
SimpleSVM

S.V.N. Vishwanathan vishy@axiom.anu.edu.au

Machine Learning Program, National ICT for Australia, Canberra, ACT 0200, Australia

Alexander J. Smola Alex.Smola@anu.edu.au

Machine Learning Group, RSISE , Australian National University, Canberra, ACT 0200, Australia

M. Narasimha Murty mnm@csa.iisc.ernet.in

Dept. Of Comp. Sci. and Automation, Indian Institute of Science, Bangalore 560012, India

Abstract

We present a fast iterative support vector
training algorithm for a large variety of differ-
ent formulations. It works by incrementally
changing a candidate support vector set us-
ing a greedy approach, until the supporting
hyperplane is found within a finite number of
iterations.

It is derived from a simple active set method
which sweeps through the set of Lagrange
multipliers and keeps optimality in the un-
constrained variables, while discarding large
amounts of bound-constrained variables. The
hard-margin version can be viewed as a sim-
ple (yet computationally crucial) modifica-
tion of the incremental SVM training algo-
rithms of Cauwenberghs and Poggio.

Experimental results for various settings are
reported. In all cases our algorithm is consid-
erably faster than competing methods such
as Sequential Minimal Optimization or the
Nearest Point Algorithm.

1. Introduction

Support Vector Machines (SVM) have gained promi-
nence in the field of machine learning and pattern clas-
sification. In this paper we propose a fast iterative
active set method for training a SVM.

1.1. Notation and Background

In the following we denote by {(x1, y1), . . . , (xn, yn)} ⊂
X × {±1} the set of labeled training samples, where
xi are drawn from some domain X and yi ∈ {±1},

denotes the class labels +1 and −1 respectively. Fur-
thermore, let n be the total number of points and let
n+ and n− denote the number of points in class +1
and −1 respectively. Denote by k : X × X → R a
Mercer kernel and by Φ : X → F the corresponding
feature map, that is 〈Φ(x),Φ(x′)〉 = k(x, x′).

It is well known that the optimal separating hyper-
plane between the sets with yi = 1 and yi = −1 is
spanned by a linear combination of points in feature
space (Schölkopf & Smola, 2002). Consequently the
classification rule can be expressed in terms of dot
products in feature space and we have

f(x) = 〈w,Φ(x)〉+ b =
∑
j∈A

αjyjk(xj , x) + b, (1)

where αj ≥ 0 is the coefficient associated with a sup-
port vector xj and b is an offset.

In the case of a hard-margin SVM, all SVs satisfy
yif(xi) = 1 and for all other points we have yif(xi) >
1. Furthermore (to account for the constant offset b)
we have the condition

∑
i yiαi = 0. This means that

if we knew all SVs beforehand, we could simply find
the solution of the associated quadratic program by a
simple matrix inversion.

To cope with errors, a soft margin loss function was in-
troduced by Bennett and Mangasarian (1993), leading
to various quadratic optimization problems depend-
ing on the type of error penalty used. For quadratic
penalty it is well known (Cortes & Vapnik, 1995) that
such loss functions give rise to a modified hard-margin
SV problem,1 where the kernel k(x, x′) is replaced by
k(x, x′) + χδx,x′ for some χ > 0. Again, if we knew

1For convenience of notation we assume that there are
no duplicates in the observations.

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

which vectors become SVs beforehand, we could find
the solution by a simple matrix inversion.

Finally, for the linear soft margin formulation, matters
are somewhat more complicated since SVs could be
margin SVs or margin errors. Here, if we knew the sets
of margin errors, margin SVs and their complement,
the points classified correctly with a minimum margin,
beforehand, we could solve the optimization problem
by solving a linear system.

Such a strategy would be particularly useful if the
number of unconstrained SVs was comparatively small
with respect to the overall size of the dataset, since
in such cases the search for the unconstrained SVs is
rather swift.

1.2. The Basic Idea

We propose an active set method inspired by the
chunking strategies used in the early days of SVs at
AT&T: given an optimal solution on a subset, add only
one point to the set of SVs at a time and compute the
exact solution.

