
Knowledge Discovery in GenBank
Jeffrey S. Aaronson, Juergen Haas & G. Christian Overton

Department of Genetics

University of Pennsylvania School of Medicine

Room 475, Clinical Research Building

422 Curie Boulevard

Philadelphia, PA 19104-6145

Internet: coverton@cbil.humgen.upenn.edu

Abstract

We describe various methods designed to dis-
cover knowledge in the GenBank nucleic acid se-
quence database. Using a grammatical model of
gene structure, we create a parse tree of a gene
using features listed in the FEATURE TABLE.
The parse tree infers features that are not explic-
itly listed, but which follow from the listed fea-
tures. This method discovers 30% more introns
and 40% more exons when applied to a globin
gene subset of GenBank. Parse tree construc-
tion also entails resolving ambiguity and inconsis-
tency within a FEATURE TABLE. We transform
the parse tree into an augmented FEATURE TA-
BLE that represents inferred gene structure ex-
plicitly and unambiguously, thereby greatly im-
proving the utility of the FEATURE TABLE to
researchers. We then describe various analogical
reasoning techniques designed to exploit the ho-
mologous nature of genes. We build a classifica-
tion hierarchy that reflects the evolutionary rela-
tionship between genes. Descriptive grammars of
gene classes are then induced from the instance
grammars of genes. Case based reasoning tech-
niques use these abstract gene class descriptions
to predict the presence and location of regulatory
features not listed in the FEATURE TABLE. A
cross-validation test shows a success rate of 87%
on a globin gene subset of GenBank.

1 Introduction

GenBank, the primary worldwide repository for nu-
cleic acid sequence data, contains information on virtu-
ally all nucleic acid sequence that has been determined
[Burks et al., 1991]. Each GenBank entry contains a
FEATURE TABLE, a list of biologically significant
features that, taken together, constitute GenBank’s
description of the structure of the sequence. Unfortu-
nately, many GenBank entries suffer from incomplete,
noisy (ambiguous or contradictory), and erroneous list-
ings in the FEATURE TABLE. To a degree, these_
types of errors are inevitable in any large and complex

database. The problem is exacerbated by the necessity
of incorporating direct submissions from investigators
into the database, without which GenBank would fall
hopelessly behind in its effort to keep pace with the
growing rate of sequence determination. However, in-
vestigators are often unfamiliar with the GenBank data
description language, and as a result, fail to clearly rep-
resent their data. Typical obfuscations include miss-
ing features (e.g. introns not listed), mislabeled fea-
tures (e.g. mRNA instead of prim_transcript or exon),
incompatible boundary specifications among multiple
features (e.g. between exon and CDS), and relegation
of significant information (e.g. gene names in multi-
gene entries) to free-text in the comment fields. For-
tunately, much of this lost information can be recov-
ered through analysis of the explicit information in the
FEATURE TABLE to infer the implicit information.
If we are to realize the full potential of GenBank, it is
imperative that we develop tools that can discover this
implicit data within GenBank.

We have developed several software tools in our lab-
oratory designed to support this pursuit, chief among
these is QGB [Overton et al., 1993], a system for per-
forming complex queries on the information stored in
flat-file and relational database versions of GenBank.
Using a logic grammar as a model of gene structure,
QGB corrects and disambiguates the listed features,
discovers latent knowledge implicit in the FEATURE
TABLE, and produces an idealized, augmented FEA-
TURE TABLE as output. Queries in QGB, formu-
lated in an SQL-like syntax, can be directed against
the hierarchical sequence structures deduced by the
logic grammar parser as well as other information in
GenBank. A QGB query representing "return the lo-
cus ID, the definition line, and 10 bp 5’ and 20 bp 3’
to the 5’splice junction for all splice sites in all non-
mammalian genes with complete coding sequences"
would be constituted as

SELECT locus.id, definition,
5 ’ splice_site - /UNC (-I0 ,pt : exon,pt : int~ron, 20)

