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Abstract

When the training instances of the target class
are heavily outnumbered by non-target training
instances, SVMs can be ineffective in determin-
ing the class boundary. To remedy this problem,
we propose an adaptive conformal transformation
(ACT) algorithm. ACT considers feature-space
distance and the class-imbalance ratio when it per-
forms conformal transformation on a kernel func-
tion. Experimental results on UCI and real-world
datasets show ACT to be effective in improving
class prediction accuracy.

1. Introduction

Support Vector Machines (SVMs) are a core machine learn-
ing technology. They have strong theoretical foundations and
excellent empirical successes in many pattern recognition ap-
plications such as handwriting recognition (Cortes & Vapnik,
1995), image retrieval (Tong & Chang, 2001), and text classi-
fication (Joachims, 1998). However, for many emerging ap-
plications, such as gene profiling, image understanding, and
fraud detection (Fawcett & Provost, 1997), where the train-
ing instances of the target class are significantly outnumbered
by the other training instances, the class-boundary learned by
SVMs can be severely skewed towards the target class. As
a result, the false-negative rate can be excessively high in
identifying target objects (e.g., a diseased gene or a suspi-
cious event), and hence can render the classifier ineffective.
(We will discuss the details of this problem in Section 3.)

Several attempts have been made to improve class-prediction
accuracy of SVMs (Amari & Wu, 1999; Breiman, 1996;
Chan & Stolfo, 1998; Karakoulas & Taylor, 1999; Kubat &
Matwin, 1997; Li et al., 2002; Lin et al., 2002). Given the
class prediction function of SVMs,

sgn

(

f(x) =

n
∑

i=1

yiαiK(x, xi) + b

)

, (1)

we can identify three parameters that affect the decision out-
come: b, αi, andK. (We will discuss them in Section 2.)
Our empirical study shows that the only effective method for
improving SVMs is through modifying the kernel function
K. As indicated by (Amari & Wu, 1999), by conformally
spreading the area around the class-boundary outward on the
Riemannian manifoldS where all mapped data are located in
feature spaceF , we can adaptK locally to data distribution
to improve class-prediction accuracy.

In this paper, we propose an adaptive conformal transforma-
tion (ACT) algorithm. ACT improves upon Amari and Wu’s
method for tackling the imbalanced-training-classes problem
in two respects.

1. We conduct the transformation based on the spatial
distribution of the support vectors in feature spaceF , in-
stead of in input spaceI (Wu & Amari, 2002). Using
feature-space distance to conduct conformation transfor-
mation takes advantage of the new information learned by
SVMs in every iteration, whereas input-space distance re-
mains unchanged.

2. We adaptively control the transformation based on the
skew of the class-boundary. This transformation gives the
neighborhood of minority support vectors a higher spatial
resolution, and hence achieves better separation between
the classes.

Our experimental results on both UCI and real-world im-
age datasets show ACT to be very effective in correcting the
skewed boundary.

The rest of this paper is organized as follows. Section2 dis-
cusses related work. Section3 uses a2-D example to explain
the problem caused by imbalanced training data for SVMs.
In Section4 we describe the ACT algorithm for tackling the
imbalanced training-data problem. Section5 presents the
setup and the results of our empirical studies. We offer our
concluding remarks in Section6, as well as suggestions for
further studies.
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2. Related Work

Researchers have modified the learning algorithm of SVMs
for remedying the imbalanced training-data problem. Let us
revisit the class prediction function in Eq. 1. We can identify
three parameters that affect the decision outcome:b, αi, and
K. Related algorithmic work can be summarized by chang-
ing these parameters.

• Boundary Movement(BM). Theb parameter is the inter-
cept. We can changeb to shift the decision boundary. How-
ever, this naive boundary-movement is a post-processing
method. Intuitively, we can see that changingb trades a
higher false positive count for a lower false negative count.

