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Abstract
This paper addresses the problem of classification in
situations where the data distribution is not homoge-
neous: Data instances might come from different lo-
cations or times, and therefore are sampled from re-
lated but different distributions. In particular, features
may appear in some parts of the data that are rarely
or never seen in others. In most situations with non-
homogeneous data, the training data is not representa-
tive of the distribution under which the classifier must
operate. We propose a method, based on probabilistic
graphical models, for utilizing unseen features during
classification. Our method introduces, for each such
unseen feature, a continuous hidden variable describ-
ing its influence on the class — whether it tends to be
associated with some label. We then use probabilis-
tic inference over the test data to infer a distribution
over the value of this hidden variable. Intuitively, we
“learn” the role of this unseen feature from the test set,
generalizing from those instances whose label we are
fairly sure about. Our overall probabilistic model is
learned from the training data. In particular, we also
learn models for characterizing the role of unseen fea-
tures; these models use “meta-features” of those fea-
tures, such as words in the neighborhood of an un-
seen feature, to infer its role. We present results for
this framework on the task of classifying news arti-
cles and web pages, showing significant improvements
over models that do not use unseen features.

1. Introduction

Most statistical learning models make the assumption that
data instances are IID samples from some fixed distribu-
tion. This assumption is often violated in real-world sit-
uations. In many cases, the data are collected from dif-
ferent sources, at different times, locations and under dif-
ferent circumstances. In such cases, the training data is
often not representative of the data over which the classi-
fier must operate. For example, in classifying news arti-
cles, instances are usually organized chronologically. New
events, people and places appear (and disappear) in bursts
over time (Kleinberg, 2002). The training data might con-
sist of articles taken over some time period; these are only
somewhat representative of future articles. In a task of clas-
sifying customers into categories, our training data might
be collected from one geographical region, which may not

represent the distribution in other regions.

Traditionally, this distribution drift is either ignored or
avoided by changing the data to conform better to the IID
assumption — all examples are mixed together and training
and test are selected randomly. Unfortunately, this homo-
geneity cannot be ensured in real-world tasks, where only
the (non-representative) training data is actually available
for training.

One aspect of the non-homogeneity phenomenon is that the
test data may contain many features that were never or only
rarely observed in the training data. These features may be
very useful for classification. For example, in our news ar-
ticle task, these features might include the names of places
or people currently in the news. In the customer example,
the features might include purchases of products that are
specific to a region (e.g., snow suits). However, these fea-
tures and their effect on the class label cannot be identified
from the training data.

In this paper, we propose a method for identifying and uti-
lizing these unseen features. Our approach is to associate
with each unseen feature a hidden variable that encodes in-
fluence this feature has on the class label. The value of
this variable is unknown, and must be “learned” from the
test data, without knowledge of the labels in the test data.
Our method uses probabilistic inference over a graphical
model to infer these values. Probabilistic inference effec-
tively “bootstraps” from instances that are classified with
high confidence, identifying the interaction between these
unseen features and the class, and thereby helping to clas-
sify other new instances.

So what, if anything, can we learn from the training data
about these new features? Although the unseen features in
the test data do not appear in the training data, the training
data might contain other features that play a similar role.
For example, in our news article domain, the phrase “XXX
said today” might appear in many places in the data, for
different values of “XXX”. In many cases, “XXX” is the
name of a person in the news, and might be (temporarily)
a useful feature for determining the topic of an article. In
the customer example, we might have features of products
that can help us predict their role as unseen features. Our
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algorithm learns a template model which predicts the effect
of a unseen feature from from a set ofmeta-features. This
template model is learned from seen features in the training
data, and applied to unseen features in the test data.

The remainder of this paper is structured as follows. In
Section 2 we describe a general framework and probabilis-
tic model for global and unseen features. In Section 3 we
describe our algorithm for learning this model from data
and in Section 4 we show how it can be used in classifi-
cation. In Section 5 we provide experimental results on
the Reuters news articles dataset and a University web site
dataset, showing significant improvement in accuracy. We
conclude in Section 6 with discussion and a comparison to
related work.

