s
results are good; but few would use it were it to take
ten minutes to return results. In some fields like text,
more training data usually corresponds to higher clas-
sification accuracy. In some problems, it is easy to
amass a training set numbering in the hundreds of
thousands or millions. The best text classification al-
gorithms are “super-linear”—each additional training
point takes more time to train on than the previous
point. When the number of examples is very large,
such algorithms effectively do not complete. Those al-
gorithms run faster when given a smaller set of inputs.
Our focus is on finding a better way to select the set
of data points that we hand to such an algorithm.

One simple method of speeding up any classifier is to
reduce the number of training points. A common ap-
proach is subsampling, which retains a random subset
of the original training data. Subsampling has the ad-
vantage of being fast and easy implement. Our belief
is that for text classification there are better ways to
reduce the data set.

Given a classification algorithm that is super-linear,
another potential solution is bagging (Breiman, 1996).
Bagging partitions the original data set and learns a
classifier on each partition. A test document is labeled
by a majority vote of the classifiers. This technique
makes training faster (since each classifier has fewer
examples), but slows down testing since it evaluates
multiple classifiers for each test example. Hence the
overall training and testing time does not always de-
crease.

We can also speed up classifiers by reducing the num-
ber of features. Feature selection has been the focus of
much work (Yang & Pedersen, 1997; Mladenic, 1998).
Note that all classifiers already perform a type of fea-
ture selection: if the classifier sees a feature as irrel-
evant, it simply ignores that feature by zeroing out a
weight corresponding to that feature. Thus, an impor-
tant contribution of feature selection is to have a fast
pre-processing step that reduces the overall training
time. It is unusual, however, to see empirical evidence
comparing the empirical time reduction of feature se-

lection with the resulting loss in accuracy.

2.1. The Rocchio Algorithm

Several times in this paper, we mention the Rocchio
classification algorithm (Rocchio, 1971). For com-
pleteness we describe it in full detail here. Consider
a binary classification problem. Simply put, Rocchio
selects a decision boundary (plane) that is perpendic-
ular to a vector connecting two class centroids. Let
{~x11, . . . , ~x1l1} and {~x21, . . . , ~x2l2} be sets of training
data for the positive and negative classes, respectively.
Let ~c1 = 1

l1

∑
i ~x1i and ~c2 = 1

l2

∑
i ~x2i be the cen-

troids for the positive and negative classes, respec-
tively. Then, we define the Rocchio score of an ex-
ample as

RocchioScore(~x) = ~x · (~c1 − ~c2). (1)

One selects a threshold value, b, which may be used to
make the decision boundary closer to the positive or
negative class centroid. Then, an example is labeled
according to the sign of the score minus the threshold
value,

lRocchio(~x) = sign (RocchioScore(~x)− b) . (2)

3. The Bundling Algorithm

We can think of the tradeoffs between speed and accu-
racy in an information sense: the less raw information
we retain, generally the faster the classifier will run
and the less accurate the results. Each data reduc-
tion technique operates by retaining some information
and removing other information. By carefully select-
ing our statistics for a domain, we can optimize the
information we retain.

Bundling preserves a set of k user-chosen statistics,
~s = (s1, . . . , sk), where si is a function that maps a set
of data to a single value. Bundling imposes a global
constraint as follows.

global constraint Let ~x be a set of data. Let ~x′ be
a reduced set of training data, the “bundled” set.
Bundling requires that si(~x) = si(~x′) ∀i.

There are many possible reduced data sets, ~x′, that
can satisfy this constraint. But, we don’t only want to
preserve the global statistics. We also want to pre-
serve additional information about the distribution.
To get a reduced data set that satisfies the global
constraint, we could generate several random points
and then choose the remaining points to preserve the
statistics. This does not retain any information about

our data except for the chosen statistics. We can re-
tain some of the information besides the statistics by
grouping together sets of points and preserving the
statistics locally:

local constraint Assume that the data points, ~x,
and the reduced data, ~x′ are partitioned into the
same number of sets. Let ~y(j) be the data points
from the jth partition of ~x. Let ~y′(j) be the data
points from the jth partition of ~x′. Bundling re-
quires that si(~y(j)) = si(~y′(j)) ∀i, j.

The bundling algorithm’s local constraint is to main-
tain the same statistics between subsets of the training
data.