• Biased Penalties(BP). Theαi determines the magnitude
of influence of training instancexi. According to Eq. 1,
the larger theαi, the larger the influence ofxi in class pre-
diction. Based on this idea, Veropoulos et al. (Veropoulos
et al., 1999; Lin et al., 2002) use different penalty con-
straints for different classes to tune theαi’s. It turns out that
this biased-penalty method does not help SVMs as much as
expected. According to the KKT conditions, the value of
αi has three ranges (Cristianini & Shawe-Taylor, 2000):

αi = 0 ⇒ yif(xi) > 1 and ξi = 0 (2)

0 < αi < C ⇒ yif(xi) = 1 and ξi = 0 (3)

αi = C ⇒ yif(xi) < 1 and ξi ≥ 0. (4)

In addition,αi’s are constrained by
n

∑

i=1

αiyi = 0. (5)

We can see thatC imposes only an upper bound onαi, not
a lower bound. IncreasingC does not necessarily affectαi.
Moreover, the constraint in Eq. 5 imposes an equal total in-
fluence from the positive and negative support vectors. The
increases in someαi’s at the positive side will inadvertently
increase someαi’s at the negative side to satisfy the con-
straint. These constraints can make the increase ofC+ on
minority instances ineffective.

• Kernel Modification. The kernel function affects the dis-
tance computation between a support vectorxi and a test-
ing instancex. (We assume thatK is an RBF function in
this paper.) Based on this idea, Amari and Wu (Amari &
Wu, 1999; Wu & Amari, 2002) propose to change the ker-
nel using a conformal transformation method. In this paper,
we further Amari and Wu’s work to deal with imbalance-
data training. Another method is proposed by Kandola et
al. (Kandola & Shawe-Taylor, 2003), which is based on
the kernel-alignment idea but with a simple transformation
of the “ideal” target kernel, to adapt the kernel in the im-
balanced training-data problem. Compared to (Kandola &
Shawe-Taylor, 2003), our method deals with just the class-
boundary data, not the entire training dataset. Furthermore,
the solution we introduce here is to modify the kernel func-
tion, instead of the kernel matrix as in (Kandola & Shawe-
Taylor, 2003).

An entirely orthogonal approach to the algorithmic approach
that we have discussed so far, is data-processing, which
under-samples the majority class or over-samples the minor-
ity class in the hope of reducing the skew of the training
dataset. One-sided selection by (Kubat & Matwin, 1997)
is a representative under-sampling approach, which removes
noisy, borderline, and redundant majority training instances.
However, these steps typically can remove only a small frac-
tion of the majority instances, and may not be very helpful
in a scenario with a majority-to-minority ratio of more than
100 : 1, which is becoming common in many emerging ap-
plications. Multi-classifier training (Chan & Stolfo, 1998)
and Bagging (Breiman, 1996), are two other under-sampling
methods. These methods do not deal with noisy and border-
line data directly, but use a large ensemble of subclassifiers
to reduce prediction variance.

Over-sampling (Chawla et al., 2000) is the opposite of the
under-sampling approach. It duplicates or interpolates mi-
nority instances in the hope of reducing the imbalance. The
over-sampling approach can be considered as a “phantom-
transduction” method. It assumes the neighborhood of a pos-
itive instance to be still positive, and the instances between
two positive instances positive. However, assumptions like
these can be data-dependent and unreliable. We believe that
an effective data-processing approach can complement an al-
gorithmic approach. Our focus in this paper is on developing
an algorithmic approach.

3. Boundary Bias in SVMs

A subtle but severe problem that an SVM classifier faces
is the skewed class boundary caused by imbalanced train-
ing data. To illustrate this problem, Figure 1 depicts a 2D
checkerboard example. The checkerboard divides a200 ×
200 square into four quadrants. The top-left and bottom-
right quadrants contain negative (majority) instances while
the top-right and bottom-left quadrants contain positive (mi-
nority) instances. The lines between the classes are the
“ideal” boundary that separates the two classes. In the rest
of the paper, we will usepositivewhen referring to minority
instances, andnegativewhen referring to majority instances.

