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Abstract we can identify three parameters that affect the decision out-
come: b, «;, and K. (We will discuss them in Section 2.)
Our empirical study shows that the only effective method for
improving SVMs is through modifying the kernel function
K. As indicated by (Amari & Wu, 1999), by conformally
spreading the area around the class-boundary outward on the
Riemannian manifold where all mapped data are located in
feature spacé’, we can adapl locally to data distribution

to improve class-prediction accuracy.

When the training instances of the target class
are heavily outnumbered by non-target training
instances, SVMs can be ineffective in determin-
ing the class boundary. To remedy this problem,
we propose an adaptive conformal transformation
(ACT) algorithm. ACT considers feature-space
distance and the class-imbalance ratio when it per-
forms conformal transformation on a kernel func-

tion. Experimental results on UCI and real-world In this paper, we propose an adaptive conformal transforma-
datasets show ACT to be effective in improving tion (ACT) algorithm. ACT improves upon Amari and Wu's
class prediction accuracy. method for tackling the imbalanced-training-classes problem

in two respects.

1. We conduct the transformation based on the spatial
1. Introduction distribution of the support vectors in feature spdcein-

stead of in input spacé (Wu & Amari, 2002). Using
Support Vector Machines (SVMs) are a core machine learn-feature-space distance to conduct conformation transfor-
ing technology. They have strong theoretical foundations andmation takes advantage of the new information learned by
excellent empirical successes in many pattern recognition apS\VMs in every iteration, whereas input-space distance re-
plications such as handwriting recognition (Cortes & Vapnik, mains unchanged.
1.995)’ image re_:trieval (Tong & Chang, 2001), and teXt.ClaSSi'Z. We adaptively control the transformation based on the
fication (Joachims, 1998). However, for many eémerging ap-qa\y of the class-boundary. This transformation gives the
plications, such as gene profiling, image understanding, angq;qhhorhood of minority support vectors a higher spatial

frau_d detection (Fawcett & Provost, _199,7)' where the train- resolution, and hence achieves better separation between
ing instances of the target class are significantly outnumbereq} . |3sses

by the other training instances, the class-boundary learned by

SVMs can be severely skewed towards the target class. AIr experimental results on both UCI and real-world im-
a result, the false-negative rate can be excessively high age datasets show ACT to be very effective in correcting the
identifying target objects (e.g., a diseased gene or a suspkewed boundary.

cious event), and hence can render the classifier ineffective, o ract of this paper is organized as follows. Sectiaiis-
(We will discuss the details of this problem in Section 3.) cusses related work. SectiBluses @-D example to explain

Several attempts have been made to improve class-predictid problem caused by imbalanced training data for SVMs.
accuracy of SVMs (Amari & Wu, 1999; Breiman, 1996;In Section4 we describe the ACT algorithm for tackling the
Chan & Stolfo, 1998; Karakoulas & Taylor, 1999; Kubat & imbalanced training-data problem. Sectidrpresents the
Matwin, 1997; Li et al., 2002; Lin et al., 2002). Given thesetup and the results of our empirical studies. We offer our
class prediction function of SVMs, concluding remarks in Sectidi) as well as suggestions for

further studies.
sgn (f(x) = ZyiaiK(X> Xi) + b) ; 1)
=1

Proceedings of the Twentieth International Conference on Machine Learning (ICML;2088hington DC, 2003.



2. Related Work An entirely orthogonal approach to the algorithmic approach

. , i that we have discussed so far, is data-processing, which
Researchers have modified the learning algorithm of SV der-samples the majority class or over-samples the minor-

for remedying the imbalanced training-data problem. Let ui§y class in the hope of reducing the skew of the training

revisit the class prediction function in Eqg. 1. We can identifydataset. One-sided selection by (Kubat & Matwin, 1997)
three parameters that affect the decision outcdme;, and g 5 representative under-sampling approach, which removes

K. F:]elated algorithmic work can be summarized by chang;is, horderline, and redundant majority training instances.
Ing these parameters. However, these steps typically can remove only a small frac-