If we had to re-compute the solution from scratch ev-
ery time a new point is added, this would be an ex-
tremely wasteful procedure. Instead, as we will see
below, it is possible to perform such computations at
O(m2) cost, where m is the number of current SVs
and obtain the exact solution on the new subset of
points. As one would expect, this modification works
well whenever the number of SVs is small relatively to
the size of the dataset, that is, for “clean” datasets.
In many cases the kernel matrix may be rank degen-
erate or may be approximated by a low rank matrix
(Schölkopf & Smola, 2002). In case the kernel matrix is
rank degenerate of rank l, updates can be performed
at O(ml) cost using a novel factorization method of
Smola and Vishwanathan (2003), thereby further re-
ducing the computational burden (see Vishwanathan
(2002) for technical details).

To cope with “dirty” datasets or the linear soft margin
SVM another modification is needed: whenever a point
is classified as a margin error (i.e., whenever it hits
the upper boundary), it is removed from the current
working set and the value of its Lagrange multiplier αi

is frozen until the point is re-visited.

While there is no guarantee that one sweep through
the data set will lead to a full solution of the opti-
mization problem (and it almost never will, since some
points may be left out which will become SVs at a
later stage and a similar cautionary note applies to
margin errors), we empirically observe that a small
number of passes through the entire dataset (less than

Algorithm 1 Hard-Margin SimpleSVM
input Dataset Z

Initialize: Find a close pair from opposing classes
(xi+ , xi−)
A← {i+, i−}
Compute f and α for A
while there are xv with yvf(xv) < 1 do

A← A ∪ {v}
Recompute f and α and remove non-SVs from A.

end while
Output: A, {αi for i ∈ A}

10) is sufficient for the algorithm to converge. Algo-
rithm 1 gives a high-level description of SimpleSVM in
the hard-margin case.

1.3. Outline of the Paper

In the following section we describe the active set
method underlying SimpleSVM. This section also in-
cludes a proof that all algorithms of the SimpleSVM
family have linear convergence rate and converge in fi-
nite time (this, of course, does not preclude each step
from taking up to quadratic time in size of the current
active set). Subsequently, Section 3 discusses imple-
mentation details and initialization strategies. Exper-
imental evidence of the performance of SimpleSVM is
given in Section 4 and we compare it to other state-
of-the art optimization methods. We conclude with a
discussion in Section 5.

Due to space limitations, most technical details con-
cerning the factorization of matrices and rank-one
modifications is relegated to Vishwanathan (2002).
The latter plus initial experimental code will be made
freely available at http://www.axiom.anu.edu.au/
~vishy.

1.4. Related Work

Cauwenberghs and Poggio (2001) proposed an incre-
mental SVM algorithm for the hard-margin case where
at each step only one point is added to the training
set and one re-computes the exact SV solution of the
whole dataset seen so far. Although similar in spirit
to SimpleSVM this algorithm suffers from a serious
drawback:

While adding one point at a time converges in a fi-
nite number of steps (clearly after n additions we have
seen the whole training set), the condition to remain
optimal at every step means that at every step the
algorithm has to test and potentially train on all the
observations seen so far. Such a requirement is clearly

expensive. The authors suggest various online variants
to alleviate the problem (e.g., by introducing tolerance
terms into the margin definition), however the main
problem remains.

The way to overcome the above limitations is to drop
the requirement of optimality with respect to all the
data seen so far and only require that the new solution
strictly decrease the value of the dual objective func-
tion (in SV terms the margin of separation) and be op-
timal with respect to a subset of variables. The advan-
tage of doing this is twofold: firstly, we can deal with a
larger family of optimization problems and SVM for-
mulations. Secondly, we can maintain and update a
numerically stable LDL> factorization of a subset of
the kernel matrix.

Similar steps are proposed in DirectSVM (Roobaert,
2000), which starts off with a pair of points in the
candidate SV set. It works on the conjecture that the
point which incurs the maximum error (i.e., minimal
yif(xi)) during each iteration is a SV. This is a heuris-
tic and as such it may fail. In DirectSVM’s case this
invokes a random restart of the algorithm, as it has no
provisions to backtrack and remove points from the
kernel expansion.

2. Active Set Algorithm

Instead of describing the technical details of Sim-
pleSVM in terms of SVs, it is advantageous to con-
sider general constrained optimization problems and
describe the SimpleSVM family in terms of an active
set method. This alleviates the need of an immediate
“geometric” interpretation of every optimization step.

