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Abstract

A boosting algorithm seeks to minimize em-
pirically a loss function in a greedy fash-
ion. The resulted estimator takes an addi-
tive function form and is built iteratively by
applying a base estimator (or learner) to up-
dated samples depending on the previous it-
erations. This paper studies convergence of
boosting when it is carried out over the lin-
ear span of a family of basis functions. For
general loss functions, we prove the conver-
gence of boosting’s greedy optimization to
the infinimum of the loss function over the
linear span. As a side product, these re-
sults reveal the importance of restricting the
greedy search step sizes, as known in practice
through the works of Friedman and others.

1. Introduction

In this paper we consider boosting algorithms for clas-
sification and regression. These algorithms present one
of the major progresses in machine learning. In their
original version, the computational aspect is explic-
itly specified as part of the estimator/algorithm. That
is, the empirical minimization of an appropriate loss
function is carried out in a greedy fashion. Boosting
algorithms construct composite estimators using often
simple base estimators through the greedy fitting pro-
cedure. For the squared loss function, they were often
referred in the signal processing community as match-
ing pursuit (Mallat & Zhang, 1993). More recently,
it was noticed that the Adaboost method proposed in
the Machine Learning community (Freund & Schapire,
1997) could also be regarded as stage-wise fitting of
additive models under the exponential loss function
(Breiman, 1998; Breiman, 1999; Friedman et al., 2000;
Mason et al., 2000; Schapire & Singer, 1999). In this
paper, we use the term boosting to indicate a greedy
stage-wise procedure to minimize a certain loss func-

tion empirically. And the abstract formulation will be
presented in Section 2.

In spite of significant practical interests in boosting
procedures, their convergence properties are not yet
fully understood. Previous studies have been focused
on special loss functions. Specifically, Mallat and
Zhang proved the convergence of matching pursuit in
(Mallat & Zhang, 1993). in (Breiman, 2000), Breiman
obtained a convergence result of boosting with the
exponential loss function for =El-trees (under some
smoothness assumptions on the underlying distribu-
tion). In (Collins et al., 2002), a Bregman divergence
based analysis was given. A convergence result was
also obtained in (Mason et al., 2000) for a gradient
descent version of boosting.

None of these studies can provide any information on
the numerical rate of convergence for the optimization.
The question of numerical rate of convergence has been
studied when one works with the 1-norm regularized
version of boosting where we assume that the opti-
mization is performed in the convex hull of the basis
functions. Specifically, for function estimation under
the least squares loss, the convergence of greedy algo-
rithm in convex hull was studied in (Jones, 1992; Lee
et al., 1996). For general loss functions, the conver-
gence of greedy algorithms (again, the optimization is
restricted to the convex hull) was recently studied in
(Zhang, 2003a).1 In this paper, we apply the same
underlying idea to the standard boosting procedure
where we do not limit the optimization to the convex
hull of the basis functions. The resulting bound pro-
vides information on the rate of convergence for the
optimization. Our analysis reproduces and generalizes
previous convergence results such as that of matching
pursuit and Adaboost. An interesting observation of
our analysis is the important role of small step-size in
the convergence of boosting procedures. This provides

1Also see (P~tsch et al., 2001) for a related study, but
their analysis depends on quantities that can ill-behave.
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some theoretical justification for Friedman’s empirical
observation (b’~iedman, 2001) that using small step-
sizes almost always helps in boosting procedures.

Due to the limitation of space, we will only include
proofs for the two main theorems.

2. Abstract Boosting Procedure

We now describe the basics to define the boosting pro-
cedure that we will analyze in this paper. A similar
set-up can be found in (Mason et al., 2000). The main
difference is that they use a gradient descent rule in
their boosting procedure while here we use approxi-
mate minimization.