« Boundary MovementBM). Theb parameter is the inter- tion of the majority instances, and may not be very helpful
cept. We can changeto shift the decision boundary. How- in a scenario with a majority-to-minority ratio of more than
ever, this naive boundary-movement is a post-processidg0 : 1, which is becoming common in many emerging ap-
method. Intuitively, we can see that changingrades a Pplications. Multi-classifier training (Chan & Stolfo, 1998)
higher false positive count for a lower false negative coungind Bagging (Breiman, 1996), are two other under-sampling

« Biased Penaltie$BP). Thea; determines the magnitude methods. These methods do not deal with noisy and border-
of influence of training instance;. According to Eq. 1 line data directly, but use a large ensemble of subclassifiers

the larger they;, the larger the influence of in class pre- t© reduce prediction variance.

diction. Based on this idea, Veropoulos et al. (Veropoulogyver-sampling (Chawla et al., 2000) is the opposite of the
et al., 1999; Lin et al., 2002) use different penalty conunder-sampling approach. It duplicates or interpolates mi-
straints for different classes to tune #hgs. Itturns outthat nority instances in the hope of reducing the imbalance. The
this biased-penalty method does not help SVMs as much gger-sampling approach can be considered as a “phantom-
expected. According to the KKT conditions, the value otransduction” method. It assumes the neighborhood of a pos-
«; has three ranges (Cristianini & Shawe-Taylor, 2000): itive instance to be still positive, and the instances between
i =0=yf(x)>1 and & =0 (2) two positive instances positive. However, assumptions like
®) these can be data-dependent and unreliable. We believe that
an effective data-processing approach can complement an al-

gorithmic approach. Our focus in this paper is on developing
In addition,a;’s are constrained by an a|gorithmic approach_

Zaiyi =0. (5) . .
P 3. Boundary Biasin SVMs

We can see that’ imposes only an upper bound ap, not A subtle but severe problem that an SVM classifier faces
a lower bound. Increasing does not necessarily affeef. s the skewed class boundary caused by imbalanced train-
Moreover, the constraint in Eq. 5 imposes an equal total ifing data. To illustrate this problem, Figure 1 depicts a 2D
fluence from the positive and negative support vectors. Thgheckerboard example. The checkerboard dividegsax
increases in some;’s at the positive side will inadvertently 200 square into four quadrants. The top-left and bottom-
increase some;’s at the negative side to satisfy the con-ight quadrants contain negative (majority) instances while
straint. These constraints can make the increagg™obn the top-right and bottom-left quadrants contain positive (mi-
minority instances ineffective. nority) instances. The lines between the classes are the
e Kernel Modification The kernel function affects the dis- “ideal” boundary that separates the two classes. In the rest
tance computation between a support vegtoand a test- of the paper, we will uspositivewhen referring to minority
ing instancex. (We assume thak is an RBF function in instances, andegativewhen referring to majority instances.

this paper.) Based on this idea, Amari and Wu (Amari &Fi - . .
) . gure 2 exhibits the boundary distortion between the
Wu, 1999; Wu & Amari, 2002) propose to change the kerfwo left quadrants in Figure 1 under two different nega-

nelusing a confqrmal tran’sformatlon methqd. !n this p""pe{i\/e/positive training-data ratios, where a black dot with a cir-
we further Amari and Wu'’s work to deal with imbalance-

. ) cle represents a support vector, and its radius represents the
data training. Another method is proposed by Kandola et b PP P

L ‘?Neight valuex; of the support vector. The bigger the circle,
al. (Kandolal& Shawe—Taonr, .2003)'. which is based OMhe larger they;. Figure 2(a) shows the SVM class boundary
the kemel—ahgnment idea but with a simple trangformapoulhen the ratio of the number of negative instances (in the
of the "ideal” target kemel, to adapt the kernel in the im- uadrant above) to the number of positive instances (in the

balanced training-data problem. Compare_d t_o (Kandola <guadrant below) i40 : 1. Figure 2(b) shows the boundary
Shawe-Taylor, 2003), our method deals with just the CIas@\?hen the ratio increases 10, 000 : 1. The boundary in Fig-

boundary data, not the entire training dataset. Furthermor&re 2(b) is much more skewed towards the positive quadrant
the solution we introduce here is to modify the kernel func; - :
T . . than the boundary in Figure 2(a), and hence causes a higher
tion, instead of the kernel matrix as in (Kandola & Shawe y g @) g

Taylor, 2003), incidence of false negatives.