Assume a constrained optimization problem with a
small-to-moderate number of equality constraints and
a large number of (easy-to-check) box constraints.
This situation occurs in all currently known SV set-
tings, be it classification, regression or novelty detec-
tion, independent of the parameterization (ν vs. C),
independent of the number of parametric basis func-
tions (bias, semiparametric estimation, etc.), and in-
dependent of the loss function used (as long as it is
piecewise constant, linear, quadratic, or infinite). See
Schölkopf and Smola (2002) for explicit formulations.
Consider

minimize
α

1
2α>Hα + c>α

subject to 0 ≤ αi ≤ C and Aα = b
(2)

where H ∈ Rm×m is a positive semidefinite matrix,
α, c ∈ Rm, A ∈ Rd×m, and b ∈ Rd. In general, interior
point codes are among the most efficient ones to solve
this type of problems.

However, if the problem or its solution has special
structure, faster solutions can be obtained. This is
quite often the case in SVMs, since only a small, and,
in the large sample size limit, negligible, fraction of
Support Vectors actually ends up lying on the margin
for linear soft-margin loss (Schölkopf & Smola, 2002).
As a consequence, out of the large number of Lagrange
multipliers, almost all end up hitting either the lower
constraint αi = 0 or upper constraint αi = C, thereby
rendering the optimization problem much simpler than
a direct solution suggests.

2.1. The Algorithm

Denote by S0 := {i|αi = 0}, SC := {i|αi = C}, and
Swork := {i|αi ∈ (0, C)} such that S0 ∪ Swork ∪ SC =
[1 : m]. In analogy to that denote by α0, αC , αwork the
corresponding sets of variables. Furthermore denote
by Owork the optimization problem (2), constrained to
the αwork, while keeping α0, αC fixed:

minimize
αwork

1
2α>workHwwαwork + (cw + HwCαC)>αwork

subject to 0 ≤ αi ≤ C and Awαwork = b−ACαC

(3)
Here Hww is the (quadratic) submatrix of H given
by the entries determined by Swork only, HwC is the
(rectangular) submatrix of H formed by selecting rows
from Swork and columns from SC , and finally cw, Aw

and AC are the submatrices of c and A arising by
selecting columns via Swork and SC respectively.

Finally assume that we have an initial α for which
αwork solves Owork and satisfies the constraints im-
posed by (2). The algorithm works as follows:

1. At each step add one variable from SC or S0

which violates the Kuhn-Tucker optimality con-
dition into Swork

(a) Solve the new optimization problem Owork ig-
noring the box constraints 0 ≤ αi ≤ C.

(b) If the resulting new vector αnew
work satisfies the

box constraints automatically we are done
and proceed to the next variable.

(c) If the box constraint is not satisfied pick the
point where the line [αold

work, α
new
work] intersects

with the box constraints and remove the co-
ordinate for which the box constraint be-
comes active from Swork and add it to SC .
This decreases the number of free variables
by one and we proceed with Step a).

2. Check whether the resulting solution is optimal
and unless this is the case we repeat step 1) using
the new set of variables given by αwork.

This simple algorithm has several desirable properties:
it is relatively simple to implement (see next section)
and it enjoys attractive convergence properties:

Proposition 1 The active set algorithm described
above converges in a finite number of steps to exact
solution of (2). The convergence is linear for positive
definite H.

Proof Observe that the dual objective function must
strictly improve at every step. This is so since at every
step we proceed from a sub-optimal solution (we add
in a variable at a time which does not satisfy the Kuhn-
Tucker conditions yet) to an optimal solution in these
variables.

Next note that the value after each step of the opti-
mization only depends on the choice of sets S0, Swork,
and SC . Since there exists only a finite number of
them and the algorithm cannot cycle (since we make
steady progress at each step), we must reach the opti-
mal partition in finite time.

Finally, to show linear convergence, note that we
are performing updates which are strictly better
than coordinate descent at every step (in coordinate
descent we only optimize over one variable at a time,
whereas in our case we optimize over Swork which
includes a new variable at every step). Coordinate
descent, however, has linear convergence for strictly
convex functions (Fletcher, 1989).