The focus on statistics also usually implies that the
bundled data will not have any examples in common
with the original data. This is a necessary consequence
of our wish to fully preserve certain statistics rather
than the precise examples in the original training set.
The bundling algorithm ensures that certain global
statistics are maintained, while also maintaining a re-
lationship between certain partitions of the data in the
original and bundled training sets.

In the following section we will discuss how to im-
plement bundling for text, where we preserve mean
statistics.

3.1. Text Bundling

The first step in bundling is to select a statistic or
statistics to preserve. For text, we choose the mean
statistic of each feature. Rocchio and Multinomial
Naive Bayes perform classification using only the mean
statistics of the data. As these classifiers perform well,
the mean statistics are very important for text classi-
fication.

We assume that there are a set of training documents
for each class. We apply bundling separately to each
class, so we will only discuss what needs to be done for
a single class. Let D = {~d1, . . . , ~dn} be a set of doc-
uments. It is standard to use the “bag-of-words” rep-
resentation (McCallum & Nigam, 1998), where each
word is a feature and a document is represented as a
vector of word counts. We write ~di = {di1, . . . , diV },
where the second subscript indexes the words and V is
the size of the vocabulary. We use the mean statistic
for each feature as our text statistics. So, we define
the jth statistic as

sj(D) =
1
n

n∑
i=1

dij . (3)

procedure Randomized Bundling
1: Let n be the number of documents.
2: Let m be the chosen partition size (we assume n/m

is an integer).
3: Let s1, . . . , sV be the mean statistics as defined in

equation 3.
4: Randomly partition the set of documents D into
m equal-sized partitions P1, . . . , Pm.

5: Compute d′ij = sj(Pi), where ~d′i is the ith reduced
data point and d′ij is the count of word j.

6: D′ = {~d′1, . . . , ~d′m} is the reduced data set.

As an example, consider what happens when we do
“maximal bundling.” We reduce to a single point
with the mean statistics; the jth component of the
single point is sj(D). Using a linear classifier on this
“maximal bundling” will result in a decision bound-
ary equivalent to Rocchio’s decision boundary. Both
decision boundaries are the perpendicular bisector of
the sample means of the two classes. Thus, bundling
degrades well; even when reducing to a single point,
we expect the training set to provide enough informa-
tion to create an effective text classifier. Other data
reduction techniques do not degrade as nicely.

Bundling gives us the power to trade-off between the
advantages of a mean statistic based classifier (e.g.,
Rocchio) and the advantages of one that uses the full
data (e.g., an SVM). Thus bundling allows us to ex-
plicitly adjust the level of classification speed and ac-
curacy.

For text bundling, we partition the full data set D into
m equal-sized partitions P1, . . . , Pm. Each partition
becomes a single data point in the bundled data set
D′ = {D′1, . . . , D′m}. Each element D′i is a vector of
the mean statistics of the data in partition Pi. We
calculate the elements of D′i as D′ij = sj(Pi). Note this
method also satisfies the global constraint; the global
mean is simultaneously conserved. We then feed D′ to
a classifier of our choosing.

The remaining question is determining how to parti-
tion the points. We present two algorithms, random-
ized bundling and Rocchio bundling. In randomized
bundling, we simply partition points randomly. This
takes very little time: one pass over the n training
points—the same as subsampling.

Randomized bundling puts together random points,
so it poorly preserves data point locations in feature
space. Ultimately we would like to preserve as much
location information as possible by bundling nearby
points. We might try doing a bottom-up clustering
where we combine elements closest to one another, but

procedure Rocchio Bundling
1: Let n be the number of documents.
2: Let m be the chosen partition size (we assume n/m

is an integer).
3: Let s1, . . . , sV be the mean statistics as defined in

equation 3.
4: Sort the document indices {1, . . . , n} according to

RocchioScore(~di). Let r1, . . . , rn be the sorted in-
dices.

5: Partition the documents according to the sorted
indices. Let Pi = {dr(i−1)m+1 , . . . , drim} be the ith

partition.
6: Compute d′ij = sj(Pi), where d′i is the ith reduced

data point and d′ij is the count of word j.
7: D′ = {~d′1, . . . , ~d′m} is the reduced data set.

simply computing all pairs of distances is too time con-
suming. An alternate, faster clustering algorithm is
k-means, an algorithm that iteratively attracts points
to k centroids. Empirically this method was not much
more accurate than randomized bundling but it was
much slower. Next, we describe a faster algorithm that
preserves more location information than random, but
runs faster than the two clustering algorithms.