FROM ’/databases/gbre174/*. seq’,
TO myresult s,

WHERE organism =\= mammalia AND
definition AMONG

("complete cds" OR "complete coding sequence").
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One of our major long-term goals is to apply com-
putational approaches to the analysis and understand-
ing of eukaryotic gene regulation. As part of this ef-
fort, we are taking various approaches towards dis-
covering transcription elements and other regulatory
signals in uncharacterized and partially characterized
DNA sequences. Prediction of regulatory signals is
of enormous practical value to researchers who can
use this information to focus their costly and time-
consuming experimental efforts on restricted regions
of the DNA. We illustrate how our system can be
used to automate the task of pattern recognition in
the case where there are too few well-characterized
examples of the regulatory sequences to apply sta-
tistical based machine learning methods towards in-
ducing a pattern descriptor (see [Dietterich, 1990] for
an overview of the requirements for statistical ma-
chine learning methods). As previously described
[Overton & Pastor, 1991, Pastor et al., 1991], we have
turned to a variant of Case Based Reasoning (CBR)
[Kolodner, 1985, Kolodner et al., 1985], a form of rea-
soning by analogy, in this situation. One advan-
tage of CBR is that it can succeed with only a few
well-characterized examples if the uncharacterized test
cases are sufficiently similar to some members of the
example set. To do this, a CBR system makes use
of domain knowledge, i.e., the similarity of the test
case to some member of the case database, to replace
the need for an accurate general gene structure model
with an accurate local model. Methods of reasoning by
analogy work well in this domain because similar bio-
logical systems are often homologous, that is derived
from a common evolutionary ancestor, rather than be-
ing merely analogous. Furthermore, the CBR method-
ology matches the line of reasoning often used by biolo-
gists in practice: find a well-understood system similar
to the new system, hypothesize the existence of fea-
tures in the new system based on the features of the
known system, then design and perform experiments
to test for those features in the new system.

In CBR, well-characterized "cases" are organized
and indexed in a case database. On the basis of the
index, database cases are found which are similar to a
test case and then these similar cases are used as tem-
plates to reason about the properties of the test case.
The indexing scheme in our system is based on a static
classification hierarchy constructed for attributes rep-
resenting protein similarity and species similarity. The
hierarchy is equivalent to a case database and the pro-
cess of classifying a test case in the hierarchy amounts
to the step of finding the most similar cases.

The paper is organized as follows: We provide back-
ground and motivate QGB’s grammatical representa-
tion of gene structure, and describe its application to
GenBank FEATURE TABLEs in Section 2. Section 3
details the construction of a classification hierarchy
of genes that reflects the homologous relationship be-
tween similar biological systems. In Section 4, we dis-
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cuss how gene class descriptions are recursively induced
in the hierarchy from the instance grammars of genes.
Section 5 explains how one CBR technique utilizes de-
scriptive grammars and another utilizes sequence sim-
ilarity in order to predict unknown regulatory regions
in genes, and Section 6 suggests an application of CBR
for correcting existing feature descriptions, rather than
predicting new gene features. Finally, results of ap-
plying the system to the globin gene family subset of
GenBank are given in Section 7, and a discussion can
be found in Section 8.

Gene Primer

Our current work has focused on the globin gene
family, whose proteins’ function to transport oxygen,
and include the myoglobins, hemoglobins and leghe-
mog]obins. Figure 1 shows an abstract view of the
structure of a canonical fl-hemoglobin gene, but the
essential features of this gene are typical of the genes
of higher organisms. Substrings of a gene contain two
types of information: information specifying the se-
quence of the gene’s protein product, which is con-
tained within the exon subsequences of the primary
transcript, and information needed to regulate the
process of gene expression.

Several hundred classes of elements are known that
are part of the apparatus that controls gene expres-
sion, and more are discovered each year. These tran-
scription elements typically range in length from 4 to
20 nucleotides, a size consistent with their presumed
role as sequence specific recognition sites for binding of
regulatory proteins. Upstream (located on the 5’flank
of the primary transcript) promoter signal regions
and downstream (located on the 3’flank of the primary
transcript) terminator signal regions respectiwdy act
to define the start and stop points of the primary tran-
script. The class of promoters includes subsequences
such as the TATA, CAAT and CACA boxes, which
are found across a wide range of genes and species, as
well as rarer subsequences that restrict gene expression
to a specific tissue in an organism. Proper expression
of a gene is critically dependent on the organization of
the promoter sequences.