0<a;<C=yf(x;)=1 and & =0
a;=C=yf(X;) <1 and & >0. 4)



by the associated mappirg If we assume tha® has all
continuous derivatives, as in the case of an RBF function, the
surfaceS in F' is smooth, and thus can be considered as a
Riemannian manifold, which enables us to define a Rieman-
nian metric forS.

The relationship betweeh and .S can be imagined from a
simple Earth example. The local spot where we stand is per-
ceived as flat, but actually the Earth itself is a globe. Figure 3
illustrates another example. Surfacehows that &2 input
spacel is mapped to an irregular surface in feature spéce
under one mapping functioh; . In this case, for one poir?

in this irregular surface, its neighborhood is localy. One

can also choose a differeft to mapR? to the surface of a
globe in F', where the neighborhood of one poiftis still
locally R2.

0 50 10 200
Figure 1.Checkerboard Experiment.
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Figure 3.A Riemannian-Manifold Example.

) 4.1.1. REMANNIAN METRIC

100+ ———— Ordinarily, we use two schemes to measure the distance be-
¢ tween two points orf, as schematically illustrated in Fig-

os| ° . ure 4. The first one considers the distance between two points
: along a straight line irf", which is the so-called Euclidean
distance; the second one measures the distance between two

90O 20 40 60 80 100

points along a path ofi by integration. This distance, called
(b) 10,000:1 the Riemannian distance (Burges, 1999), is computed by a
Figure 2.Boundaries of Different Ratios. metric induced orS. This second metric is thus called the

. . Riemannian metric, denoted in this paper.
4. Adaptive Conformal Transformation 95 pap

_ _ ] ) A Riemannian metric tells us how to compute the distance
In this section, we first explain the geometry of the featurgetween any two points af. The components of a Rieman-
space, from which we obtain information to perform confornian metric can be viewed as multiplication factors which are
mal transformation. We then propose the Adaptive Confolsjaced before the differential displacemesdts in T to com-

mal Transformation (ACT) algorithm. We close by pointingpute the distancés of an elementiz in F in a generalized
out the differences between ACT and the prior work (Amarpythagorean theorem,

& Wu, 1999; Wu & Amari, 2002). ds? Z da:d (6)
s” = Gij ATAT ;.

4.1. Geometry of Feature Space F’ The Euclidean distance ¢an be also regarded as some for-
mat of the Riemannian distance, whetgis a discrete delta

A support vector machine can use #®nel mappindVap- .
Pp ppind\Vap Junctiond;;*, and hence

nik, 1995; Cristianini & Shawe-Taylor, 2000) to map the dat
from a Euclidean input spadeto a high-dimensional Hilbert ds? = Z du?. @)
feature spacé’, in which a classification or regression prob- ;

lem becomes linear. The mapped data lie on a surfate

F. In general,S has the same dimensionality as that of the 1a discrete delta functio,; equalsl only wheni = j, else
input spaced (Burges, 1999). The shape 6fis determined equals).



1. Euclidean distance

2: Riemannian distance 0K
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Figure 5.A Conformal Transformation Example.

In Section 4.1.2, we noted that a Riemannian mejfj¢x)
induced onS shows how a local area arourdn I is mag-
4.1.2. ROM KERNEL TO RIEMANNIAN METRIC nified in F' under the mapping@. The idea of conformal
transformation in SVMs is to enlarge the magnification fac-
Although the kernel mapping is unknown, one can still tor g;;(x) around the boundary but reduce it around other
calculate the Riemannian metric induced Srby playing points by modifying the related functiok’, according to
the kernel trick. Eq. 9. This can be implemented by introducing a confor-
Let z denote the mapped patternxfn F. We havez — mal transformation of the kernel (Amari & Wu, 1999; Wu &

®(x). Under this mapping function, a small vectéx is Amari, 2002)
mapped to K(x,x') = DX)D(X)K (x,X'), (10)
dz = (X + dx) — ®(x). (8)

Figure 4.Two Distance Measures in3aD Feature Space.

whereD(x) is a properly defined positive function.