Let S be a set of real-valued functions, and define

span(S) wJ/j : fJ ~ S,wj e R,m e Z+ ,

which forms a linear function space. For all f e
span(S), we can define its 1-norm with respect to the
basis S as:

"fi’l=inf{’iwiil;f=fiwifJ:fJeS’mEZ+}"j=t

(1)

We want to find a function / e span(S) that approxi-
mately solves the following optimization problem:

inf A(/), (2)
lespan(S)

where A is a convex function of f defined on span(S).
Note that the optimal value may not be achieved by
any f E span(S). Also for certain formulations (such
as logistic regression), it is possible that the optimal
value is -c¢.

The abstract form of greedy-boosting procedure (with
restricted step size) considered in this paper is given
by the following algorithm:

Algorithm 2.1 (Greedy Boosting)

Pick f0 ~ span(S)
for k = 0,1, 2,...

Select a closed subset Ak C R such that
0 e Ak and Aa = --Ak

Find (~k E Ak and #k E S to approximately
minimize: (ak,gk) -~ A(h + (~kgk) 

Let fk+t = fk q- 5Lk#k
end

Remark 2.1 The approximate minimization of(*) 
Algorithm 2.1 should be interpreted as finding &k e Ak
and #k e S such that

A(A + (~k~k) < in/ A(A + akgk) + ¢k, (3)
-- c~kEA~,9~ES

where ek > 0 is a sequence of non-negative numbers
that converges to zero.

Remark 2.2 Our convergence analysis allows the
choice of Ak to depend on the previous steps of the
algorithm. However, the most interesting Ak for the
purpose of this paper will be independent of previous
steps of the algorithm:

¯ Ak=R

¯ sup Ak = hk where hk > 0 and IZk -+ O.

As we will see later, the restriction of ak to the subset
Ak C R is useful in the convergence analysis.

3. Assumptions

For all f E span(S) and g E S, we define a real-valued
function ALg(.) as:

AI,9(h) = A(/ + hg).

Definition 3.1 Let A(f) be a function off defined 
span(S). Denote by span(S)’ the dual space of span(S)
(that is, the space of real valued linear functionals on
span(S)). We say that A is differentiable with gradient
VA E span(S)’ i/for all f,g E span(S):

lim l (A(f + hg) - A(f)) = VA(f)T 
h--~O I~

where ~TA(f)T g denotes the value of linear functional
VA(S) at g.

For reference, we shall state the following assumption
which is required in our analysis:

Assumption 3.1 Let A(f) be a convex function of 
defined on span(S), which satisfies the following con-
ditions

1. A(f) is differentiable with gradient VA.

9. For all f e span(S) and g E S: A f, 9 (h) (as a real
function of h) is second order differentiable and
the second derivative satisfies:

A ,g(0) < M(IIflI1), (4)
where M(.) is a non-decreasing real-valued func-
tion.
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The M(.) function will appear in the convergence anal-
ysis. Although our analysis can handle unbounded
M(.), the most interesting boosting examples have
bounded M(.) (as we will show shortly).

For statistical estimation problems such as classifica-
tion and regression with a covariate or predictor vari-
able X and a real response variable Y having a joint
distribution, we are interested in the following form of
A(]) in (2):

A(f) = ¢( Ex yC(f(X), (5)

where ¢(f, y) is a loss function that is convex in f. 
is a monotonic increasing auxiliary function which is
introduced so that A(f) is convex and M(.) behaves
nicely (e.g. bounded). The behavior of Algorithm 2.1
is not affected by the choice of ¢ as long as ek in (3)
is appropriately redefined. We may thus always take
¢(u) = u, but choosing other auxiliary functions can
be convenient for certain problems in our analysis since
the resulted formulation has bounded M(.) function
(see examples given below). We have also used Ex,y
to indicate the expectation with respect to the joint
distribution of (X, Y).