2. General Framework

2.1. Scopes

To make our intuitions precise within the framework of a
probabilistic model, we need the notion of ascope. We
assume that data instances are sampled from some set of
scopes, each of which is associated with some data distri-
bution. Of course, the problem only makes sense as a co-
herent learning problem if some aspects of the distributions
are shared. We focus on cases where the different distri-
butions share a probabilistic model for some set ofglobal
features, but can contain a different probabilistic model for
a scope-specific set oflocal features. These local features
may be rarely or never seen in the scopes comprising the
training data.

Let X denote global features,Z denote local features, and
Y the class variable. We assume, for simplicity, a binary
classification problem whereY ∈ {−1, 1}; our model
can be extended to multi-class classification. In scope-
varying data, we assume that for two scopesS and S′,
PS(Y | X,Z) andPS′(Y | X,Z) can be quite different,
but the effect of the global features is preserved. To make
this intuition precise, we fix a particular parametric model
for PS(Y | X,Z) — logistic regression. In this model,
for each global featureXi, there is a parameterγi. Addi-
tionally, for each scope and each local featureZi, there is
a parameterλS

i . Then, the distribution ofY given all the
features and weights is

PS(y | x, z; γ, λS) ∝ exp{γ · yx + λS · yz}. (1)

Fig. 1 shows a representation of this probabilistic model in
terms of plates. The global feature parametersγ are the
same across scopes, while the local feature parametersλS

depend on the scopeS. As is often the case, we assume that
the global weights can be learned from the training data, so
that their values are fixed when we encounter a new scope.
The key issue that we try to address in this paper is that the
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Figure 1.Plate representation of the basic scoped features model.
Outer plate represents multiple scopes, inner plate represents mul-
tiple data instances.

local feature weights are unknown.

2.2. Probabilistic Model

The main idea behind our approach is that these local fea-
ture weights can be treated as hidden variables in a graph-
ical model. In such a model, we would like evidence
from global features for the labels of some of the instances
to modify our beliefs about the role of the local features
present in these instances to be consistent with the la-
bels. By learning about the roles of these features, we
can then propagate this information to improve accuracy
on instances that are harder to classify using global features
alone. To implement this idea, we define a joint distribution
overλS andy1, . . . , ym.

For reasons that we discuss below, we use the framework
of undirected graphical models, orMarkov networks(Pearl,
1988). Specifically, we define ahybrid Markov network
(one containing both continuous and discrete variables),
that specifies a single joint distribution over the class vari-
ables and features of all of the instances in a scope, and the
feature parameters.

We begin by briefly reviewing the framework of Markov
networks. We present the log-quadratic parameterization
of a hybrid Markov network, as it is more directly suited
to our needs. LetV = (Vd,Vc) denote a set of random
variables, whereVd are discrete andVc are continuous
variables, respectively. A Markov network overV defines
a joint distribution overV, assigning a density overVc

for each possible assignmentvd to Vd. A Markov net-
workM is an undirected graph whose nodes correspond
to V. It is parameterization by a set ofpotential functions
φ1(C1), . . . , φ`(C`), such that eachC ⊂ V is a fully con-
nected subgraph, or clique, inM, i.e., eachVi, Vj ∈ C
are connected by an edge inM. (Note that a single node
is also considered a clique.) For our purposes, we assume
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Figure 2.(a) Markov network for two instances, two global features, and three local features. (b) Conditioned Markov network for the
same setting in the case of binary local features, assuming that the instance(x1, z1, y1) contains the featuresZ1 andZ2, and the instance
(x2, z2, y2) contains the featuresZ2 andZ3. (c) Hypothetical directed model.

that the functionφ(C) is log-quadratic in variablesuc for
each valueud of Cd. The Markov network then represents
the distribution:P (V) ∝∏`

i=1 φi(Ci).