Then, the Riemannian distande is defined as
4.2.1. FLECTION OFD(X)

ds® || dz|)

[ @(x+ dx) — @)

K (X4 dx,X + dx) — 2K (X, X + dX) + K (X, X)

- FPEX)N e, G5 (%) = D(x)* g5 (X) + Di(x) D;(x) + 2D;(X) D) K (X, %),

Oz;0x; /=X (11)

where K[(x,X) = O0K(x,X')/0z;|x'=x and Dj(x) =
0D(x)/0x;. To further increase the margin of SVMs I,

From Eqg. 6, we can see that the Riemannian metric inducgd(x) should be chosen in a way such that(x) has greater

Substituting Eq. 10 into Eq. 9 with the form of a new kernel
K (x,x), the new Riemannian metrig; (x) is

%)

on S can be defined as values around the decision boundary. In addition to dealing
K (x,x) with the skew of the class-boundagy, (x) is greater espe-
9500 = dzidxly )y, o ©) cially for the boundary area close to the minority class. An

It shows how a local area ih is magnified inF' under the RBF distance function is a good choice ().

mapping®(x) (Burges, 1999; Amari & Wu, 1999). In practice, since it is unknown exactly where the opti-
mal boundary is located, the positions of support veétors
4.2. Adaptive Conformal Transformation are used to approximate the class-boundary (Amari & Wu,

) 1999). Conformal transformation then increases the metric
A conformal transformation, also called a conformal map;, the neighborhood of the support vectors. The degree of

ping, is a transformatioii’ which maps the elemenfs € D g,ch magpification depends on the selection of conformal
to elements” € T'(D) while preserving the local angles be-function D(x)

tween the elements after mapping, whérés a domain in

which the elements reside (Cohn, 1980). Figure 5 showsSuppose the feature vectorhas been normalized to make
an example using two different conformal transformations odll its elements lie betweehand!. In addition, suppose that
a grid structure, where is a complex variable. We can seethe conformal functionD(x) is chosen aSXp(—”X*T%),

that the local grid structure is almost invariant after such gherex;, is a support vector, and the initial kernﬁl?n X'
transformation (that is, “conformdl Usually, an analytic chosen asxp(—||x — X'||). Due to Eq. 11, the new Rie-

functior? is conformal at any point where it has a nonzerqnannian metric in the neighborhood of the support vegior
derivative. In this paper, we use the teconformal function can be writtef as

Some commonly used conformal functions are represente¢t; ————— )
Notice that in the case that soft margin SVMs are employed, a

2
mde z. support vector can reside in the area of the other class. We consider
2An analytic function is a complex function which is complex such support vectors as outliers and do not consider them as support
differentiable at every point in a regioR. Please refer to mathe- vectors in our algorithm.
matics books for the details. “WhenK (x,x) is aL;-norm RBF function, it is not derivable



4.2.3. TUNING 7{ FOR IMBALANCED CLASSES

Gij(X) = D(X)?gij(x) + When the training dataset is very imbalanced, the class-
,n? - - boundary would be skewed toward the minority class in input
D(x) %(Ii —awi)" (@ —2k)" . (12)  gpacel. We then hope that the new metfjg (x) in Eq. 12
would further magnify the area far away from a minority sup-
From Eq. 12, we can see the new metjig(x) is domi- port vectorx; so that the boundary imbalance could be alle-
nated by the exponential functidd(x), which is associated viated. Our algorithm thus assigns a coefficient fortfén
with the norm numben, the parameter?, and the distance Eq. 14 to reflect the boundary skewin(x). The news? is
X — Xi||. Since we have normalizek; — ;|| to be< 1, as follows:
D(x) becomes greater wheris increased at the poimddis-

If X; is a minori rtv r
tant from the support vectoxs,, and therebyj;; (x) becomes IS @ minority support vector,