An important application of boosting is binary classifi-
cation. In this case, it is very natural for us to use a set
of basis functions that satisfy the following conditions:

sup Ig(=)l _< 1, y = 4-1. (6)
9ES, x

For certain loss functions (such as least squares), this
condition can be relaxed. In the classification litera-
ture, ¢(f,y) usually has a form ¢(fy). The following
examples include commonly used loss functions. They
show that for a typical boosting loss function ¢, there
exists a constant M such that supa M(a) <_ 

3.1. Logistic Regression

This is the traditional loss function used in statistics,
which is given by

¢(f,y) = ln(1 +exp(-fy)), ¢(u) 

We assume that the basis functions satisfy the condi-
tion

sup Ig(x)l < 1, y -- +1.
gES,x

It can be verified that A(f) is convex differentiable.
We also have

. g(X)2Y2
Al,g(O) = Ex,y (1 + el(X)Y)(1 .q- e-l(x)Y) < 1/4.

3.2. Exponential Loss

This loss function is used in the AdaBoost algorithm,
which is the original boosting procedure for classifica-
tion problems. It is given by

¢(f,y) exp(-fy), ¢(u) = ln

Again we assume that the basis functions satisfy the
condition

sup Ig(=)l _< 1, y = ±1.
9ES,z

In this case, it is also not difficult to verify that A(f)
is convex differentiable. Iience we also have

A’j,.(O) Zx’yg(X)2Y2 exp(-f(X)V) < 1.
- Ex,y exp(-/(X)Y) -

3.3. Least Squares

The least squares formulation has been widely studied
in regression, but can also be applied to classification
problems (Biihlmann & Yu, 2003; Friedman, 2001).
Greedy boosting-like procedure for least squares was
firstly proposed in the signal processing community,
where it was called matching pursuit (Mallat & Zhang,
1993). The loss function is given by

¢(Lv) = l(f _ y)2, ¢(u) 

We impose the following weaker condition on the basis
functions

supExg(X)2 < 1, EyY2 < oo.
gES

It is clear that A(f) is convex differentiable, and the
second derivative is bounded as

A},9(O) = Exg(X)2 < 1.

3.4. Modified Least Squares

For classification problems, we may consider the fol-
lowing modified version of the least squares loss which
has a better approximation property (Zhang, 2003b):

1
¢(/,y) = ~ max(1 .f y, 0)2, ¢(u) = 

Since this loss is for classification problems, we impose
the following condition

supExg(X)2 < 1, y = +1.
9ES

It is clear that A(f) is convex differentiable, and we
have the following bound for the second derivative

A~,g(O) <_ Exg(X)2 <_ 1.
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3.5. p-norm boosting

p-norm loss can be interesting both for regression and
classification. In this paper we will only consider the
case with p > 2:

1
¢(f, Y) = If vl~, ¢(~) = 2(p - ~=/~"

We impose the following condition

supEx]g(X)l p < 1, Ey]Y[p < oo.
9ES

It can be shown that

A~,~(h) <_ S~x(,~la(X)l’ _< 1.

4. Convergence Analysis

In this section, we consider the convergence behavior
of ]k obtained from the greedy boosting procedure as
k increases.

Given an arbitrary fixed reference function f E
span(S) with the representation

(7)
5

we would like to compare A(fk) to A(f). Since ] 
arbitrary, such a comparison will be used to obtain a
bound on the numerical convergence rate.

Given any finite subset S’ C S such that S~ D {~},
we can represent f as

1=
9ES~

where zoO, = zoJ when g =/5 for some 5, and ZOO, = 0
when g ~ (j~}. A quantity that will appear in our
analysis is [IZOs’ H1 = ~ges’ ]ZOgs’ I" Since Ilzos’ II1 =
I]zol]l, without any confusion, we will still denote zos,
by zo with the convention that ZOa = 0 for all g ¢ {~}.

Given this reference function f, we consider a represen-
tation of fk as a linear combination of a finite number
of functions Sk C S, where Sk D {]5} to be chosen
later,

fk----- ~ ZZfZ" (8)
#ES~

With this representation, we define

zxwk = Ilzo- ~11, = ~ Izo~ -~1.
9ES~

In our convergence analysis, we will specify conver-
gence bounds in terms of Ilzolll and a sequence of non-
decreasing numbers sk satisfying the following condi-
tion:

k--1

sk ----IIfoHx + ~-~hi, I~kl _< hk ¯ Ak, (9)
i=0

where {~k} are the step-sizes in (3) that are computed
in the boosting algorithm.