2.2. Applying the Optimality Conditions

It follows from Farkas’ Lemma (Fletcher, 1989) that
for the optimization problem

minimize
α

1
2
α>Hα + c>α subject to Aα = b (4)

the optimal solution in α can be found by requir-
ing that the gradient outside the constraints vanishes.
This means that we are solving the linear system[

H A>

A 0

] [
α
β

]
=

[
−c

b

]
(5)

If we add one variable to (4), the overall matrix only
changes by one row/column, making it the perfect can-
didate for a rank-one update (the cost is quadratic
rather than cubic for a full matrix inversion), which
can be done very efficiently .

Note, however, that we have to solve the box-
constrained optimization problem (2) instead of (4).

Figure 1. Progress of the active set algorithm (without
equality constraints): from a feasible solution (1) we opti-
mize over the currently free variables plus a new variable,
i.e., (α, α′) to obtain an unconstrained optimal solution
(3). Next we progress from (1) to (3) until we hit the
constraints (2). Here α′ becomes bound and we optimize
over the remaining free variables (α) to obtain an (uncon-
strained) optimal solution (4) which automatically satisfies
the box constraints. If the latter is not the case, we repeat
the previous steps, i.e., 1-3-2, however now starting with
(2) instead of (1).

So unless the unconstrained solution ends up lying in-
side the box we can use the unconstrained solution
only as an indication on how to proceed in the op-
timization. Moving towards the unconstrained part
along the boundary guarantees that we progress in the
objective function. Once we hit the boundary this will
remove one variable from the set of free variables2

Finally, observe that by moving on the line between
the old set of variables satisfying the equality con-
straints and the new solution (possibly violating the
box constraints) we will always strictly satisfy the
equality constraint Aα = b. Hence we will remain
strictly feasible at every step.

2.3. Selecting new Variables

The issue of selecting a new variable, say i, to be added
to the working set Swork is relatively straightforward:
for the convergence of our algorithm we need to ensure
that each variable is visited in a sweep through the
dataset. However, it only pays to choose it if we can
make progress in this variable. For this purpose we
check the gradient after correction by the constraints
imposed by (5).

Note that the set of variables we started with, was
optimal in the free variables, hence it solves the un-

2The pathological case of more than one variable to be-
come bound at the same time can be treated as if we were
successively removing one variable at a time.

modified system (5). Furthermore α is always strictly
feasible in the constraints. Given the particular form
of the RHS of (5), which is determined by (3), only the
i-th row of the system (5) may not be satisfied after
enlarging it by one row and column and updating its
RHS. This means that we need to check∑

j∈Swork

αjHij +
∑

l

βlAil = −ci −
∑

j 6∈Swork

Hijαj (6)

or, in short gi(α, β) := [Hα]i + [A>β]i + ci = 0.

Optimization theory tells us that if gi(α, β) > 0, we
can make progress by shrinking αi, and likewise, we
can decrease the objective function by increasing αi

if gi(α, β) < 0. This means that only if αi = 0 and
gi < 0 or alternatively αi = C and gi > 0 we need to
consider this point for optimization.

2.4. SVM Interpretation

We now return to the SV formulation for some more
geometric intuition.

In our case H is the kernel matrix, possibly adorned
by the labels, that is Hij = yiyjk(xi, xj). The vector
c has entries all −1 (for C-classification) and c = 0 for
ν-classification. Moreover, A = (y1, . . . , yn)> for clas-
sification and larger constraint matrices are found for
ν-SVM and semiparametric estimation. In the hard
margin case, C = ∞, that is, we ignore upper con-
straints.

Having a set of Lagrange multipliers satisfying the
equality constraint Aα = b means, in SV language,
that the free variables (constant offset, margin, or
semiparametric terms) of the optimization problem
are optimally determined. In particular, their values
are given by β from (5). A detailed description on
free variables and dual constraints can be found in
Schölkopf and Smola (2002).

Adding a variable to the set of free variables means
that we want to find a (partial) solution for which the
contributions of the other points to the weight vec-
tor w are kept fixed. For hard margin or quadratic
soft-margin SVM this simply means that we ignore
points which currently are not SVs. In the case of a
linear soft-margin formulation it means that we also
ignore points which have turned into margin errors,
while keeping their contribution to the weight vector
w in (1) fixed.