~2 2
greater. However, we hope thgg (x) is smaller for the area T = Tk (16)
far away from the class-boundary. We therefore préféx) else
with a smaller normm, such ad.; or L. In the remainder of e = natE. a7

this section, for simplification, we will discuss only the case . )
whenD(x) is anL;-norm RBF function. Examining Eq. 12 and Eqg. 13, we can see thHk) is a
monotonously increasing function ef. To increase the

4.2.2. ELECTION OF 72 FOR D(X) metricgij({() in an area which is not very close to the support
_ . ~ vector x;, it would be better to choose a larggyfor the 72

Let D(x) be anL;-norm RBF function. Since the posi- of a minority support vector. For a majority support vector,

tions of support vectors are used to approximate the clasge can choose a smalley,, so as to minimize influence on

boundary,D(x) can be chosen as the class-boundary. We empirically demonstrate thaind
D(X) = Z exp(— X — Xk|) @1z are proportional to the skew of support vectorsypas

= — ) _ 4
Kesv T OS5+, andn, asO(i5y=1), where|SV'| and [SV |

If we fix 72, D(x) can be very large in areas where a |argéjenote the number of minority and majority support vectors,

number of support vectors are present, and very small in dESPeCtively.
eas where few SUppOft vectors are present. In other WOI’(’Sgure 6 summarizes the ACT a|gorithm_ We app|y ACT
D(x) is dependent on the density of support vectors in thgn the training dataseX;,.;, until the testing accuracy on
neighborhood of(x) (if we fix 7 for all x). To alleviate  Xx,,,, cannot be further improved. In each iteration, ACT
this problem, we adaptively tung’ according to the spa- adaptively calculates? for each support vector (stei),
tial distribution of support vectors i". This goal can be based on the distribution of support vectors in feature space
achieved by the following equation: F. ACT scales the? according to the negative-to-positive

2 _ N 2 support-vector ratio (stepisl to 14). Finally, ACT updates
T = AVGietient- eI vt (1806) = 2001 (3_4) thepIEerneI and perforgns Filraining; R,-qin {stepsl5 t?) 17).

In the above equation, the average on the right-hand si
comprises all the support vectors dr(x;,)’s neighborhood
within the radius ofM but having a different class label.
Here, M is the average distance of the nearest and the faGompared to the traditional conformal transformation
thest support vector from(x;,). Settingr? in this way takes (Amari & Wu, 1999; Wu & Amari, 2002), our ACT algo-
into consideration the spatial distribution of the support veaithm has two differences:

torsinF.

(A%. Comparison with Traditional Conformal
Transformation

1. The selection of-? is dynamic in the tradition confor-
Though the mapping functioh is unknown, we can play the mal transformation, but not adaptive, since the distance be-
kernel trick to calculate the distance if tween two support vectors is calculated in input spacet

in feature spacé’. Calculatingr? in I does not reflect the
spatial distribution of the Riemannian manifdd Further-

Substituting Eq. 15 into Eq. 14, we then can calculatgfor ~ More, the input-space distance is unchanged throughout the
each support vector, which can adaptively reflect the spatiafransformation iterations. In ACT, the for the conformal
distribution of the support vector in the feature space, not infunction is calculated based on its distributionfin

the input space. 2. The traditional conformal transformation does not ad-
— - . o . dressthe problem of boundary bias in the imbalanced train-
at pointx = x’. However, it is possible to define its “subderivative” . dat o | h the decision b d |
atx = x’, which corresponds here to the average value of the rightIng ata scenario. In such a case, the decision bounaary 10-

and left derivatives (d’Alche Buc et al., 2002). The equation when cates much closer to the minority class than to the majority
n is an odd number is very similar to Eq. 12. one. We assign a larger metrjg (x) for the boundary area

[@(x:) — ®(xk)||* = K (Xi, Xi) + K (X, Xi) — 2K (Xi, Xx.). (15)