It is difficult to do any fast clustering while considering
all dimensions of the data. If we can project the points
onto one important dimension, then we can cluster as
fast as we can sort. Rocchio bundling projects points
onto a vector and then partitions points that are near
one another in the projected space. For binary classi-
fication, that vector is the one that connects the class
centroids. For multi-class problems, we choose a vec-
tor for each class that connects the class centroid with
the centroid of all the other classes’ data.

Let ~c the centroid of one class, and ~c′ the other cen-
troid. Let ~di be the data point. Our score is the pro-
jection of ~di on to ~c′ − ~c:

RocchioScore(~di) = ~di · (~c− ~c′), (4)

By sorting documents by their score, then bundling
consecutive sorted documents, we concatenate similar
documents.

This provides a quick way to decide which points
fall within a bundle. Further details on the algo-
rithm are provided in the Rocchio bundling pseudo
code. The pre-processing time for Rocchio bundling is
O(n log(m)).

Table 1. This table summarizes the four text data sets used
in our experiments. SVM timing and accuracy are based
on SVMFu; question marks (?) indicate SVM runs that
did not finish within a week. The Reuters “accuracy” is
precision-recall break even; 20 news and Industry Sector
is multi-class accuracy; Ohsumed is binary accuracy. Fea-
tures refer to the number of features found in the training
set.

20 News IS Reut. Ohsum.
Train Size 12,000 4797 7,700 179,215
Test Size 7,982 4,822 3,019 49,145
Features 62,060 55,194 18,621 266,901
SVM time 6464 2268 408 ?
Accuracy 86.5% 92.8% 88.7% ?

3.2. Other Applications and Methods for
Bundling

Here we describe how bundling might be used in do-
mains where more statistics need to be preserved or
where statistics other than the sample mean are im-
portant. This section is not relevant to text, but may
be of interest to a wider audience interested in apply-
ing it to different domains.

Single, simple statistics like feature maxima, minima
and means can be solved in a straightforward fashion
like the text example. If each local bundle has the
maximum of each feature, then the global maximum
for each feature will also be conserved.

One can also bundle with two or more statistics si-
multaneously, though only in special cases. Instead of
bundling a partition to one point, we bundle to two or
more. One can preserve the minimum and maximum
statistics by creating two points, one of which contains
the minimum value for each feature, the other contain-
ing the maximum. One can preserve mean and vari-
ance statistics by converting each partition into two
points that have the same mean and variance statis-
tics as the partition. Both of these examples simulta-
neously satisfy the local and global constraints.

4. Results

4.1. Data Sets and Experimental Setup

Our experiments try to quantify the relationship be-
tween speed and accuracy for five different data re-
duction techniques at varying levels of speed-ups. In
order to perform these comparisons, we made a test
bed as broad and fair as possible. We compared the
various reduction techniques on SvmFu, a fast, chunk-
ing, publicly available SVM implementation (Rifkin,

2000). We coded each pre-processing step in C++,
and compared the total reported preprocessing, train-
ing and testing time reported by the UNIX time com-
mand, for user process time. We used a fast, relatively
un-used machine (1GB RAM, 1.6GHz PIII processor)
to perform all the experiments.

We use four well-known text data sets: 20 Newsgroups
(McCallum & Nigam, 1998; Slonim & Tishby, 1999;
Berger, 1999), Industry Sector (Ghani, 2000), Reuters-
21578 (Yang & Liu, 1999; Joachims, 1997; Schapire &
Singer, 2000), and Ohsumed(Hersh et al., 1994). The
data sets are summarized in Table 1. We use Rain-
bow to pre-process the raw documents into feature vec-
tors (McCallum, 1996); our pre-processing steps mimic
those used by Rennie and Rifkin (2001) for 20 News-
groups and Industry Sector; we use the Mod-Apte split
for Reuters-21578. For Ohsumed, we used the top ten
categories and split training and test by date; we com-
pute accuracy as the average binary accuracy of those
ten categories.