2 Gene Structure as a Grammar

QGB restructures the FEATURE TABLE of each
GenBank entry into a collection of relational tuples,
which are then processed by the Sequence Structure
Parser (SSP) component of QGB. The SSP attempts
to construct a parse tree expressing the structure of
the gene described in the GenBank entry, or several
parse trees in case the GenBank entry describes a gene
cluster (see [Searls, 1993] for a full discussion of gram-
matical representation of gene structure).

In order to accommodate the peculiarities of the
"language" of this domain we developed a generaliza-
tion of the DCG formalism [Pereira & Warren, 1980]
as an implementation technique of SSPs. Standard
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Figure 1: Idealized view of a parse tree for a typical eukaryotic protein coding gene.

DCG rules are of the form LHS => RttS, where the
LHS (left-hand side) is a non-terminal and the RHS
(right-hand side) any combination of terminals and
non-terminals. Terminals correspond to words of the
sentence being parsed (the leaf nodes of the parse tree),
and non-terminals represent sets of phrases (sub-
sequences of sentences) as defined by the grammar.
Each interior node of a parse tree corresponds to a
non-terminal as the sequence of terminals underneath
such a node is one of the phrases of that non-terminal.
The LIIS non-terminal in the toplevel grammar rule is
termed the start symbol.

In the context of nucleic acid sequences (NA) the
distinction between terminals and non-terminals is less
clear since genes can be described and investigated at
various levels of abstraction. As shown in the parse
tree of Figure 1, subsequences which may be considered
as terminals in one context may become non-terminals
in another (e.g., exons as subsequences of a primary
transcript may be considered terminals, whereas ex-
ons would be non-terminals when parsed into coding
sequences and untranslated regions).

Each feature of the FEATURE TABLE essentially
describes one node (terminal or non-terminal) of the
gene parse tree along with the DNA subsequence cov-
ered by it. These descriptions are often redundant,
incomplete and even inconsistent, and the task of the
SSP is to assemble complete parse trees expressing the
saane information in a structured non-redundant con-
sistent fashion. Below is a simple example of an NA
grammar rule expressing the fact that a transcription
unit consists of a 5’ flanking region, followed by a pri-
mary transcript and a 3’ flanking region:

transcription_unit =>
5’flank, primary_transcript, 3’flank.

Since grammatical elements (termi-
nals and non-terminals) correspond to intervals of NA
(sub)sequences [Overton et al., 1989], grammar rules
can be naturally interpreted as interval relationships
where ’=>’ means the interval on the LHS contains the
intervals on the RHS ("part-whole" relationship), and 
’,’ between intervals means that the end of the first in-
terval is the beginning of the second interval ("order of
parts" relationship). Techniques have been developed
for reasoning about temporal intervals [Allen, 1983],
and these techniques can be extended to cover NA in-
tervals. Incorporating these techniques into grammar
rule formalisms makes it possible to model other in-
terval relationships such as overlaps, starts, and ends
[Pastor et al., 1991].

Contrary to standard parsers that take as input a
list of ternfinals, the input to the SSP may contain
non-terminals as well. To facilitate efficient processing
the grammatical elements (features) on the input list
are ordered by their start positions, lengths and ranks
in the grammar hierarchy; for example, an exon occurs
before a CDS fragment with the same boundaries. The
square bracket notation, VI, is used to remove and add
elements to the input list. When used on the RItS of
a rule, they remove grammatical elements, and when
used on the LItS they add elements. Therefore, an el-
ement can be removed, examined and replaced on the
input list as in the following example which tests if thc
5’flank boundary h~s been reached:

5’flank, [primary_transcript(S,E,l)] 
gap, [primary_transcript (S,E, I) 
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A)
cluster (pos(<, [0,0]) ,poe(>, [1138,1138]), 
t_u(pos(<, [0,0]) ,poe(>, [1138,1138] 

f_f(pos(<, [0,0]) ,poe(=, [97,97]),(
gap(pos (<, [0,0]) ,poe (=, [26,26]), 
promoter (poe (=, [26,26] ), pos (=, [31,31] ), 
gap (po s (-, [31,31] ), pos (=, [69,69] ), 
promoter (poe (=, [69,69] ) ,pos (=, [72,72] ), 
gap(pos (=, [72,72] ) ,poe (-, [97,97]), 