Input:
Xtra,in: Xtesty K,
0; I* stopping threshold/
T'; I* maximum running iteration¥y
Output:
C; I* output classifiet/
Variables:
SV; [* support vector set/
M; [* neighborhood rang&/
s; I* a support vector/
s.T; [* parameter of */
s.y; I* class label of */
Function Calls:
SVMTrain(Xzrain, K); I* train SVM classifieC */
SVMClassify(Xiest, C); 1* classifyXiest by C */
ExtractSV(Q; [* obtainSV from C */

ComputeM(sSV); /* compute neighborhood range for/

Begin

1) C «— SVMTrain(Xirain, K);

2) €o1d — o0

3) enew — SVMClassify(Xiest, C);

4) t —0;

5) Wh||e ((&bld — Enew > 0)&&(t < T)) {
6) SV—ExtractSV(g;

- +

7)1y — O(f5v)s 1t — O(jgv=1);

8) for eachs € SV {

9) M —ComputeM(sSV);

10) .7« sqri(AVGica(s;)—a(s)|2<M, s;.y#s.v}
(I@(si) = 2(s)[1*));

11) ifs € SVT then /* a minority support vectot/

12) S.T + /Tp X 8.7,

13) else/* a majority*/

14) S.T «— \/Tln X 8.T; }

15) D(X) = 3, exp (~22);

16) K «— D(x) x D(X') x K;

17) C «— SVMTrain(Xirqin, K);

18) €old <~ €new;

19) enew — SVMClassify(Xiest, C);

20) t«t+1;}

21)returnC;

End

Figure 6.Algorithm ACT.

Dataset | attributes  positives  negatives

segl | 19 30 180
g7 10 29 185

euthl | 24 238 1762
car3 6 69 1659
yeasts | 8 51 1433
ab19 [ 8 32 4145

Table 1.Six UCI Benchmark Datasets.

kernel D(x) compared to using input-space distance.

3. ACTr versus othersWe evaluated the effect ACTr

for dealing with the imbalanced-training problem com-
pared to other commonly used strategies, such as minority
over-sampling (SMOTE (Chawla et al., 2000)), boundary
movement (B}), and biased penaltie3(P), which are
discussed in Section 2.

In our experiments, we employed Laplacian kernels of the
formexp(—y|x — X'|) asK (X, x"). Then we used the follow-

ing procedure. The dataset was randomly split into train-
ing and test subsets generated in a best ratio, which was
empirically chosen for each dataset. Hyper-parametérs (
and~) of K(x,x’) were obtained for each run usitTgfold
cross-validation. All training, validation, and test subsets
were sampled in a stratified manner that ensured each of
them had the same negative/positive ratio (Kubat & Matwin,
1997). We repeated this procedure ten times, computed av-
erage class-predication accuracy, and compared the results.
The parameter setting far7; was achieved in the way sug-
gested in (Wu & Amari, 2002). For ACT, we chose the stop-
ping threshold as0.001 and maximum running iteratidh
as10. Our experiments were performed on six UCI datasets
and a20K, 116-category image dataset, which are described
as follows:

Six UCI datasets The six UCI datasets we experi-
mented with are,segmentation(segl), glass (g7), eu-

close to the minority class than for that close to the majority thyroid (euthyl), car (car3), yeast(yeast5), ancabalone

class, so as to reduce the skew of the class-boundary.

5. Experimental Results

Let C'T; denote Wu and Amari’'s conformal transformation
algorithm based on input-space distandé€;7; denote the
ACT that uses input-space distance to transfd(x), and
ACTr the ACT using feature-space distance. Our empirical
study examined the effect of algorithm ACT in three aspects.

(abaloné9). The number in the parentheses depicts the
target class we chose. Table 1 shows the characteristics
of these six datasets organized according to their negative-
to-positive training-instance ratios. The top three datasets
(segl, g, and euth) are not-too-imbalanced. The middle
two (caB and yeast) are mildly imbalanced. The bottom
dataset (al) is the most imbalanced (the ratioli80 : 1).

20K -image dataset The image dataset contaiggk, 116
categories of images collected from the Corel ImageTDs

1. CTy versusACT;. We evaluated the marginal effect of Each image is represented by a vectod ¢f dimensions

using adaptiver? for shaping the conformal kernéh(x).
Both methods shapB(x) in I, andACT7 in addition takes

the imbalance-class ratio into consideration.

including color, texture, and shape features (Tong & Chang,

SWe exclude from our testbed categories that are not possible to
classify automatically, such as “industry”, “Rome”, and “Boston”.