Using the definition of 1-norm for ], fo E span(S) 
(1). It is clear that Ve > 0, we can choose a finite
subset Sk C S, vector flk and vector u3 such that

I1~11, = ~ I#gl _< s~ + e/2, Ilzoll~ _< II]llx + e/2.
gES~

It follows that with appropriate representation, the fol-
lowing inequality holds for all e > 0:

~w,, _< s~, + II]ll~ + ~- (10)

4.1. One-step analysis

The purpose of this section is to show that A(fk+l) 
A(]) decreases from A(fk) -- A(]) by a reasonable
quantity. Cascading this analysis leads to a numeri-
cal rate of convergence for the boosting procedure.

The basic idea is to upper bound the minimum of a
set of numbers by an appropriately chosen weighted
average of these numbers. This proof technique, which
we shall call "averaging method", was used in (Jones,
1992; Lee et al., 1996; Zhang, 2003a) for analyses of
greedy type algorithms.

For hk that satisfies (9), the symmetry of Ak implies
hksign(zo9 -/~k a) E Ak. Therefore the approximate
minimization step (3) implies that for all g E Sk, we
have

A(fk+l) <__ A(fl~ q- hksgg) -I- ek, S9 = sign(z0° -- fl~).

Now multiply the above inequality by IZOg - f/~ [, and
sum over g E Sk, we obtain

AW~(A(fk+I) -- 

<_ ~ [fl~ -- zoglA(fk + hksgg) =: B(hk). (11)
9ESk

We only need to upper bound B(hk), which in turn
gives an upper bound on A(fk+~).

We recall a simple but important property of a convex
function that follows directly from the definition of
convexity of A(f) as a function of f: Vf~, f2

A(f2) > A(f~) + VA(f~)T(f2 -- (12)
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We are now ready to prove the following one-step con-
vergence bound, which is the main result of this sec-
tion.

Lemma 4.1 Assume that A(f) satisfies Assump-
tion 3.1. Consider hk and sk that satisfy (9). Let
f be an arbitrary function in span(S), and define

AA(.fk) = max(0, A(fk) - A(f)) (13)

h~
~k =-~-M(sk+,) + ek. (14)

Then after k-steps, the following bound holds for fk+l
obtained from Algorithm 2.1:

[1 ~-AA(fk+l) 
-k sk + II/1112 AA(fk) + ek. (15)

Proof Sketch. From 0 E Ak and (3), it is easy to see
that if A(fk) -- A(f) < 0, then A(fk+l) -- A(f) ~ 

which implies (15). Hence the lemma holds in this
case. Therefore in the following, we assume that
A(A) - A(]) _> 

Using Taylor expansion, we can bound each term on
the right hand side of (11) as:

A(A + hksgg)

<_A(fk) + h~sgVA(fk)T h~k sup Ag _(~hks9)
2 ~e[o,q Jk,y

<_A(fk) 4- hksgVA(fk)Tg 4- M(llfkl[1 4- 

where the second inequality follows from Assump-
tion 3.1. Taking a weighted average, we have:

B(hk) _< E Ifl~ - ~l [A(A) VA(A)Thks~g
9ESh

=AWkA(h) hkVA(fk)T(f - 

+ ~ZXWkM(IIAll, + hk)
<AWkA(fk) + hk[A(f) - A(fk)]

+ ~/\WkM(IIAII, + hk).
The last inequality follows from (12). Now using (11)
and the bound [[fk[[1 + h~ < Sk+l, we obtain

(A(h+l) A(f)) - 

<- (1- A--~k) (A(fk)- A(f)) 4- ~M(sk+,).