p_t (pos (=, [97,97] ), pos (=, [929,929] 
ezon(pos(=, [97,97]) ,pos(=, [230,230] 
five utr(pos (=, [97,97] ) ,pos (=, [134,134] 

gap (poe (-, [97,97] ),poe (=, [ 134,134] ), 
cds(pos(=, [134,134]),pos(=, [230,230]), 

iutron (poe (=, [230,230] ),pos (-, [347,347] 
gap (pos (=, [230,230] ), poe (=, [347,347] ), 

exon (poe (-, [347,347] ), poe (=, [551,551] 
cds(pos(=, [347,347]),poe(f, [551,551]), 

intron(pos (-, [551,551] ) ,poe (=, [691,691]), 
gap (poe (=, [551,551] ), poe (=, [691,691] ), 

exon(pos (ffi, [691,691] ) ,pos (=, [929,929] 
cds (pos (=, [691,691] ), po s (=, [820,820] ), 
three_utr (pos (=, [820,820] ) ,pos (=, [929,929] 
gap (pos (-, [820,820] ) ,pos (=, [908,908] ), ()
ph sig(pos(=, [908,908] ) ,pos(=, [914,914] ), 
gap(pos (=, [914,914]) ,pos(=, [929,9293 ), 

t_f (pos (=, [929,929] ) ,pos(>, [1138,1138] 
gap(poa(=, [929,929] ) ,pos (>, [1138,1138] ), 

B)
FEATURES

CD$
Location/qualifiers
join(135..230,348..551,692..820)
/codonstart=l
/translation= NOT SHOWN
98..929
/note="primary transcript"
98..230
348..551
692..929
/number=3

c)
FEATURES Location/Qualifiers

trans_unit <1..>1138
/gene="alpha-globin"

5’flank <i..97

promoter 27..31
/sequsnce="ccaat"

promoter 70..72
/sequence="ata"

prim_transcript 98..929
/note="prlmary transcript"

exon 98..230
5’UTR 98..134

CDS join(135..230,348..551,692..820)

/¢odon_start=l
/translation= NOT SHO~

intron 231..347
exon 348..551
intron 552..691

exon 692..929
/number=3

3’UTR 821..929
pA_sig 909..914

/sequence="aat aaa"
3’flank 930..>1138

Figure 2: The parse tree, the original FEATURE TABI,E, and the augmented FEATURE TABLE for the }IUMAGL1
a-hemoglobin gene. A) standard representation of the parse tree for HUMAGL1 generated by the SSP; B) the FEATURE
TABLE as found in GenBank; C) a representation of the parse tree for HUMAGL1 aa a corrected, augmented FEATURE
TABLE. Note that the start position for each interval in the parse tree is one less than the start position in the corresponding
FEATURE TABLE entry because the SSP indexes on the space between characters rather than the character itself.

where the logic variables S and E represent the start
and end positions of the interval, and I provides con-
text information about the features.

Alternative rule applications (disjunction) can be ex-
pressed as follows:

5’flank => promoter, 5’flank.

5’flank => gap, promoter, 5’flank.

and recursion is illustrated in this example:

primary_transcript =>
exon, intron, primary_transcript.

primary_transcript => exon.

Practical grammars also need escapes to the underly-
ing implementation language. Such escapes are also
available in NA grammars to handle exceptional situ-
ations such as erroneous and missing input data.

We developed an NA grammar for the class of genes
that code eukaryotic proteins. It has been successfully

applied t,o a large number of eukaryotic globin genes
such as the human a-hemoglobin gene entry (HU-
MAGL1) shown in Figure 2B. The parse tree generated
from this table is shown in Figure 2A. Note that this
parse tree includes two promoters and one polyA-signal
that were inferred by the techniques discussed below.
In addition, the SSP inferred that the label precursor
PdlA should be changed to primary transcript, two fea-
tures listed as mRNA are actually exons, and two introns
were missing from the original FEATURE TABLE.