In our case, the Markov network for a given scope contains:
the global and local featuresX1, . . . ,Xm andZ1, . . . ,Zm

for all instances; the labels for all instancesY 1, . . . , Y m;
and the global and local feature weightsγ andλS . Our
log-quadratic model contains three types of potentials:
One type of potential has the formφ(γi, Y

j , Xj
i ) =

exp{γiY
jXj

i }, and relates each global featureXj
i in in-

stancei to its weightγi and the class variablesYj of the cor-
responding instancei. A similar potentialφ(λi, Y

j , Zj
i ) =

exp{λiY
jZj

i } relates the local featureZj
i to its weightλi

and the labelY j . Finally, as the local feature weights are
assumed to be hidden, we introduce a prior over their val-

ues, or the formφ(λS
i ) = exp{− (λS

i −µi)
2

2σ2 }.
Overall, our model specifies a joint distribution as follows:

PS(y1, . . . , ym, λS | x1, . . . ,xm, z1, . . . , zm; γ)

∝ π(λS)
m∏

j=1

exp{γ · yjxj + λS · yjzj}, (2)

whereπ(λS) =
∏

i exp{− (λS
i −µi)

2

2σ2 }.
Viewed graphically, our Markov network contains edges
between eachY j and all of its global features and corre-
sponding parameters, and betweenY j , and each of its local
features and corresponding parameters associated with that
local feature. Fig. 2(a) shows a simple example. The graph

can be simplified considerably, when we account for vari-
ables whose values are fixed. In this case, we can simply in-
stantiate the various functions in our log-quadratic models
with these values, and omit the variables from the model.
As we discussed, we assume that the global feature weights
γ are learned from the training data, and hence their value
is fixed. Furthermore, in a classification setting, the actual
feature values are known. The resulting Markov network
is a fully connected bi-partite graph over the set of unob-
served variables{Y j} and{λi}. However, when the local
featuresZj

i are sparse, this network can be simplified sig-
nificantly. WhenZj

i = 0, there is no interaction between
Y j and any of the variablesλi. In this case, we can sim-
ply omit the edge betweenλi andY j . For example, if our
instances are documents and our local features are words,
our model would contain an edge only between the label
of a document and the weights of the scope-specific words
(local features) that it contains. An example of this condi-
tioned Markov network is shown in Fig. 2(b).

In this model, we can see that the labels of all of the in-
stances are correlated with the local feature weights of fea-
tures they contain, and thereby with each other. Thus, for
example, if we obtain evidence (from global features) about
the labelY 1, it would change our posterior beliefs about the
local feature weightλ2, which in turn would change our
beliefs about the labelY 2. Thus, by running probabilis-
tic inference over this graphical model, we obtain updated
beliefs both about the local feature weights and about the
instance labels.



Importantly, this flow of influence depends critically on our
choice of single joint undirected graphical model. Suppose,
for example, that we had chosen a directed model, where
each class label variableY j is simply a logistic conditional
distribution of the instance features. In this model, illus-
trated in Fig. 2(c), when the labels (y’s) are not observed,
they d-separate the weights from each other, and no influ-
ence flows from the observed global features, through the
labels, to help infer the role of the local features.

3. Learning the Model

We now describe how the model described in the previous
section can be learned from data.

3.1. Learning Global Feature Weights

For the case of global features, the problem is an easy one.
We simply learn their parameters from the training data,
using standard logistic regression. Maximum-likelihood
(ML) estimation finds the weightsγ that maximize the con-
ditional likelihood of the labels given the global features,

m∏

j=1

Pγ(yj | xj) ∝
m∏

j=1

exp{γ · yjxj}.

To help avoid overfitting, we assume a “shrinkage” prior
over the weights (a zero-mean Gaussian), and use maxi-
mum a posteriori (MAP) estimation. More precisely, we
assume that parameters are a priori independent and define
P (γ) =

∏
i

1√
2πσ2 exp

{−γ2
i /2σ2

}
. We fit the regression

model using conjugate gradient, where the gradient of the
log-posterior objective is given by:

m∑
=1

(
yjxj − IEy|xj [yxj ]

)− γ

σ2
.