In SV terms the selection criterion (6) gi(α, β) 6= 0
means that we add only points which are erroneously
flagged as margin errors (αi = C but yif(xi) > 1) or
those which turn out to be margin errors but with van-
ishing Lagrange multiplier (αi = 0). The connection

to (6) stems from the fact that

[Hα]i + [A>β]i = yif(xi)

In this sense it is quite obvious why Algorithm 1 is
a special instance of the optimization steps discussed
above. However, it would be much more difficult to
describe the updates in SV language than it is in a
purely algebraic description.

3. Implementation Issues

This section contains details on initialization strate-
gies plus cases where we have rank degenerate kernel
matrices.

3.1. Initialization

Since we want to find the optimal separating hyper-
plane of the overall dataset Z, a good starting point
is the pair of observations (x+, x−) from opposing sets
X+, X− closest to each other (Roobaert, 2000). This
means that we already start with a relatively small
upper bound on the margin.

Brute force search for this pair costs O(n2) kernel eval-
uations, which is clearly not acceptable for the search
of a good starting point. Instead one may use one
of the following two operations: an iterative scheme
which will find the closest pair in log-linear time, or a
randomized method, which will find a pair almost as
good as the best pair in constant time.

Algorithm 2 Closest Pair
Input: Sets X+, X−
Initialize: Draw x+, x− at random from X+, X−.
repeat

Dold ← d(x+, x−).
x− ← argminx∈X−

d(x+, x),
x+ ← argminx∈X+

d(x−, x)
Dnew ← d(x+, x−).

until Dold = Dnew

Output: x+, x−

The Best Pair: Algorithm 2 finds the best pair by
iteratively finding the closest point from one set
with respect to another point and vice versa. This
algorithm is known to converge in log-linear time.

A Randomized Method: denote by ξ := d(x+, x−)
the random variable obtained by randomly choos-
ing x+ ∈ X+ and x− ∈ X−. Then the shortest
distance between a pair x+, x− is given by the
minimum of the random variables ξ. Therefore, if

we are only interested in finding a pair whose dis-
tance is, with high probability, much better than
the distance of any other pair, we need only draw
random pairs and pick the closest one.

In particular, one can check that roughly 59 pairs
are sufficient for a pair better than 95% of all pairs
with 0.95 probability (Schölkopf & Smola, 2002).

Once a good pair (x+, x−) has been found, we use the
latter as Swork (for C-SVM the vector α = 0 is feasible)
and begin with the optimization.

Whenever we have upper box constraints αi ≤ C and
somewhat more complex equality constraints (e.g., in
ν-SVM), that is, cases where a single pair of points
cannot influence the outcome by too much, a simple
random initialization has proven to yield good results.
After all, the algorithm finds the sets S0, SC and Swork

relatively quickly.

3.2. Rank-Degenerate Kernels

Regardless of the type of matrix factorization we use to
compute the SV solutions, we still encounter the prob-
lem that the memory requirements scale as O(m2) and
the overall computation is of the order of O(m3 +mn)
for the whole algorithm (recall that m is the total num-
ber of SVs). This may be much better than other
methods (see Section 4 for details), yet we would like
to take further advantage of kernels which are rank
degenerate, that is, if k(x, x′) can be approximated
on the training set X by z(x)z(x′)> where z(x) ∈ Rl

with l � m (in the following we assume that this ap-
proximation is exact). See (Schölkopf & Smola, 2002;
Fine & Scheinberg, 2000) for details how such an ap-
proximation can be obtained efficiently. This means
that the kernel matrix to be used in the quadratic soft
margin algorithm can be written as

K = Z>Z + λ1 (7)

where Zij := zj(xi) and Z ∈ Rn×l. Extending the
work of Fine and Scheinberg (2000) recently an al-
gorithm was proposed by Smola and Vishwanathan
(2003) which allows one to find an LDL> factoriza-
tion of K in O(nl2) time and which can be updated
efficiently in O(nl) time. This technique of using a low
rank matrix decomposition is faster than using the full
matrix inversion. Technical details about the factor-
ization can be found in Vishwanathan (2002).

Alternatively, a Sherman-Morrison-Woodbury formu-
lation could be used, albeit at the expense of much
reduced numerical stability.

4. Experiments

Since the main goal of the paper is to give an al-
gorithmic improvement over existing SVM training
algorithms, we will not report generalization perfor-
mance figures here.3 Instead, we will compare our
method with the performance of the NPA algorithm
for the quadratic soft-margin formulation (Keerthi
et al., 1999) and the popular SMO algorithm for the
linear soft-margin formulation (Platt, 1999), as both
are comparable in speed to other methods such as
SVMLight (Joachims, 1999).