This example illustrates only a few of the problems
that, complicate the development of grammars with
broad coverage. Apart from mislabeling and omis-
sion of features, the SSP has to deal with FEN[URE
TABLEs describing multiple genes or alternative ver-
sions of genes (e.g., alternative splice sites, transcrip-
tion start sites, and polyA additions sites). In such
cases it is often necessary to refer to the qualifier fields
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to determine which gene a particular feature is part
of. However, qualifier fields are used inconsistently by
authors thus complicating the task of the SSP. We in-
tend to incorporate a more powerful text understand-
ing component to extract more of the available infor-
mation.

3 Hierarchy Generation

Reasoning by analogy is a powerful technique when
applied to the study of biological systems, due to the
homologous relationship between similar biological sys-
tems. The homology is rooted in evolution, and thus is
a particularly strong form of analogy. In order to take
advantage of analogical reasoning methods, we must
develop a representation of GenBank that directly re-
flects the homological relationships between entries.
This section describes just such a tree-like classification
hierarchy of the family of globin genes, which serves as
the platform for several analogical reasoning methods
described in later sections.

The classification hierarchy is a generalization-
specialization hierarchy in which subsumption is
strictly enforced and therefore models of gene struc-
ture housed at a gene class are applicable to special-
izations and instances of that class. This is a cru-
cial point: enforcing subsumption guarantees that the
structure of our knowledge base mirrors the organi-
zation of the biological knowledge that we are mod-
eling. Two classification attributes were used: bio-
taxonomic class and protein class. The former is
specified by the taxonomic path, genus and species
listed in GenBank entries, and the latter is deter-
mined from a cluster analysis of a protein similarity
measure. We use a hierarchical clustering algorithm,
described fully in [Rajasekhar & Overton, 1993], re-
lated to those used by the PIR protein se-
quence database [Barker et al., 1987] and described by
[Harris et al., 1992]. The domain theory expressed by
this hierarchy is that genes from more closely related
organisms and whoseproteins are similar will have sim-
ilar regulatory proteins and DNA sequences.

We used QGB to identify all the globin entries within
GenBank release 74. We then used the correspond-
ing protein entries in the GenPept FASTA file, version
74, produced by NCBI to generate pairwise alignment
scores, using the FASTA program, align0, for all the
globin products. The scores were then clustered, form-
ing an initial classification based solely on protein sim-
ilarity. The elements in each resulting leaf cluster were
then hierarchically classified with respect to biotaxo-
nomic relatedness. Thus, protein similarity dominates
the coarse structure of the hierarchy, while biotaxo-
nomic relatedness dominates the fine structure.

An interior node of the final tree represents a sub-
class of the globin genes, defined by the leaf nodes it
scopes. The leaves correspond to the globin gene prod-
ucts that were input to the cluster analysis. Each leaf
is annotated with the data from the associated Gen-

Bank entry, provided by the FFP, as well as the parse
tree constructed by the SSP. Grammar rules specify-
ing the instance grammar defined by the resident parse
tree are also attached to each leaf.

We will see in Section 4 how grammars are merged
up the hierarchy, providing a description at each inte-
rior node of the gene structure of the class of genes
described by that node. Section 5 show how these
grammar are utilized during analogical reasoning.

4 Grammar Induction

Analogical reasoning predominantly involves extrapo-
lating known attributes of a given case to fill in the
specification of an incomplete case. However, Gen-
Bank FEATURE TABLEs are vastly underspecified,
providing only partial information for a typical gene
instance. Thus, in general, gene instances are not suf-
ficiently informative individually to serve as cases. If
we are to make effective use of our hierarchy, we must
construct more complete descriptions of gene instances
to use as cases. Accordingly, we treat abstractions over
multiple gene instances as our cases.

We construct these abstractions by beginning at the
instance grammars at the leaf nodes and recursively
inducing grammar rules at each interior node up the
hierarchy, forming a descriptive theory at each node of
the class of genes scoped by the node. A consensus se-
quence is formed for each feature during each induction
step, and is attached to the induced grammar. Sec-
tion 5 explains how this annotated generalized gene
class description may then be used to fill in missing
features of all of the genes scoped by that gene class.

It is important to note that we may wish to disjoin,
rather than merge grammar rules of a certain feature
when we reach a certain height in the classification
hierarchy, as the gene class may contain sufficiently
disparate structures that we may not want to form an
abstraction [Overton & Pastor, 1991].