3.2. Learning Local Feature Distributions

The weights of the local features are unknown in a test
scope. Hence, we use a distribution over their values. Most
simply, we use a Gaussian distribution with zero mean and
some varianceσ2. In this case, we assume that we know
nothing about the local features, and hence all of them have
an identical prior distribution. More interesting, however,
is the case where we can infer something about a local fea-
ture, even if we have never seen it before.

As we discussed in the introduction, we often have addi-
tional cues that indicate the role of a local feature. For
example, consider the problem of trying to distinguish be-
tween news articles labeledgrain and those labeledtrade.
Words such as “corn” or “wheat” are very useful for dis-
tinguishing these topics. These words often appear within
the phrase “tons of corn (wheat)”. Thus, we can learn that

if a word “XXX” appears in the context “tons of XXX”, it
is likely to have positive interaction with the labelgrain. If
we now see the phrase “tons of rye” in the test data (where
“rye” is rare in the training data), we can infer that “rye”
probably has positive interaction with the labelgrain. This
conclusion, in turn, will let us better classify documents
containing the word “rye”, even if that word does not ap-
pear in the context “tons of rye”.

We can exploit such patterns by learning a model that pre-
dicts the prior of the local feature weights usingmeta-
features— features of features. More precisely, we learn
a model that predicts the prior meanµi for λi from some
set of meta-featuresmi. In our news classification exam-
ple, these meta-features might consist of the words in the
vicinity of the word (feature)Zi from all of the word’s
occurrences in the scope. Other meta-features might in-
clude capitalization, morphological information, presence
in a list of proper names, or more. As our predictive model
for the meanµi we choose to use a linear regression model,
settingµi = w ·mi.

The parametersw are learned from the training data. We
first learn a feature weight for each global feature, and for
each feature local to the training scope(s). We then train the
regression model weightsw to predict the weight of feature
i asw ·mi. We used a standard linear regression with ridge
penalty of0.1.

Note that we train the meta-feature model using both global
and local features. This decision reflects an assumption that
the meta-features help predict the weights of any feature,
local or global. In other words, features that have similar
context tend to interact similarly with the class label. This
assumption allows us to utilize the information from global
features to learn our probabilistic model for local feature
weights.

The other parameter characterizing the distribution over lo-
cal feature weights is the variance. Intuitively, if the vari-
ance of a weight is small, its posterior distribution must
stay fairly close to its original mean. The larger it is, the
more flexibility there is for the test instances to change the
posterior mean, updating our beliefs about the role that this
feature plays in the test scope. We currently do not learn
the variance parameter, but set it via cross-validation.

4. Using the Model

Now that we have discussed both the basic model and how
it is learned from data, we describe the overall use of the
model in the context of an actual learning task.

Given a training set, we first learn the model, as described
in the previous section. We note that, in the training set,
there local and global features are treated identically. When



applying the model to the test set, however, our first deci-
sion is to determine the set of local and global features. In
some cases, such as the work of (Blei et al., 2002), prior
knowledge helps us distinguish global and local features.
When we have binary-valued features (such as words), we
can use a simple heuristic, and select as local features those
features that have zero or low frequency in the training set
and high frequency in the test set. The intuition behind
this rule is twofold: First, it is clear that the probabilistic
model for these features is fairly different in the training
and test set, so they are likely to be scope-specific. Second,
the model learned for these features in the training data is
likely to be quite poor, so a local model is often better. In
general, the problem of distinguishing local features from
global ones is far from trivial, and is an important topic for
future work.

Our next step is to generate the Markov network for the test
set, as described in Section 2.2. This Markov network de-
fines a joint probability distribution over the two types of
hidden variables: the weights of the local features, and the
instance labels. As we discussed, probabilistic inference
over this model will precisely implement the bootstrapping
process described above for inferring the effect of local fea-
tures. It will also label the instances in a way that takes
advantage of this information.