We chose to base our tests on the Support Vector Ma-
chine (SVM), a highly accurate, but slower (super-
linear) algorithm for classification. In many text-
classification tasks, it has consistently outperformed
other algorithms (Yang & Liu, 1999; Joachims, 1997).
The SVM takes the positive and negative training
points, and tries to place a hyper-plane between them
so that it optimizes a tradeoff between classification
error and margin width. It is more sensitive to the ex-
act location of the training points than algorithms that
simply use the features’ means. For more information
about the SVM, see the Burges (1998) tutorial.

For our experiments, we use the SMART ltc transform;
the SvmFu package is used for running experiments
(Rifkin, 2000). We set C, the penalty for misclassi-
fying training points, at 10. We produce multi-class
labels by training a one-versus-all SVM for each class
and assigning the label of the most confident SVM. We
use the linear kernel for the SVM since after applying
the SMART ltc transform, the linear kernel performs
as well as non-linear kernels in text classification (Yang
& Liu, 1999).

We use one of the best performing feature selection
algorithms used in (Mladenic, 1998), which ranks fea-
tures according to |p(fi|+) − p(fi|−)|, where p(fi|c)
is empirical frequency of fi in class c training docu-
ments. Subsampling is done by randomly removing
training documents, and bagging is done as outlined
in the related work section. The remaining two algo-
rithms, Randomized bundling and Rocchio bundling
are the focus of this paper.

4.2. Results

In this section, we analyze the results from our em-
pirical work found in Table 2 and in Figure 1 showing
the exact tradeoffs between speed and accuracy on the
various data sets. We discuss how each of the five
speed-up techniques worked.

Our results on Ohsumed explain how different data
reduction techniques work on truly large data sets.
Neither bagging nor feature selection were useful on
the data set. No bagging runs completed within the
allotted time (8 hours per run) and feature selection
required reducing the feature set to 50 features, which
yielded very poor results.

In general, feature selection was a disappointment on
both speed and accuracy grounds. The actual fea-
ture selection algorithm is empirically (though not al-
gorithmically) a small factor slower than the other al-
gorithms: one must perform calculations for every fea-
ture, and the number of features tends to be larger
than the number of data-points. This effect is rela-
tively minor. More importantly, the speedups in train-
ing times for our SVM were relatively minor. In our
tests, reducing the number of training points sped up
the algorithm more than reducing the number of fea-
tures.

Our results on Ohsumed help explain why feature se-
lection does so poorly in our empirical results. At
the fast, inaccurate end, we choose the top 50 or so
features. However, those 50 features are distributed
among 170,000 training points, so most documents end
up consisting of a single feature. If a document’s sin-
gle feature is a somewhat common word, it will tend
to appear at least once in both the class and its op-
posite class. So a common feature will result in du-
plicate documents in opposite classes, generally mak-
ing that feature useless. If the document’s single fea-
ture is somewhat rare, and only appears in one class,
it generally can only help classify a small percentage
of the test documents. So when feature selecting to
only a few points, classification accuracy sometimes
becomes near random. When we choose more features
for Ohsumed (even 100 total features) we find that the
SVM takes much longer than our eight hour time limit.

Bagging was generally more accurate than feature se-
lection, but was slow. As discussed before, splitting
the training set into more bags reduces the training
time, but increases the test time. The amount of train-
ing time per number of bags is shaped like a “U”: early
speed increases are due to less training time, later
speed decreases are due to more testing time. This
means that bagging can only speed up an algorithm to

Table 2. This table summarizes results for various text corpora (columns) against various data reduction algorithms
(rows). Results are expressed as empirical time-accuracy pairs. The first set of numbers are the time and accuracy for
the algorithms resulting in the slowest classification times; the second set of numbers represent the fastest classification
times. The maximally bundled data is functionally similar to the Rocchio algorithm. Question marks (bagging) indicate
runs that did not complete in the allotted time. Only one run of feature selection completed within the allotted time (*).