Now replace AWk by the right hand side of (10) with
e ~ 0, we obtain the lemma. O

4.2. Multi-step analysis

This section provides a convergence bound for the
boosting algorithm (2.1) by applying Lemma 4.1 re-
peatedly. The main result is given by the following
lemma.

Lenuna 4.2 Under the assumptions of Lemma 4.1,
we have

AA(fk) ~
IlYoll, + Ilfll, k~_-~]~ AA(.fo) 4- sj+ II1111-

j=l Sk 4- ~1 £j--1.

(16)

Proof Sketch. Note that Va >_ 0,

k ( ht ) exp( ;s~+’ 1 dr)
-I 1 < -

t=j st + a - a sj v + a

_ sjTa

sk+l 4- a

By recursively applying (15), and using the above in-
equality, we obtain

AA(]k+,) _< 1-I 1 - AA(f0)
l=o se + II]11,

k k ( he)
+Ell 1

j=o e=j+, s~ + II/ll~

_< so + II/11~
k

s~+, + Ilfll,/’A(fo) 4-j=o ~ s~+,sJ+’ +4-~,,~ ,, ~.llfll,

[]

The above result gives a quantitative bound on the
convergence of A(fk) to the value A(f) of an arbitrary
reference function f E span(S). We can see that the
numerical rate or speed of convergence of A(fk) to
A(f) depends on [[f[h. Specifically, it follows from
the above bound that

A(fk+l) <_A(f){1 so+,[f[[1 }
8k+l 4- [[f[[l 4-

k
+ ~ sj+, + II/11, -

j=o sk+l + ~J"

To our knowledge, this ks the first convergence bound
for greedy boosting procedures with quantitative nu-
merical convergence rate information. Previous anal-
yses, including matching pursuit for least squares,
Breiman’s analysis of the exponential loss, as well as
the analysis of gradient boosting in (Mason etal.,
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2000), were all limiting results without any informa-
tion on the numerical rate of convergence. The key
conceptual difference here is that we do not compare
to the optimal value directly, but instead, to the value
of an arbitrary f E span(S) so that [[][[1 can be used 
measure the convergence rate. This approach is also
crucial for problems where A(.) can take -co as its
infinimum for which a direct comparison will clearly
fail (for example, Breiman’s exponential loss analysis
requires smoothness assumptions to prevent this -co
infinimum value).

A general limiting convergence theorem follows di-
rectly from the above lemma. Due to the space limi-
tation, we skip the proof.

Theorem 4.1 Assume that o¢~j=ogJ < co and

)-’~j=o hj = co, then we have the following optimiza-
tion convergence result for the greedy boosting algo-
rithm (Z.1): limk_.¢~ A(fk ) = inffesp~(S) A(f).

Corollary 4.1 For loss functions in Section 3, we
have SUPa M(a) < co. Therefore as long as there ex-
ist hj in (9) and ej in (3) such that )-~d¢~=o hj = co,

oo 2 oo
~’~d=o hj < co, and ~j=o ej < co, we have the fol-
lowing convergence result for the greedy boosting pro-
cedure: limk-~ A ( f k ) = inflespa~(s) A ( f ) 

5. Examples of Convergence Analysis

We now illustrate our convergence analysis with a few
examples. In the discussion below, we focus on the
crucial small step size condition which is implicit in
the unrestricted step-size case, but explicit in the re-
stricted step-size case.

5.1. Unrestricted step-size

In this case, we let Ak ---- R for all k so that the size of
~k in the boosting algorithm is unrestricted. For sim-
plicity, we will only consider the case that SUPa M(a)
is upper bounded by a constant M.

Interestingly enough, although the size of &k is not re-
stricted in the boosting algorithm itself, for certain for-
mulations the inequality ~j ~ < co still holds. Theo-
rem 4.1 can then be applied to show the convergence of
such boosting procedures. For convenience, we will im-
pose the following additional assumption for the step
size (~k in Algorithm 2.1:

A(fk + &kgk) = inf A(fk + akOk), (18)
akER

which means that given the selected basis function 0k,
the corresponding ~k is chosen to be the exact mini-
mizer. Due to the space limitation, we skip the proof.