The major difficulty is that this joint distribution is over a
very high-dimensional space. However, the presentation as
a graphical model reveals certain structure that can be ex-
ploited for inference. In very simple cases, the graph may
be sufficiently structured that exact (up to numerical error)
inference can be used (Lerner et al., 2001). In our experi-
ments, however, the graphs contain thousands of nodes and
are quite densely connected. Exact inference is completely
intractable in these cases. We therefore resort to approxi-
mate inference.

Several approximate inference methods can be used to
solve this problem, including variational (Jordan et al.,
1999; Blei et al., 2002), or Monte Carlo sampling. We
chose to useexpectation propagationfor its simplicity
and relative efficiency and accuracy. Expectation Propa-
gation (EP) is a local message passing algorithm (Minka,
2001; Heskes & Zoeter, 2003) akin to Belief Propagation
(BP) (Pearl, 1988; Yedidia et al., 2000). Like BP, EP main-
tains approximate beliefs (marginals) over nodes of the
Markov network and iteratively adjusts them to achieve lo-
cal consistency. In our networks, we maintain independent
Gaussian beliefs overλ variables, and discrete beliefs over
theY variables. The messagesm(·) and beliefsb(·) are ini-
tialized to uniform. Nodes then iteratively pass messages to
each other, and update their local beliefs.

In our network, each edge connects between a node repre-
senting a local feature weightλi and a node corresponding

to a labelY j . We therefore have two types of messages:
mi(Y j) that goes from the weight to the label, andmj(λi)
that goes the other way. These messages are computed as
follows:

mi(Y j) ← α

∫
b(λi) eλiY

jzj
i

mj(λi)
dλi

mj(λi) ← α
∑

Y j

b(Y j) eλiY
jzj

i

mi(Y j)
,

whereα is a normalizing constant. Computing the mes-
sagemi(Y j) involves one-dimensional numerical integra-
tion which can be done efficiently using Gaussian quadra-
ture (Press et al., 1988).

In BP, the beliefs at each node are computed as the prod-
uct of the prior and the incoming messages. In hybrid net-
works such as the one in our application, the resulting func-
tion is a very complex multi-modal function, and is com-
putationally prohibitive to maintain. In EP, we approximate
these beliefs as a Gaussian, and update them using “weak
marginalization”, where the product of messages fromY ’s
and the prior is approximated by matching its mean and
variance:

b(λi) ≈ b′(λi) = απ(λi)
∏

j

mj(λi).

Again, we use Gaussian quadrature to compute the mo-
ments ofb′(λi). The beliefs of the label nodesb(Y j) =
α eγ·Y jxj ∏

i mi(Y j) can be computed exactly given the
messages.

5. Experimental Results

We performed experiments on two data sets – Reuters, a
news articles collection, and Webkb2, a collection of web
pages from universities.

5.1. Reuters

We used the ModApte set of Reuters-21578 corpus.1 We
selected four categories in the data set that contain a sub-
stantial number of documents (≈ 500); these categories are
grain, crude, trade, andmoney-fx. We eliminated docu-
ments that are labeled with more than one of these four
labels. We split the data into articles, tokenized it, and rep-
resented each document as a bag of words.

Using this data set, we created six experimental setups, by
using all possible pairings of categories from the four cat-
egories that we have chosen. For each pairing, we com-
bined all documents with those two labels, and sorted them

1The Reuters-21578 corpus was downloaded from
http://www.research.att.com/lewis/reuters21578.html
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Figure 3.Comparison of scope models on the Reuters dataset.
Each column is an average of 5 folds. Six sets of four columns
show error on different pairing of categories, while the seventh set
is the overall average. AllUnseen models significantly outper-
form the baselineFlat model.

temporally. We divided the resulting sequence into nine
time segments with roughly the same number of documents
(≈ 100) in each segment. Thus, documents from the same
segment represent articles that are published at around the
same period of time, and hence can be assumed to corre-
spond to a scope. In each setup, we set aside segments
7–9 (≈ 300 documents) as our test set, and segment 6 as a
validation set. We then trained five models, using each of
the segments 1–5 separately as a training set. We used the
data in segment 6 to select the parameterσ for the Gaussian
prior used for regularization for all models, and evaluated
the accuracy on the test set.