20 News IS Reuters Ohsumed
Slowest Results (time,accuracy)

Bagging 4051 .843 1849 .863 346 .886 ? ?
Feature Selection 5870 .853 2186 .896 507 .884 11010* .647*
Subsample 2025 .842 926 .858 173 .859 39340 .808
Random Bundling 2613 .862 1205 .909 390 .863 25100 .830
Rocchio Bundling 2657 .864 1244 .914 404 .882 26710 .804

Fastest Results (time,accuracy)
Bagging 2795 .812 1590 .173 295 .878 ? ?
Feature Selection 4601 .649 1738 .407 167 .423 11010* .647*
Subsample 22 .261 59 .170 9.6 .213 13 .603
Random Bundling 117 .730 177 .9 105 .603 74 .731
Rocchio Bundling 173 .730 248 .9 129 .603 134 .731

20 News Time vs. Accuracy

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0 1000 2000 3000 4000 5000 6000

Total Empirical Time

M
u

lt
i-

C
la

ss
 A

cc
u

ra
cy

Subsample

Random Bundle

Rocchio Bundle

Bagging

Feature Selection

Ohsumed Time vs. Accuracy

0.6

0.65

0.7

0.75

0.8

0.85

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Total Empirical Time

B
in

ar
y

C
la

ss
 A

cc
u

ra
cy

Subsample

Random Bundle

Rocchio Bundle

Reuters Time vs. P-R Breakeven

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

Total Empirical Time

P
re

ci
si

o
n

-R
ec

al
l B

re
ak

ev
en

Subsample

Random Bundle

Rocchio Bundle

Bagging

Feature Selection

Industry Sector Time vs. Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

Total Empirical Time

M
u

lt
i-

C
la

ss
 A

cc
u

ra
cy

Subsample

Random Bundle

Rocchio Bundle

Bagging

Feature Selection

Figure 1. Speed (measured in seconds) against accuracy plotted for the four data sets, and the five data reduction tech-
niques included in this study. On most graphs, the far right point corresponds to using all the training data, so the
accuracies converge. In the Ohsumed data set, running the SVM on such large amounts of data took too long (didn’t
finish after a week). We show a close-up on Reuters because the larger times are not interesting.

a certain point that is slower than some of the other
algorithms. On the Ohsumed database, there were no
bagging sizes that came close to completion within our
eight hour time limit.

Bagging yielded good accuracies for Reuters, and ac-
ceptable accuracies for 20 news and industry sector.
Its accuracy is tied to subsampling’s accuracy: the
sharp drop off visible in the Industry Sector graph is
due to the fact that subsampling down to a certain
level yields extremely low (nearly random) accuracies;
and combining a series of almost random classifiers
does not really help create a better classifier.

Subsampling worked overall better than expected.
Relative to the other algorithms, the process of ran-
domly selecting documents is fast. For a given re-
duced training set size, subsampling pre-processing
runs faster than any of the other data reduction al-
gorithms. More importantly, the data points that it
produces are more sparse (more zero entries) than
bundling, and hence an algorithm like the SVM will
run faster with subsampled points than with denser
bundled points. For example, on Ohsumed we could
run the SVM with 18,000 subsampled points, but with
only 12,000 bundled points.

Subsampling also leads to surprisingly accurate clas-
sification on the two binary problems, Reuters and
Ohsumed. On Reuters, it appears that a small num-
ber of documents can adequately define a class; so for a
given amount of time, subsampling will often perform
better than the other algorithms. On Ohsumed, the
accuracy seems to level off in certain ranges, perform-
ing worse than bundling for higher amounts of time,
but better than bundling for intermediate amounts of
time. Subsampling did not work well on the multi-class
problems. We believe this is because the multi-class
problems are more difficult and require more training
points to generate a good classifier.

In all of our data sets, subsampling has a steep drop
off in accuracy; eventually at 1 point per class, it will
obviously do poorly. The difficulty with subsampling
is knowing when that drop off will occur. One might
get lucky, like with Reuters, where we found the heavy
drop off doesn’t occur until you remove 19 of every 20
documents. Or one might get unlucky, like with 20
News, where removing half of the documents causes
an immediate drop in accuracy.

The most consistent and often best performing algo-
rithms were the two bundling algorithms. They had
the best performances for 20 news and industry sec-
tor, and alternated the lead on Ohsumed with sub-
sampling. For most data sets, they had the highest

scores at the slow/high accuracy end (bundling pairs
of points for most; for Ohsumed, combining every 14
points into 1); and also did not drop as sharply as sub-
sampling on the fast/low accuracy end. As mentioned
before, full bundling combined with the SVM acts like
the Rocchio classifier.