2. ACTj versusACTr. We evaluated the marginal effect ( The Boston category contains various subjects, e.g., architectures,
of using feature-space distance for shaping the conformiahdscapes, and people, of Boston.)



Dataset| SVMs SMOTE CT; ACT; ACTp Category  Ratio SVMs  BM BP CT; ACT; ACTgy

segl 98.1 98.1 96.2  98.1 9.1 Mountain 34 : 1 24.8 21.2  24.8 239 25.7 333
g7 89.9 91.8 85.6  93.7 93.7 Snow 37:1 46.4 475 478 495 51.2 54.6
euthl | 928 924 941 944 945 Desert 39:1 33.7 318 343 359 371 39.1
car3 99.0 99.0 99.1 99.1 99.9 Dog 44 : 1 32.9 28.5 35.2 37.8 38.4 415
yeast5 | 59.1  69.9 71.8 75.6 785 Woman  54:1 27.9 253 262 309 322 35.3
ab19 | 0.0 0.0 44.2 50.9 51.9 Church 66 : 1 21.8 19.4 21.8 21.8 236 20.0
Leaf 80:1 26.1 27.2 24.8 30.4 336 32.6
. Lizard 101:1 13.9 11.8 15.1 16.0 20.0 222
Table 2.UCl-dataset Prediction Accuracy. 2
Parrot 263 :1 7.1 3.5 7.1 7.1 14.3 14.3
Data | SVMs SMOTE T, ACT; ACTy Horse 264 :1 14.3 10.4 14.3 21.4 28.6 28.6
= - - Leopard 283 : 1 7.7 5.6 7.7 0.0 14.3 231
segl o’ | 96.4 964 929 964 964 Shark 1232:1 | 0.0 0.0 00 00 84 166
a” 100.0 100.0 100.0 100.0 100.0
g7 at 82.1 85.7 75.0 89.3 89.3
a” | 989 989 98.4  98.9 98.9 Table 4.Image-dataset Prediction Accuracy.
euthl at 87.8 87.4 90.8 91.6 92.0
a” 98.2 97.8 97.7 97.3 97.1
car3 ot | 984 984 98.4 984 1000 ) .
o= | 996 996 99.9 999  99.8 fined asva™ - a—, wherea™ anda™ are positive (the tar-
yeasts at | 36.7  51.0 53.1  61.2 633 get class) and negative test accuracy, respectively (Kubat &
a” | 984 975 976 964 976 Matwin, 1997). The table shows thatC7T; outperforms
abl9 ot | 0.0 0.0 25.0 286 286 CTy by a significant margin, especially when the imbalance
a | 995 992 94.0 925 940 ratio is large (ab9). ACTr performs about the same or
slightly better thamACT;. ACTF achieves the best accuracy
Table 3.UCI-dataset Prediction Accuracy. in all of the six datasets. When the data is very imbalanced

(the last row of Table 2), onhACTr works reasonably ef-
fectively. Table 3 presents™ anda™ separately. ACTx
achieves the best™ while maintaining a good .

2001; Chang et al., 2003). To perform class prediction, we
employed the one-per-class (OPC) ensemble (Dietterich 22. Results on 20k Image Dataset
Bakiri, 1995), which traind 16 classifiers, each of which

. . The image dataset is more imbalanced than the UCI datasets.
predicts the class membership for one class. The class

. D X . _ Pffeach run, we first randomly set asitle images to be used
diction on a testing instance is decided by voting amonge v« test subset: the remainiffc images were used for
the 116 classifiers. Table 4 presents resultsldfselected raining and validétion. We compared six schemes: SVMs
categories also organized into three groups according to t BP. CT;, ACT;, and ACTx. Notice that in this ex- '
imbalance ratio (the imbalance ratios are listed in the seﬁérir,nent,, We use thél,-norm RBF function forD(x), since
ond column). the L1-norm RBF works the best for the image dataset (Tong