Our baseline modelFlat is a logistic regression model that
uses words as features. We tried different variations for
the baseline model, including one that learned using only
“global words” — words that appear in the training set with
enough frequency (> 8 documents). However, our best
model is aFlat model using all words, with each document
normalized according to its length.

Unseen is the basic model that leverages on unseen fea-
tures. For seen features, it uses parameters learned from
Flat. As for unseen features, it models the uncertainty over
their weights with a zero mean Gaussian and variance set
to α, which we set using cross-validation.

Unseen-fc is almost identical toUnseen, except that we
set variance to beβ

|Xj | , where|Xj | is the number of times
feature j appeared in the test set. Again, we setβ using
cross-validation.

Context builds on top ofUnseen-fc by allowing the prior
means of unseen features to be changed by their meta-
features, which in this case are words appearing in their
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Figure 4.Comparison of test error as the temporal distance be-
tween training and test grows.Flat model performs worse with
increasing distance, while the scope models do not suffer from
this problem and performed roughly the same regardless of the
temporal distance.

contexts. We used the individual words in a window of
±3 around the feature word as meta-features, as well as
consecutive pairs of words within the same window. Fi-
nally, we eliminated meta-features that appear too fre-
quently (> 250 times) or too infrequently (< 10 times)
as context words.

Fig. 3 shows the results. Six sets of three columns rep-
resent test error of the three models for each pair of cat-
egories (grain,crude, trade, andmoney-fx) abbreviated by
the first letter. Last set of columns is the average test er-
ror. Each column is an average of5 folds. As shown in the
figure, bothUnseen andUnseen-fc perform better than
Flat. The relative reduction in error is 38.51% and 48.47%,
respectively. Moreover,Context performs better than the
stronger unseen feature modelUnseen-fc, with a 15.19%
relative reduction in error. The p-values from paired t-
test for each of the modelsUnseen, Unseen-fc andCon-
text with flat are 0.0000566, 0.0000192 and 0.00000749
respectively. Note that the meta-features of theContext
model are also a part of the global features and are already
used by theFlat model. Hence the improvement that comes
from the Context model is due to the indirect impact of
these meta-features, which provide the model with a rea-
sonable guess for the weights of the unseen features.

We also compared our models to transductive SVMs using
the SVMlight package (Joachims, 1999). For the best value
of the SVM parameterC, transductive SVMs with a linear
kernel achieve average error of8.59% (averaged over all
folds and pairings), which is significantly worse than our
models.

Fig. 4 shows how the performance of models varies with



the temporal distance between training and test sets. As
evident from the graph, theFlat model gradually performs
worse with increasing temporal distance. This is because
the distribution of words between training and test sets be-
comes more and more different as the temporal distance be-
tween them increases. While theFlat model learned words
that are useful for prediction in one time period but not the
other, the models utilizing unseen features are able to adapt
to changing distributions, and thus do not suffer from the
same problem.

It is interesting to examine what meta-features had high
impact on determining the function of the unseen fea-
tures. Some examples with high regression weight include:
tonnes of (wheat/rye/rice), and export for the category
grain, andkuwait, saudi and demand for (petroleum/oil)
for the categorycrude. Moreover, the model successfully
inferred that many features that were not seen on the train-
ing were very useful in classification on the test set. Some
examples with high posterior mean aretexacoandchevron
for the categorygrain andventuresandprosperityfor the
categorytrade.

5.2. Webkb2

This data set consists of hand-labeled web pages from
Computer Science department web sites of four schools:
Berkeley, CMU, MIT and Stanford. We chose four cate-
gories based on the requirement that they each have a sub-
stantial number of documents in each school (≈ 100 per
school). The categories arefaculty, student, courseandor-
ganization. As in Reuters, we tokenized each web page and
represented it as a bag of words.

We created six experimental setups by using all possible
pairings of categories from the four categories that we have
chosen. In this dataset, each school naturally corresponds
to a scope. Thus, for each pairing, we train a model us-
ing each school, using one of the other three schools for
validation and the remaining two for test.