The general problem of inducing grammars from a
set of legal training examples is exceedingly difficult.
One of the foremost obstacles is that the space of
possible grammars facing an unbiased inducer is usu-
ally quite large and for some grammar representations,
such as context-free grammars, is infinite. Various
possible solutions have been proposed (for example,
see [Langley, 1987]) to counter this obstacle, tIow-
ever, we are dealing with a highly constrained problem
[Haas et al., 1993], and so far have been able to design
tractable induction algorithms for the grammar rules
(e.g. 5’flank, 3’UTR) incorporated to this point.

5 Prediction of Regulatory Signals

Grammar Based CBtt

The generalized abstract grammars discussed in Sec-
tion 4 may be used to hypothesize features of genes
that are underneath the corresponding node in the
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hierarchy. These hypotheses specify both the iden-
tity and the location of proposed features. Where a
feature’s location and size are identical in all similar
genes, it is possible to give absolute start and end po-
sitions; this is typically not the case, and locations can
therefore be predicted only relative to other features
at the same level of the grammar, with a projected
absolute location and size based on normalized loca-
tion and size. Each grammar nonterminal is annotated
with "positional references" defining the relative loca-
tion of the corresponding feature as well as "instance
sequences" defining the possible nucleotide sequences
of that feature) More precisely, the positional refer-
ences of a feature are the distances of that feature from
the start and end of the sequence covered by the next
higher-level grammar nonterminal. E.g., consider the
grammar rule:

3’UTR --> gap,
polyA_s ig (at : ( [60,27, aat aaa] }),
gap.

The polyA-signal in this rule is annotated with its dis-
tance from the start and end of the 3’UTR region which
would be in this case 60 and 27 respectively. The
sequence of this polyA-si~mal is specified as aataaa.
Nonterminals of rules of abstract grammars in general
have several such triples, one for each gene instance
from which the abstract rule was derived. Using this
information, features of gene instances with incomplete
grammars can be predicted by "matching" rules of the
abstract grammar with the corresponding rules of the
instance grammars as illustrated in the following ex-
ample:

Rule of abstract grammar:
(1) 5’~lank -->

gap,
promoter (at : { .... [_, 79, ccaat] .... }),
gap,
promoter (at : { .... [_, 35, t ataaa] .... }),
gap.

Corresponding rule of gene instance grammar:
(2) 5’flank -->

gap,
promoter(at: { [_, 37, tataaa~ }),
gap.

R.I¢ inferred by applying abstract grammar to
instance grammar:
(2’) 5’flaak-->

gap,
promoter (a~ : { [_,78, ccaat] }),
gap,
promoter (at : { [_, 37, t at aaa]} ),
gap.

aIn the current implementation instance sequences axe
maintained only for sm.a]] features su¢h as promoters and
polyA-signals.

Since the start of the 5’ flanking region is not precisely
defined, only the reference to the end of the 5’ flanking
region can be given for the above cases (only one of the
two references is needed to compute the absolute loca-
tion of the feature). The abstract rule (1) may be used
to predict features in the instance rule (2) by match-
ing the right-hand side of (1) with the right-hand side
of (2). This type of matching takes into account the
positional references as well as the instance sequences:
the positional references of the abstract rule serve to re-
strict the potential relative position of the feature; the
exact position is determined by searching the predicted
area for a sequence matching the instance sequence as-
sociated with the positional references. A feature of
the abstract rule will be merged with an overlapping
feature of the instance rule, retaining the positional
references of the instance rule. In the above example
the promoter at relative position 35 in rule (1) over-
laps with the promoter at relative position 37 of rule
(2); therefore these two promoters are merged retain-
ing 37 as positional reference. This leaves the first
promoter of (1), including the two neighboring gaps,
to be merged with the first gap of (~-). Based on the
reference information [_, 79, ccaat] of the first pro-
moter of (1), a corresponding promoter is predicted
for the gene modeled by (2) at 79 nucleotides to the
left of the end of the 5’ flanking region. If such a pro-
moter actually exists in that area, its exact location can
be determined by searching the area for the sequence
ccaat. In the above example the actual location turns
out to be one position to the left of the predicted lo-
cation. Replacing the first gap of (2) with the result
of this merge yields the refined grammar rule (2’).