Lemma 5.1 Assume that &k satisfies (18). If 3c > such that infk inf~e(o,1 ) A~_~)f,+¢fk+,’ j~ (0) > c, then

Y~d=ok aj-2 _< 2c-l[A(fo) A(h+l)].

By combining Lemma 5.1 and Corollary 4.1, we obtain

Corollary 5.1 Assume that supa M(a) < +oo and
ej in (3) satisfies ~’=o ej < co. Assume also that
in Algorithm 2.1, we let Ak = R and let ~k satisfy
(18). If infk infee(o,1) A’(I_~)I~+~I~+,’ ~ (0) > O, then
limk-~ A(h) = infse~p~,(s) A(f).

LEAST SQUARES LOSS

The convergence of unrestricted step-size boosting us-
ing the least squares loss (matching pursuit) was stud-
ied in (Mallat & Zhang, 1993). Since a scaling of the
basis function does not change the algorithm, without
loss of generality, we can assume that Exg(X)2 -- 1
for all g E S (assume S does not contain function 0).
In this case, it is easy to check that Vg E S:

A~,g(O) = Exg(X)u = 1.

Therefore the conditions in (5.1) are satisfied as long 
oo

~j=o eJ < co" This shows that the matching pursuit
procedure converges, that is,

lim A(f~)= inf A(f).
k-+oo fEspan(S)

We would like to point out that for matching pursuit,
the inequality in (5.1) can be replaced by the following

k -2 = 2[A(f0) A(fk+l)], which was re -equality ~j=0 aj
ferred to as "energy conservation" in (Mallat & Zhang,
1993), and was used there to prove the convergence.

EXPONENTIAL LOSS

The convergence behavior of boosting with the ex-
ponential loss was previously studied by Breiman
(Breiman, 2000) for :i:l-trees under the assumption
inf= P(Y = llx)P(Y = -llx) > 0. Using exact com-
putation, Breiman obtained an equality similar to the
matching pursuit energy conservation equation. As
part of the convergence analysis, the equality was used
to show ~ -2)--~-j=o ~j < co"

The following lemma shows that under a more gen-
eral condition, the convergence of unrestricted boost-
ing with exponential loss follows directly from Corol-
lary 5.1. This result generalizes that of (Breiman,
2000). Due to the space limitation, proof will be
skipped.

Lemrna 5.2 Assume that

inf ExIg(X)Ix/P(Y = IIX)P(Y = -1IX) > 0.
gES
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If 5~k satisfies (18), then

inf inf A~.~ -. k+ ~ (0) >0.

-2Hence ~y aj < co.

5.2. Restricted step-size

Although unrestricted step-size boosting procedures
can be successful in certain cases, for general prob-
lems, they may fail. In such cases, the crucial con-
dition of cQ -2~j=o aj < co, as required in the proof of
Corollary 5.1, can be violated.

Intuitively, the difficulty associated with large ~j is
due to the potential problem of large oscillation in that
a greedy-step may search for a sub-optimal direction,
which needs to be corrected later on. If a large step
is taken toward the sub-optimal direction, then many
more additional steps have to be taken to correct the
mistake. If the additional steps are also large, then
we may over correct and go to some other sub-optimal
directions. In general it becomes difficult to keep track
of the overall effect.

The large oscillation problem can be avoid by restrict-
ing the step size when we compute ~j. This idea was
advocated by Friedman, who discovered empirically
that taking small step size helps (Friedman, 2001). 
our aalalysis, we can restrict the search region so that
Corollary 4.1 is automatically satisfied. Since we be-
lieve this is an important case which applies for general
loss functions, we shall explicitly state the correspond-
ing convergence result below.