Figure 2 exhibits the boundary distortion between the
two left quadrants in Figure 1 under two different nega-
tive/positive training-data ratios, where a black dot with a cir-
cle represents a support vector, and its radius represents the
weight valueαi of the support vector. The bigger the circle,
the larger theαi. Figure 2(a) shows the SVM class boundary
when the ratio of the number of negative instances (in the
quadrant above) to the number of positive instances (in the
quadrant below) is10 : 1. Figure 2(b) shows the boundary
when the ratio increases to10, 000 : 1. The boundary in Fig-
ure 2(b) is much more skewed towards the positive quadrant
than the boundary in Figure 2(a), and hence causes a higher
incidence of false negatives.
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Figure 1.Checkerboard Experiment.
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Figure 2.Boundaries of Different Ratios.

4. Adaptive Conformal Transformation

In this section, we first explain the geometry of the feature
space, from which we obtain information to perform confor-
mal transformation. We then propose the Adaptive Confor-
mal Transformation (ACT) algorithm. We close by pointing
out the differences between ACT and the prior work (Amari
& Wu, 1999; Wu & Amari, 2002).

4.1. Geometry of Feature Space F

A support vector machine can use thekernel mapping(Vap-
nik, 1995; Cristianini & Shawe-Taylor, 2000) to map the data
from a Euclidean input spaceI to a high-dimensional Hilbert
feature spaceF , in which a classification or regression prob-
lem becomes linear. The mapped data lie on a surfaceS in
F . In general,S has the same dimensionality as that of the
input spaceI (Burges, 1999). The shape ofS is determined

by the associated mappingΦ. If we assume thatΦ has all
continuous derivatives, as in the case of an RBF function, the
surfaceS in F is smooth, and thus can be considered as a
Riemannian manifold, which enables us to define a Rieman-
nian metric forS.

The relationship betweenI andS can be imagined from a
simple Earth example. The local spot where we stand is per-
ceived as flat, but actually the Earth itself is a globe. Figure 3
illustrates another example. Surface1 shows that a<2 input
spaceI is mapped to an irregular surface in feature spaceF
under one mapping functionΦ1. In this case, for one pointP
in this irregular surface, its neighborhood is locally<2. One
can also choose a differentΦ2 to map<2 to the surface of a
globe inF , where the neighborhood of one pointP is still
locally<2.

I = R

Surface 1

P
P

Surface 2

F F

2

φ φ
1 2

Figure 3.A Riemannian-Manifold Example.

4.1.1. RIEMANNIAN METRIC

Ordinarily, we use two schemes to measure the distance be-
tween two points onS, as schematically illustrated in Fig-
ure 4. The first one considers the distance between two points
along a straight line inF , which is the so-called Euclidean
distance; the second one measures the distance between two
points along a path onS by integration. This distance, called
the Riemannian distance (Burges, 1999), is computed by a
metric induced onS. This second metric is thus called the
Riemannian metric, denoted asgij in this paper.

A Riemannian metric tells us how to compute the distance
between any two points onS. The components of a Rieman-
nian metric can be viewed as multiplication factors which are
placed before the differential displacementsdxi in I to com-
pute the distanceds of an elementdz in F in a generalized
Pythagorean theorem,

ds
2 =

∑

i,j

gijdxidxj . (6)

The Euclidean distance can be also regarded as some for-
mat of the Riemannian distance, wheregij is a discrete delta
functionδij

1, and hence

ds
2 =

∑

i

dxi
2
. (7)

1A discrete delta functionδij equals1 only wheni = j, else
equals0.



2: Riemannian distance

1:  Euclidean distance
1 2

Figure 4.Two Distance Measures in a3-D Feature Space.

4.1.2. FROM KERNEL TO RIEMANNIAN METRIC

Although the kernel mappingΦ is unknown, one can still
calculate the Riemannian metric induced onS by playing
the kernel trick.

Let z denote the mapped pattern ofx in F . We havez =
Φ(x). Under this mapping function, a small vectordx is
mapped to

dz = Φ(x + dx) − Φ(x). (8)

Then, the Riemannian distanceds is defined as

ds
2 = ‖dz‖2

= ‖Φ(x + dx) − Φ(x)‖2

= K(x + dx, x + dx) − 2K(x, x + dx) + K(x, x)

=
∑

i,j

(

∂2K(x, x′)

∂xi∂x′
j

)

x′=x
dxidxj .