Fig. 5 shows the results of our runs on Webkb2 using two of
the models described above,Flat andContext. Six sets of
two columns represent test error for each pair of categories
(faculty,student, course, andorganization) abbreviated by
the first letter. Last set of columns is the average test error.
Each column is an average of8 folds.

As shown in the figure,Context performs better thanFlat
on all but one pairing, and is superior on average. The re-
duction of error is 5.5%, and the p-value from paired t-test
is 0.0368.

Although our model outperforms the baseline, the improve-
ments on this data set are not as large as in Reuters. There
are several possible reasons. First, the words in web pages
might not be as well suited as local features when compared
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Figure 5.Comparison ofContext model againstFlat model on
the Webkb2 data set. Each column is an average of eight folds.
Six sets of four columns show error on different pairing of cate-
gories, while the seventh set is the overall average.Context per-
forms better thanFlat on all but one pairing.

to the case of news articles. Unlike words in news articles,
which are closely associated with the topic of the article,
web pages contain more heterogeneous text. Features of
html formatting of web pages might serve as better local
features; although html formatting changes from school to
school, within a particular school, it may be a good indica-
tor of the type of web page. A second reason for the reduc-
tion in improvement is that the average performance of the
Flat model in the case of Reuters is better. This improved
base gives our models a better starting point for inferring
the values of unseen features.

6. Discussion

Our work is not the first to address the task of learning with
unseen features or scope. Recently, Blei et al. (2002) ad-
dressed the problem of local features in the context of web-
page classification and information extraction. There are
some important conceptual differences between our work
and theirs. In their work, local features were disjoint from
global features, with local features consisting of html for-
matting and global features of words on the page. This
clean partition simplifies their setting. A second key differ-
ence is that they learn very little concerning unseen features
from the training data, whereas our approach learns the
context characterizing features. At a more technical level,
their work assumes that the global probabilistic model is
naive Bayes, a model whose unrealistic independence as-
sumptions often lead to suboptimal results for text.

The problem of discovering regularities and adapting to the
test set is related to several threads of work. Slattery and
Mitchell (2000) designed an iterative procedure that ex-



ploits web-specific unseen features (directory pages) in or-
der to improve classification of web pages. However, their
procedure is limited to using these very specific features
and lacks a global underlying model (probabilistic or oth-
erwise).

Our approach is also related to the transductive learning
setting (Vapnik, 1995), in which the learner is presented the
(unlabeled) test set together with the training data, and can
attempt to optimize its performance on just the examples in
the test set. Joachims (1999) defines transductive support
vector machines and shows improvements over purely in-
ductive methods for text classification. However, transduc-
tive learners assume the presence of both training and test
set at training time and cannot adapt to multiple test sets.
A probabilistic approach proposed by Nigam et al. (2000)
uses the EM algorithm to combine labeled and unlabeled
data to improve classification. However, the underlying as-
sumption in that work is that the distribution in training and
test are the same.

In general, however, the problem of heterogeneous data
distributions is a complex one, and none of the work done
so far provides a comprehensive solution. We propose a
probabilistic framework that explicitly accommodates for
the notion of different scopes with varying data distribu-
tions. We also describe a model that accounts for one
source of variability between scopes — the appearance of
new features. Clearly, however, this model addresses only
part of the problem: Even a feature that is common in one
scope can still take on a different meaning in another. Thus,
we may want to relax the strict partition into local and
global features, allowing the meaning of a feature to vary,
to some degree, between scopes. In this case, we would
need to construct both a mechanism that learns the role of a
feature in one scope, but allows it to vary (to some extent)
in others.

Finally, our work assumes that we are given a partition of
data into scopes. In many settings, this assumption is a
reasonable one. In others, however, this partition may not
be known, or (as in the temporal setting) may not even be
a sharp partition, but rather a gradual shift. It would be
very interesting to try and detect changes in the distribution
automatically, and update the model accordingly.
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