The Rocchio and random bundling methods have dif-
ferent strengths and weaknesses. As Table 2 shows,
with minimal amounts of bundling (two points per
bundle), Rocchio usually outperforms random and
most other algorithms. This is because Rocchio has
lots of freedom to choose the points that go in each
bundle. At the other end of the spectrum, Rocchio
has very few choices. For example, when bundling to
one point Rocchio has no choices–it bundles identi-
cally to random. However, Rocchio takes more time
to complete. Thus, Rocchio works well when bundling
to more points, but suffers from higher preprocessing
times when less points are retained.

5. Conclusions and Future Work

We present a new data reduction technique, called
bundling, that tries to maintain user-chosen statistics
of the data. We focused on text bundling, where the
chosen statistic is the mean of each word feature in the
training documents. We gave empirical evidence that
bundling performs well on a variety of text data sets.

In the future, we would like to extend bundling in both
a theoretical and empirical sense. It may be possible to
analyze or provide bounds on the loss in accuracy due
to bundling. We would like to construct general meth-
ods for bundling sets of statistics. We are also inter-
ested in extending bundling to other machine learning
domains.

Acknowledgements This work was supported in
part by the MIT Oxygen Partnership and Graduate
Research Fellowships from the National Science Foun-
dation. We thank Nati Srebro and Poompat Saengu-
domlert for comments on this paper.

References

Berger, A. (1999). Error-correcting output coding for
text classification. Proceedings of IJCAI-99 Work-
shop on Machine Learning for Information Filter-
ing. Stockholm, Sweeden.

Breiman, L. (1996). Bias, variance, and arcing classi-
fiers (Technical Report 460). Statistics Department,
University of California.

Burges, C. J. C. (1998). A tutorial on Support Vector

Machines for pattern recognition. Data Mining and
Knowledge Discovery, 2, 121–167.

Domingos, P. (2002). When and how to subsample:
Report on the KDD-2001 panel. SIGKDD Explo-
rations, 3.

Ghani, R. (2000). Using error-correcting codes for text
classification. Machine Learning: Proceedings of the
Seventeenth International Conference.

Hersh, W., Buckley, C., Leone, T., & Hickam, D.
(1994). OHSUMED: An interactive retrieval eval-
uation and new large test collection for research.
Proceedings of the 17th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval (pp. 192–201).

Joachims, T. (1997). A probabilistic analysis of the
Rocchio algorithm with TFIDF for text categoriza-
tion. Proceedings of the Fourteenth International
Conference on Machine Learning.

McCallum, A., & Nigam, K. (1998). A comparison
of event models for naive Bayes text classification.
Proceedings of the AAAI-98 workshop on Learning
for Text Categorization.

McCallum, A. K. (1996). Bow: A toolkit
for statistical language modeling, text
retrieval, classification and clustering.
http://www.cs.cmu.edu/∼mccallum/bow.

Mladenic, D. (1998). Feature subset selection in text-
learning. Proceedings of the Tenth European Con-
ference on Machine Learning.

Rennie, J. D. M., & Rifkin, R. (2001). Improving
multiclass text classification with the Support Vector
Machine (Technical Report AIM-2001-026). Mas-
sachusetts Insititute of Technology, Artificial Intel-
ligence Laboratory.

Rifkin, R. (2000). Svmfu. http://five-percent-
nation.mit.edu/SvmFu/.

Rocchio, J. J. (1971). Relevance feedback in informa-
tion retrieval. In G. Salton (Ed.), The SMART re-
trieval system: Experiments in automatic document
processing, 313–323. Prentice-Hall.

Schapire, R. E., & Singer, Y. (2000). Boostexter: A
boosting-based system for text categorization. Ma-
chine Learning, 39, 135–168.

Slonim, N., & Tishby, N. (1999). Agglomerative infor-
mation bottleneck. Neural Information Processing
Systems 12 (NIPS-99).

Yang, Y., & Liu, X. (1999). A re-examination of text
categorization methods. Proceedings of the ACM
SIGIR Conference on Research and Development in
Information Retrieval.

Yang, Y., & Pedersen, J. O. (1997). A comparitive
study on feature selection in text categorization.
Proceedings of the Fourteenth International Confer-
ence on Machine Learning.