From Eq. 6, we can see that the Riemannian metric induced
onS can be defined as

gij(x) =

(

∂2K(x, x′)

∂xi∂x′
j

)

x′=x
. (9)

It shows how a local area inI is magnified inF under the
mappingΦ(x) (Burges, 1999; Amari & Wu, 1999).

4.2. Adaptive Conformal Transformation

A conformal transformation, also called a conformal map-
ping, is a transformationT which maps the elementsX ∈ D
to elementsY ∈ T (D) while preserving the local angles be-
tween the elements after mapping, whereD is a domain in
which the elementsX reside (Cohn, 1980). Figure 5 shows
an example using two different conformal transformations on
a grid structure, wherez is a complex variable. We can see
that the local grid structure is almost invariant after such a
transformation (that is, “conformal”). Usually, an analytic
function2 is conformal at any point where it has a nonzero
derivative. In this paper, we use the termconformal function.
Some commonly used conformal functions are represented
asz2, e−z, ande−z2

.
2An analytic function is a complex function which is complex

differentiable at every point in a regionR. Please refer to mathe-
matics books for the details.

w=z w=z w=z3/2 2

Figure 5.A Conformal Transformation Example.

In Section 4.1.2, we noted that a Riemannian metricgij(x)
induced onS shows how a local area aroundx in I is mag-
nified in F under the mappingΦ. The idea of conformal
transformation in SVMs is to enlarge the magnification fac-
tor gij(x) around the boundary but reduce it around other
points by modifying the related functionK, according to
Eq. 9. This can be implemented by introducing a confor-
mal transformation of the kernel (Amari & Wu, 1999; Wu &
Amari, 2002)

K̃(x, x′) = D(x)D(x′)K(x, x′), (10)

whereD(x) is a properly defined positive function.

4.2.1. SELECTION OFD(X)

Substituting Eq. 10 into Eq. 9 with the form of a new kernel
K̃(x, x′), the new Riemannian metric̃gij(x) is

g̃ij(x) = D(x)2gij(x) + D
′
i(x)D′

j(x) + 2D
′
i(x)D(x)K′

i(x, x),
(11)

where K ′
i(x, x) = ∂K(x, x′)/∂xi|x′=x and D′

i(x) =
∂D(x)/∂xi. To further increase the margin of SVMs inF ,
D(x) should be chosen in a way such thatg̃ij(x) has greater
values around the decision boundary. In addition to dealing
with the skew of the class-boundary,g̃ij(x) is greater espe-
cially for the boundary area close to the minority class. An
RBF distance function is a good choice forD(x).

In practice, since it is unknown exactly where the opti-
mal boundary is located, the positions of support vectors3

are used to approximate the class-boundary (Amari & Wu,
1999). Conformal transformation then increases the metric
in the neighborhood of the support vectors. The degree of
such magnification depends on the selection of conformal
functionD(x).

Suppose the feature vectorx has been normalized to make
all its elements lie between0 and1. In addition, suppose that
the conformal functionD(x) is chosen asexp(−‖x−xk‖

n

n

τ2
k

),

wherexk is a support vector, and the initial kernelK(x, x′)
chosen asexp(−γ‖x − x′‖m

m). Due to Eq. 11, the new Rie-
mannian metric in the neighborhood of the support vectorxk

can be written4 as
3Notice that in the case that soft margin SVMs are employed, a

support vector can reside in the area of the other class. We consider
such support vectors as outliers and do not consider them as support
vectors in our algorithm.

4WhenK(x, x′) is aL1-norm RBF function, it is not derivable



g̃ij(x) = D(x)2gij(x) +

D(x)2
n2

τ4
k

(xi − xki)
n−1(xj − xkj)

n−1
. (12)

From Eq. 12, we can see the new metricg̃ij(x) is domi-
nated by the exponential functionD(x), which is associated
with the norm numbern, the parameterτ2

k , and the distance
‖x − xk‖. Since we have normalized‖xi − xki‖ to be≤ 1,
D(x) becomes greater whenn is increased at the pointsx dis-
tant from the support vectorsxk, and therebỹgij(x) becomes
greater. However, we hope thatg̃ij(x) is smaller for the area
far away from the class-boundary. We therefore preferD(x)
with a smaller normn, such asL1 or L2. In the remainder of
this section, for simplification, we will discuss only the case
whenD(x) is anL1-norm RBF function.