Following (Keerthi et al., 1999), we compare the num-
ber of kernel evaluations performed by a support vec-
tor algorithm as an effective measure of its speed. The
latter is relevant in particular if the kernel evaluations
are expensive (this happens to be the case with most
custom-tailored kernels). Other measures are fraught
with difficulty, since comparing different implementa-
tions, compilers, platforms, operating systems, etc.,
causes a large amount of variation even between iden-
tical algorithms.

4.1. Experimental Setup and Datasets

We uniformly used a value of 1e−5 for the error bound
i.e. we stop the algorithm when αi max(yif(xi)−1, 0)+
(C − αi) max(1− yif(xi), 0) < 10−5. This means that
we stop if the contribution of every point to the KKT
gap (Schölkopf & Smola, 2002) is less than 10−5. This
is a much more stringent requirement than what can
typically be satisfied with other optimization codes in
practice, the exception being interior point methods.

The NPA results are those reported by Keerthi et al.
(1999). For the sake of comparability we used the same
kernel, namely a Gaussian RBF kernel, for all the ex-
periments (including the SMO and the NPA), i.e.

k(x, x′) = exp
(
− 1

2σ2
‖x− x′‖2

)
. (8)

The datasets chosen for our experiments are described
in Table 1. The Spiral dataset was proposed by Alexis
Wieland of MITRE Corporation and it is available
from the CMU Artificial Intelligence repository. Both
WSPBC and the Adult datasets are available from
the UCI Machine Learning repository (Blake & Merz,
1998). We used the same values of σ2 as in Keerthi

3It is a common misperception that different SV op-
timization algorithms lead to different estimation results.
This is not true, however, as long as all optimizers actu-
ally minimize the same objective function (things differ if
approximations are made). Hence it is irrelevant to report
generalization performance results in a paper concerned
with the speed of an estimator.

Dataset Size Dimensions σ2

Spiral 195 2 0.5
WPBC 683 9 4
Adult-1 1,605 123 10
Adult-4 4,781 123 10
Adult-7 16,100 123 10

Table 1. Datasets used for our experiments

et al. (1999) and Platt (1999) to allow for a fair com-
parison. Note that in general lower values of the regu-
larization parameter imply larger number of Support
Vectors and vice versa. We compare the scaling be-
haviour of various algorithms with respect to the num-
ber of Support Vectors by varying the regularization
parameter. Experimental results can be found in Fig-
ures 2, 3 and 4.

Figure 2. Performance comparison between SimpleSVM
and NPA on the Spiral and WPBC datasets.

4.2. Discussion of the Results

As can be seen SimpleSVM outperforms the NPA con-
siderably on all five datasets. For instance, on the
Spiral dataset the SimpleSVM is an order of mag-
nitude faster than the NPA (for C ′ > 5). On the
Adult-4 dataset for some values of the regularization
constant the SimpleSVM algorithm is nearly 50 times
faster than the NPA. SimpleSVM also outperforms the
SMO when the number of margin SV’s is reasonably
small. For the extreme case when the number of mar-
gin SV’s is a significant fraction of the dataset SMO
tends to require fewer number of kernel computations.
This is exactly what one expects from an algorithm
which is geared towards the situation where there are
only small numbers of margin SVs.

Furthermore, unlike NPA and SMO, SimpleSVM’s
runtime behaviour, given by the number of kernel eval-

Figure 3. Performance comparison between SimpleSVM
and NPA on the Adult datasets.

Figure 4. Performance comparison between SimpleSVM
and SMO on the Spiral and WPBC datasets. Note that
here we use the linear soft margin formulation as opposed
to the quadratic soft margin formulation of Figure 2. Con-
sequently the runtime of SimpleSVM in the current graph
is different.

uations, does not critically depend on the value of the
regularization constant. It strictly outperforms NPA,
in most cases by more than one order of magnitude.
Given a Support Vector set, the solution obtained by
SimpleSVM is exact within machine precision, whereas
algorithms such as NPA and SMO will only yield ap-
proximate expansions for the same Support Vector set.