& Chang, 2001; Chang et al., 2003). (Please see (Chang

5.1. Resultson UCI Benchmark Datasets et al., 2003) for the kernel parameter settings.)

We first report the experimental results with the six UCIfable 4 presents the classification accuracy for twelve rep-
datasets in Tables 2 and 3. In addition to conducting experesentative categories out ®16 ones, organized by their
ments with SVMs(C'Ty, ACTy, andACTr, we also imple- imbalance ratios. First, there was no significant increase
mented and testésMOTE. in the average classification accuracy for B& and CT;
schemes over that of SVMs. Second, compared to SVMs,
M obtained poor results for almost all categories. It proves
hat this naive method is very data-dependent, and thus can-
not work well in the scenario of multi-class classification.
Third, compared to SVMs, thdC'T; scheme improves pre-
diction accuracy by.8%, 5.0%, and9.1% on the three sub-
group datasets, respectively. FinalyCTr’s improvement
We report in Table 2 using the Kubatsmeans metric de- is even more significant: it outperforms SVMs By6%,
— _ 4.9%, and13.4%_, re_spectively. In additioldCTr achieves
For the datasets in Table 2 from top to bottom, fohhe pest classification accuracy for ten out of twelve cat-

SMOTE, the optimaly was 0.002,0.003,0.085,0.3,0.5, and . . .
0.084 respectively. For all other methods, the optimawas €90r€S among all schemes (marked in bold). ACT (i.e.,

0.004, 0.003, 0.08, 0.3, 0.5, and 0.086 respectively. All optimal ACTF) is especially effective when training classes are im-
C's werel, 000. balanced.

We used thel,-norm RBF function forD(x) to be consis-
tent with (Wu & Amari, 2002). In each run, the training an
test subsets are generated in the rétiol, which was em-
pirically proven to be optimal. FGSMOTE®, the minority
class was over-sampled 210%, 400% and1000% for each
of three groups of UCI datasets in Table 1, respectively.



6. Conclusion and Future Work Cortes, C., & Vapnik, V. (1995). Support vector networks.

. Machine Learning20, 273-297.
We have proposed an adaptive feature-space conformal trans-

formation (ACT) algorithm, for tackling the imbalanced Cristianini, N., & Shawe-Taylor, J. (2000An introduction
training-data challenge. ACT adaptively changes the shapeto support vector machine€ambridge University Press.

of Rlemanr!lan manifoldy where _aII "T‘a‘?pe‘?' training in- d’tAIche Buc, F., Grandvalet, Y., & Ambroise, C. (2002).
stances reside, based on the spatial distribution of all suppor : ; . .
Semi-supervised marginboost. Advances in Neural In-

vectors in feature spadeand their imbalance ratio. Through : :

S . . formation Processing Systems
example, theoretical justifications, and empirical studies, we
show ACT to be effective. Dietterich, T., & Bakiri, G. (1995). Solving multiclass learn-
ing problems via error-correcting output coddsurnal of

We plan to enhance ACT by closely examining the tuning Artifical Intelligence Researct?, 263-286

of its parameters. First, when ACT decides the degree of
magnification for a support vector, it needs to locate otheFawcett, T., & Provost, F. (1997). Adaptive fraud detection.
support vectors in its neighborhood. Currently, ACT uses |n Data Mining and Knowledge Discovery, 291-316.

the average distanc® of the nearest and the farthest sup- ] o ]

port vector from®(x;) as the nearest-neighbor radius. We]oachms, T. (1993). Te_xt categorization with support vector
believe that the nearest neighborhood could be more adapmachines: learning with many relevant featurésoceed-
tive to local data density. Second, Egs. 16 and 17 set theNgs of ECML-98, 10th European Conference on Machine
scaling factors;, andn, based on the support-vector ratio. L€arning 137-142.

Although this rule-of-thumb has provided ACT good perforkandola, J., & Shawe-Taylor, J. (2003). Refining kernels
mance through empirical validation, we plan to investigate for regression and uneven classification problerfso-

for setting these scaling parameters. Intelligence and Statistics
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