4.2.2. SELECTION OFτ2
k FOR D(X)

Let D(x) be anL1-norm RBF function. Since the posi-
tions of support vectors are used to approximate the class-
boundary,D(x) can be chosen as

D(x) =
∑

k∈SV

exp(−|x − xk|
τ2

k

). (13)

If we fix τ2
k , D(x) can be very large in areas where a large

number of support vectors are present, and very small in ar-
eas where few support vectors are present. In other words,
D(x) is dependent on the density of support vectors in the
neighborhood ofΦ(x) (if we fix τ2

k for all xk). To alleviate
this problem, we adaptively tuneτ2

k according to the spa-
tial distribution of support vectors inF . This goal can be
achieved by the following equation:

τ
2
k = avgi∈{‖Φ(xi)−Φ( xk)‖2<M, yi 6=yk}

(

‖Φ(xi) − Φ( xk)‖2
)

.
(14)

In the above equation, the average on the right-hand side
comprises all the support vectors inΦ(xk)’s neighborhood
within the radius ofM but having a different class label.
Here,M is the average distance of the nearest and the far-
thest support vector fromΦ(xk). Settingτ2

k in this way takes
into consideration the spatial distribution of the support vec-
tors inF .

Though the mapping functionΦ is unknown, we can play the
kernel trick to calculate the distance inF :

‖Φ(xi)−Φ(xk)‖2 = K(xi, xi)+K(xk, xk)− 2K(xi, xk). (15)

Substituting Eq. 15 into Eq. 14, we then can calculate aτ2
k for

each support vector, which can adaptively reflect the spatial
distribution of the support vector in the feature space, not in
the input space.

at pointx = x′. However, it is possible to define its “subderivative”
at x = x′, which corresponds here to the average value of the right
and left derivatives (d’Alche Buc et al., 2002). The equation when
n is an odd number is very similar to Eq. 12.

4.2.3. TUNING τ2
k FOR IMBALANCED CLASSES

When the training dataset is very imbalanced, the class-
boundary would be skewed toward the minority class in input
spaceI. We then hope that the new metricg̃ij(x) in Eq. 12
would further magnify the area far away from a minority sup-
port vectorxi so that the boundary imbalance could be alle-
viated. Our algorithm thus assigns a coefficient for theτ2

k in
Eq. 14 to reflect the boundary skew inD(x). The newτ̃2

k is
as follows:

If xk is a minority support vector,

τ̃
2
k = ηpτ

2
k , (16)

else
τ̃

2
k = ηnτ

2
k . (17)

Examining Eq. 12 and Eq. 13, we can see thatD(x) is a
monotonously increasing function ofτ2

k . To increase the
metricg̃ij(x) in an area which is not very close to the support
vector xk, it would be better to choose a largerηp for theτ2

k

of a minority support vector. For a majority support vector,
we can choose a smallerηn, so as to minimize influence on
the class-boundary. We empirically demonstrate thatηp and
ηn are proportional to the skew of support vectors, orηp as

O( |SV
−|

|SV+|
), andηn asO( |SV

+|
|SV−|

), where|SV
+| and |SV

−|
denote the number of minority and majority support vectors,
respectively.

Figure 6 summarizes the ACT algorithm. We apply ACT
on the training datasetXtrain until the testing accuracy on
Xtest cannot be further improved. In each iteration, ACT
adaptively calculatesτ2

k for each support vector (step10),
based on the distribution of support vectors in feature space
F . ACT scales theτ2

k according to the negative-to-positive
support-vector ratio (steps11 to 14). Finally, ACT updates
the kernel and performs retraining onXtrain (steps15 to17).

4.3. Comparison with Traditional Conformal
Transformation

Compared to the traditional conformal transformation
(Amari & Wu, 1999; Wu & Amari, 2002), our ACT algo-
rithm has two differences:

1. The selection ofτ2
k is dynamic in the tradition confor-

mal transformation, but not adaptive, since the distance be-
tween two support vectors is calculated in input spaceI, not
in feature spaceF . Calculatingτ2

k in I does not reflect the
spatial distribution of the Riemannian manifoldS. Further-
more, the input-space distance is unchanged throughout the
transformation iterations. In ACT, theτ2

k for the conformal
function is calculated based on its distribution inF .