The good performance is due to the fact that often,
e.g., in the quadratic soft-margin case, we observed
that, we do not require to cycle through the dataset
many times (at most 2 - 3), indicating that a “wrong”
support vector is rarely picked up or removed from the
active set.

5. Summary and Outlook

We presented a new SV training algorithm that is effi-
cient, intuitive, fast and numerically stable. It signifi-
cantly outperforms other iterative algorithms like the
NPA and SMO in terms of the number of kernel com-
putations. Moreover, it does away with the problem
of overall optimality on all previously seen data that
was one of the major drawbacks of Incremental SVM,
as proposed by Cauwenberghs and Poggio (2001).

It should be noted that SimpleSVM performs particu-
larly well whenever the datasets are relatively “clean”,
that is, whenever the number of SVs is rather small.
On noisy data, on the other hand, methods such as
SMO may be preferable to our algorithm. This is
mainly due to the fact that we need to store the LDL>

factorization of Hww in main memory (256 MB of main
memory suffice to store a matrix corresponding to as
many as 10, 000 SVs). Storage therefore becomes a se-
rious limitation of SimpleSVM when applied to generic
dense matrices on large noisy datasets. One possibility
to address this problem is to use low-rank approxima-
tion methods which make the problem amenable to the
low-rank factorizations described in Section 3.2.

Due to the LDL> factorization used in finding the SV
solution our algorithm is numerically more stable than
using a direct matrix inverse. This helps us deal with
round off errors that can plague other algorithms. We
suspect that similar modifications could be success-
fully applied to other algorithms as well.

At present, our algorithm does not use any kind of ker-
nel cache to reuse kernel computations (which would
further reduce the number of kernel evaluations re-
quired). The design of an efficient caching scheme to
scale up the behaviour of our algorithm is currently
being investigated.

It can be observed that the addition of a vector to
the support vector set is entirely reversible. Using this
property and following the derivation in Cauwenberghs
and Poggio (2001) we can calculate leave one out er-
rors.

Acknowledgements

S.V.N. Vishwanathan was supported by a Infosys Fel-
lowship. Alexander J. Smola was supported by a
grant of the Australian Research Council. We thank
Prof. Sathiya Keerthi for useful comments and discus-
sion.

References

Bennett, K. P., & Mangasarian, O. L. (1993). Multi-
category separation via linear programming. Opti-
mization Methods and Software, 3, 27–39.

Blake, C. L., & Merz, C. J. (1998). UCI repository of
machine learning databases.

Cauwenberghs, G., & Poggio, T. (2001). Incremental
and decremental support vector machine learning.
Advances in Neural Information Processing Systems
13 (pp. 409–415). MIT Press.

Cortes, C., & Vapnik, V. (1995). Support vector net-
works. Machine Learning, 20, 273–297.

Fine, S., & Scheinberg, K. (2000). Efficient SVM train-
ing using low-rank kernel representation (Technical
Report). IBM Watson Research Center, New York.

Fletcher, R. (1989). Practical methods of optimization.
New York: John Wiley and Sons.

Joachims, T. (1999). Making large-scale SVM learn-
ing practical. Advances in Kernel Methods—Support
Vector Learning (pp. 169–184). Cambridge, MA:
MIT Press.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., &
Murthy, K. R. K. (1999). A fast iterative nearest
point algorithm for support vector machine classifier
design (Technical Report Technical Report TR-ISL-
99-03). Indian Institute of Science, Bangalore.

Platt, J. (1999). Fast training of support vector ma-
chines using sequential minimal optimization. Ad-
vances in Kernel Methods—Support Vector Learning
(pp. 185–208). Cambridge, MA: MIT Press.

Roobaert, D. (2000). DirectSVM: A simple support
vector machine perceptron. Neural Networks for
Signal Processing X—Proceedings of the 2000 IEEE
Workshop (pp. 356–365). New York: IEEE.

Schölkopf, B., & Smola, A. J. (2002). Learning with
kernels. MIT Press.

Smola, A. J., & Vishwanathan, S. V. N. (2003).
Cholesky factorization for rank-k modifications of
diagonal matrices. SIAM Journal of Matrix Analy-
sis. in preparation.

Vishwanathan, S. V. N. (2002). Kernel methods: Fast
algorithms and real life applications. Doctoral dis-
sertation, Indian Institute of Science, Bangalore, In-
dia.