Corollary 5.2 Consider loss functions in Section 3,
where sups M(a) < +co. Pick any sequence of pos-

ooitive numbers hj (j >_ O) such that Y’l-j=o hj = co,
oo 2

~j=o hj < co. If we choose Ak in Algorithm 2.1 such
oothat hk = supAk, and ei in (3) such that ~~d=o ej <

co, then

lim A(h)= inf A(f).
k-’, oo .f 6span(S)

Note that the above result requires that the step size
hi to be small (E 0 hi < co), but also not too smal|

ix)
(~j=o hj = co). As discussed above, the first condi-
tion prevents large oscillation. The second condition
is needed to ensure that fk can cover the whole space
span(S).

5.3. AdaBoost for large margin separable
problems

The original idea of Adaboost (boosting with the expo-
nential loss function) is developed under the assump-

tion that the weak learning algorithm can always make
reasonable progress at each round. Under some ap-
propriate measurement of progress, it was shown in
(Freund & Schapire, 1997) that the expected classifi-
cation error decreases exponentially. The result was
later extended in (Schapire et al., 1998) using the con-
cept of margin. In this section, we go beyond the lim-
iting convergence results in the last section and use
the bound given by Lemma 4.2 to provide a numerical
convergence rate for AdaBoost under a large margin
separable condition to be stated below.

Given a real-valued classification function p(x), 
consider the following discrete prediction rule:

1_ ifp(x) >_ O, (19)Y= 1 ifp(z)<o.

Its classification error (for simplicity, we ignore the
point p(x) = 0, which is assumed to occur rarely) is
given by

L.~(p(x),y)={~ififp(x)Y<7’p(x)y>7

with 7 = 0. In general, we may consider 7 _> 0 and the
parameter 7 > 0 is often referred to as margin, and we
shall call the corresponding error function L~ margin
error.

In (Schapire et al., 1998) the authors proved that un-
der appropriate assumptions on the base learner, the
expected margin error L~ with a positive margin 7 > 0
also decreases exponentially. It follows that regular-
ity assumptions of weak learning for Adaboost im-
ply the following margin condition: 37 > 0 such that
infl6span(S),]]l,,= 1 L.~(f,y) = 0, which in turn implies
the following inequality: Vs > 0,

inf Ex y exp(-sf(Z)Y) < exp(-Ts)./6span(S),lllll~=l ’
(20)

We now show that under (20), the expected margin
errors (with small margin) from Algorithm 2.1 may
decrease exponentially.

f0=0, supAk <hk, ek <_h~/2.

Note that this implies that gk < h~ for all k.

Now applying (17) with f = sf for any s > 0 and
let f approach the minimum in (20), we obtain (recall

II]’111 = 1)

k k-1

A(/k) < -87 sk -I- j~l 8i "t- S
Sk

Esk + s sk + s~-1 < -sT + h~.
- - sk +s= i=o
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Now let s -~ ~, we have

Assume we pick a constant h < q, and let hk = h, then

Ex,y exp(-fk(X)Y) exp(-kh(q,- h)

which implies that the margin error decreases expo-
nentiaUy for all margin less than "y - h. We shall point
out that this requires a prior knowledge of % If we
don’t know % then we can let the step size hk decrease
sufficiently slowly so that asymptotically the margin
error decreases slightly slower than exponential.

6. Conclusion

In this paper, we studied a general version of boost-
ing procedure given in Algorithm 2.1. The conver-
gence behavior of this algorithm is studied using the
so-called averaging technique, which were previously
used to analyze greedy algorithms for optimization
problems defined in the convex hull of a set of ba-
sis functions. Specifically, this technique is applied to
problems defined on the whole linear space spanned
by the basis functions. We derived an estimate of the
numerical convergence rate and established conditions
that ensures the convergence of Algorithm 2.1. Our
results generalize those in previous studies such as the
matching pursuit analysis in (Mallat & Zhang, 1993)
and the convergence analysis of Adaboost by Breiman
(Breiman, 2000). Furthermore, our analysis shows the
importance of using small-step size in boosting proce-
dures, which provides theoretical insights into Fried-
man’s empirical observation (Friedman, 2001).
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