2. The traditional conformal transformation does not ad-
dress the problem of boundary bias in the imbalanced train-
ing data scenario. In such a case, the decision boundary lo-
cates much closer to the minority class than to the majority
one. We assign a larger metricgij(x) for the boundary area



Input:
Xtrain, Xtest, K;
θ; /* stopping threshold*/
T ; /* maximum running iterations*/

Output:
C; /* output classifier*/

Variables:
SV; /* support vector set*/
M ; /* neighborhood range*/
s; /* a support vector*/
s.τ ; /* parameter ofs */
s.y; /* class label ofs */

Function Calls:
SVMTrain(Xtrain, K); /* train SVM classifierC */
SVMClassify(Xtest, C); /* classifyXtest byC */
ExtractSV(C); /* obtainSV fromC */
ComputeM(s,SV); /* compute neighborhood range fors */

Begin
1) C ← SVMTrain(Xtrain, K);
2) εold ← ∞;
3) εnew ← SVMClassify(Xtest, C);
4) t ← 0;
5) while ((εold − εnew > θ)&&(t < T )) {
6) SV←ExtractSV(C);
7) ηp ← O( |SV

−|

|SV+|
), ηn ← O( |SV

+|

|SV−|
);

8) for eachs ∈ SV {
9) M ←ComputeM(s,SV);
10) s.τ ← sqrt(avgi∈{‖Φ(si)−Φ(s)‖2<M, si.y 6=s.y}

(

‖Φ(si) − Φ(s)‖2
)

);
11) if s ∈ SV

+ then /* a minority support vector*/
12) s.τ ← √

ηp × s.τ ;
13) else /* a majority*/
14) s.τ ← √

ηn × s.τ ; }
15) D(x) =

∑

s∈SV
exp

(

− |x−s|
s.τ2

)

;
16) K ← D(x) × D(x′) × K;
17) C ← SVMTrain(Xtrain, K);
18) εold ← εnew;
19) εnew ← SVMClassify(Xtest, C);
20) t ← t + 1;}
21) return C;
End

Figure 6.Algorithm ACT.

close to the minority class than for that close to the majority
class, so as to reduce the skew of the class-boundary.

5. Experimental Results

Let CTI denote Wu and Amari’s conformal transformation
algorithm based on input-space distance,ACTI denote the
ACT that uses input-space distance to transformD(x), and
ACTF the ACT using feature-space distance. Our empirical
study examined the effect of algorithm ACT in three aspects.

1. CTI versusACTI . We evaluated the marginal effect of
using adaptiveτ2

k for shaping the conformal kernelD(x).
Both methods shapeD(x) in I, andACTI in addition takes
the imbalance-class ratio into consideration.

2. ACTI versusACTF . We evaluated the marginal effect
of using feature-space distance for shaping the conformal

Dataset attributes positives negatives

seg1 19 30 180

g7 10 29 185

euth1 24 238 1762

car3 6 69 1659

yeast5 8 51 1433

ab19 8 32 4145

Table 1.Six UCI Benchmark Datasets.

kernelD(x) compared to using input-space distance.

3. ACTF versus others. We evaluated the effect ofACTF

for dealing with the imbalanced-training problem com-
pared to other commonly used strategies, such as minority
over-sampling (SMOTE (Chawla et al., 2000)), boundary
movement (BM), and biased penalties (BP ), which are
discussed in Section 2.

In our experiments, we employed Laplacian kernels of the
form exp(−γ|x− x′|) asK(x, x′). Then we used the follow-
ing procedure. The dataset was randomly split into train-
ing and test subsets generated in a best ratio, which was
empirically chosen for each dataset. Hyper-parameters (C
andγ) of K(x, x′) were obtained for each run using7-fold
cross-validation. All training, validation, and test subsets
were sampled in a stratified manner that ensured each of
them had the same negative/positive ratio (Kubat & Matwin,
1997). We repeated this procedure ten times, computed av-
erage class-predication accuracy, and compared the results.
The parameter setting forCTI was achieved in the way sug-
gested in (Wu & Amari, 2002). For ACT, we chose the stop-
ping thresholdθ as0.001 and maximum running iterationT
as10. Our experiments were performed on six UCI datasets
and a20K, 116-category image dataset, which are described
as follows:

Six UCI datasets The six UCI datasets we experi-
mented with are,segmentation(seg1), glass (g7), eu-
thyroid (euthy1), car (car3), yeast(yeast5), andabalone
(abalone19). The number in the parentheses depicts the
target class we chose. Table 1 shows the characteristics
of these six datasets organized according to their negative-
to-positive training-instance ratios. The top three datasets
(seg1, g7, and euth1) are not-too-imbalanced. The middle
two (car3 and yeast5) are mildly imbalanced. The bottom
dataset (ab19) is the most imbalanced (the ratio is130 : 1).

20K-image dataset The image dataset contains20K, 116

categories of images collected from the Corel Image CDs5.
Each image is represented by a vector of144 dimensions
including color, texture, and shape features (Tong & Chang,

5We exclude from our testbed categories that are not possible to
classify automatically, such as “industry”, “Rome”, and “Boston”.
( The Boston category contains various subjects, e.g., architectures,
landscapes, and people, of Boston.)



Dataset SVMs SMOTE CTI ACTI ACTF

seg1 98.1 98.1 96.2 98.1 98.1
g7 89.9 91.8 85.6 93.7 93.7
euth1 92.8 92.4 94.1 94.4 94.5

car3 99.0 99.0 99.1 99.1 99.9
yeast5 59.1 69.9 71.8 75.6 78.5

ab19 0.0 0.0 44.2 50.9 51.9

Table 2.UCI-dataset Prediction Accuracy.

Data SVMs SMOTE CTI ACTI ACTF

seg1 a+
96.4 96.4 92.9 96.4 96.4

a−
100.0 100.0 100.0 100.0 100.0

g7 a+
82.1 85.7 75.0 89.3 89.3

a−
98.9 98.9 98.4 98.9 98.9

euth1 a+
87.8 87.4 90.8 91.6 92.0

a−
98.2 97.8 97.7 97.3 97.1

car3 a+
98.4 98.4 98.4 98.4 100.0

a−
99.6 99.6 99.9 99.9 99.8

yeast5 a+
36.7 51.0 53.1 61.2 63.3

a−
98.4 97.5 97.6 96.4 97.6

ab19 a+
0.0 0.0 25.0 28.6 28.6

a−
99.5 99.2 94.0 92.5 94.0

Table 3.UCI-dataset Prediction Accuracy.

2001; Chang et al., 2003). To perform class prediction, we
employed the one-per-class (OPC) ensemble (Dietterich &
Bakiri, 1995), which trains116 classifiers, each of which
predicts the class membership for one class. The class pre-
diction on a testing instance is decided by voting among
the116 classifiers. Table 4 presents results of12 selected
categories also organized into three groups according to the
imbalance ratio (the imbalance ratios are listed in the sec-
ond column).

5.1. Results on UCI Benchmark Datasets

We first report the experimental results with the six UCI
datasets in Tables 2 and 3. In addition to conducting experi-
ments with SVMs,CTI , ACTI , andACTF , we also imple-
mented and testedSMOTE.

We used theL2-norm RBF function forD(x) to be consis-
tent with (Wu & Amari, 2002). In each run, the training and
test subsets are generated in the ratio6 : 1, which was em-
pirically proven to be optimal. ForSMOTE6, the minority
class was over-sampled at200%, 400% and1000% for each
of three groups of UCI datasets in Table 1, respectively.

We report in Table 2 using the Kubat’sg-means metric de-

6For the datasets in Table 2 from top to bottom, for
SMOTE, the optimal γ was 0.002, 0.003, 0.085, 0.3, 0.5, and
0.084 respectively. For all other methods, the optimalγ was
0.004, 0.003, 0.08, 0.3, 0.5, and 0.086 respectively. All optimal
C ’s were1, 000.

Category Ratio SVMs BM BP CTI ACTI ACTF

Mountain 34 : 1 24.8 21.2 24.8 23.9 25.7 33.3
Snow 37 : 1 46.4 47.5 47.8 49.5 51.2 54.6
Desert 39 : 1 33.7 31.8 34.3 35.9 37.1 39.1
Dog 44 : 1 32.9 28.5 35.2 37.8 38.4 41.5

Woman 54 : 1 27.9 25.3 26.2 30.9 32.2 35.3
Church 66 : 1 21.8 19.4 21.8 21.8 23.6 20.0

Leaf 80 : 1 26.1 27.2 24.8 30.4 33.6 32.6

Lizard 101 : 1 13.9 11.8 15.1 16.0 20.0 22.2

Parrot 263 : 1 7.1 3.5 7.1 7.1 14.3 14.3
Horse 264 : 1 14.3 10.4 14.3 21.4 28.6 28.6
Leopard 283 : 1 7.7 5.6 7.7 0.0 14.3 23.1
Shark 1232 : 1 0.0 0.0 0.0 0.0 8.4 16.6

Table 4.Image-dataset Prediction Accuracy.

fined as
√

a+ · a−, wherea+ anda− are positive (the tar-
get class) and negative test accuracy, respectively (Kubat &
Matwin, 1997). The table shows thatACTI outperforms
CTI by a significant margin, especially when the imbalance
ratio is large (ab19). ACTF performs about the same or
slightly better thanACTI . ACTF achieves the best accuracy
in all of the six datasets. When the data is very imbalanced
(the last row of Table 2), onlyACTF works reasonably ef-
fectively. Table 3 presentsa+ and a− separately.ACTF

achieves the besta+ while maintaining a gooda−.

5.2. Results on 20k Image Dataset

The image dataset is more imbalanced than the UCI datasets.
In each run, we first randomly set aside4K images to be used
as the test subset; the remaining16K images were used for
training and validation. We compared six schemes: SVMs,
BM , BP , CTI , ACTI , andACTF . Notice that in this ex-
periment, we use theL1-norm RBF function forD(x), since
theL1-norm RBF works the best for the image dataset (Tong
& Chang, 2001; Chang et al., 2003). (Please see (Chang
et al., 2003) for the kernel parameter settings.)

Table 4 presents the classification accuracy for twelve rep-
resentative categories out of116 ones, organized by their
imbalance ratios. First, there was no significant increase
in the average classification accuracy for theBP andCTI

schemes over that of SVMs. Second, compared to SVMs,
BM obtained poor results for almost all categories. It proves
that this naive method is very data-dependent, and thus can-
not work well in the scenario of multi-class classification.
Third, compared to SVMs, theACTI scheme improves pre-
diction accuracy by3.8%, 5.0%, and9.1% on the three sub-
group datasets, respectively. Finally,ACTF ’s improvement
is even more significant: it outperforms SVMs by7.6%,
4.9%, and13.4%, respectively. In addition,ACTF achieves
the best classification accuracy for ten out of twelve cat-
egories among all schemes (marked in bold). ACT (i.e.,
ACTF ) is especially effective when training classes are im-
balanced.



6. Conclusion and Future Work

We have proposed an adaptive feature-space conformal trans-
formation (ACT) algorithm, for tackling the imbalanced
training-data challenge. ACT adaptively changes the shape
of Riemannian manifoldS where all mapped training in-
stances reside, based on the spatial distribution of all support
vectors in feature spaceF and their imbalance ratio. Through
example, theoretical justifications, and empirical studies, we
show ACT to be effective.

We plan to enhance ACT by closely examining the tuning
of its parameters. First, when ACT decides the degree of
magnification for a support vector, it needs to locate other
support vectors in its neighborhood. Currently, ACT uses
the average distanceM of the nearest and the farthest sup-
port vector fromΦ(xk) as the nearest-neighbor radius. We
believe that the nearest neighborhood could be more adap-
tive to local data density. Second, Eqs. 16 and 17 set the
scaling factorsηp andηn based on the support-vector ratio.
Although this rule-of-thumb has provided ACT good perfor-
mance through empirical validation, we plan to investigate
theoretical justification and experiment with other methods
for setting these scaling parameters.
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