If the sequence of a predicted feature can actually
be located near the predicted position, it would be a
strong indication that the predicted feature has the
biochemical properties attributed to that type of fea-
ture (such as promotion of gene expression), ttow-
ever, such properties can be reliably confirmed only
by means of experimental analysis. Consequently, un-
confirmed hypotheses may persist in the knowledge
base for indeterminate periods of time, and may in
turn contribute to further hypotheses. For this rea-
son, because of the possibility of changes to the un-
derlying databases (e.g., GenBank updates), and 
support explanation of the derivation of hypotheses,
some form of truth maintenance [Doyle, 1979] is nec-
essary. Truth maintenance in a database the size of
GenBank is somewhat problematic but we are taking
pains to preserve sufficient information during theory
formation (grammar induction) and hypothesis gener-
ation to support limited forms of truth maintenance
and explanation.

In order to search for an instance sequence near the
predicted location, certain ~ara~eters have to be set
to precisely define what we mean by "near a location"
and "matching of two sequences". In addition, since
in general there are several matches, it is necessary to



rank them by quality; i.e., a score must be computed
for each match so that the "best" match can be de-
termined. The following heuristic takes into account
the degree of mismatch and displacement of the pre-
dicted feature and was used to compute the data given
in section 7:2

Score = ((100- Mismatch)/lO0)/2(OffD°)

where Mismatch is the percentage of mismatch and
Off is the distance of the sequence from the predicted
position. That is, the maximum score is 1; this score is
reduced by the percentage of mismatch, and goes down
exponentially when shifted from the predicted position
in such a way that the score is reduced to half for
every 10 positions off the predicted location. Matches
are discarded if their mismatch score or the distance
from the predicted position becomes too large. For the
test runs discussed below sequences had to match at
least 80% and must not be off the predicted position
by more that 10 positions. The above heuristic was
chosen because it has the desired characteristics to the
extent that we understand the biological basis of the
type of CBR discussed here. Numerous other scoring
methods appear equally plausible at this stage and we
will refine this heuristic as our understanding of the
underlying biological mechanisms improves.

The reliability of predictions resulting from gram-
mar based CBR can be judged in basically two ways:
(1) Verification: If the relative location of the pre-
dicted feature is close to that suggested by a refer-
ence and there is a high degree of similarity between
the two sequences then it is likely that the predicted
feature is "correct", i.e., it marks a feature with the
same type of function as the reference feature, partic-
ularly if several references imply the same prediction.
(2) Cross-validation: By omitting one feature from
the knowledge base/hierarchy at a time and testing
whether the procedure predicts the omitted feature,
one can compute a measure of reliability as the ratio
of the number of omitted features that were correctly
recovered and the total number of predictions. Those
features that were not recovered correspond to "false
negatives". Unfortunatedly, it is difficult for this appli-
cation area to give a reliable estimate of the number of
"false positives" since our data are highly incomplete
(most regulatory signals are not marked in GenBank).
A rough estimate of the number of "false positives" can
be given by comparing the total number of predicted
features for each feature type with the total estimated
number of such features, taking into account the per:
centage of false negatives (see discussion in Section 7).

Sequence based CBR
If there is a high degree of similarity between the se-
quences of two genes, and ira particular feature is spec-
ified only for one of them, one can hypothesize a cor-
responding feature in the other gene. The position of

2The optimal values of the parameters of this formula
~e currently being determined experimentally.

GORGM12GLB:
2010 2020

... ct~;gaccaat agcct ...
<cant>

HUMGAMGLOA:
2006 2016

... ettgaccaat agcct ...

Figure 3: Sequence based CBR.

the predicted feature is determined by aligning the two
sequences and marking the boundaries of the feature
already known in this alignment.

For example Fig. 3 shows a section of the alignment
of the sequences of the human 7-globin genes (Gen-
Bank ID HUMGAMGLOA) and the gorilla 7-globin
gene (GenBank ID GORGM12GLB). They match al-
most perfectly over more than 11000 base pairs. The
promoters are listed only in the GORGM12GLB entry
as illustrated for the CAAT signal in Fig. 3. How-
ever, given the high degree of similarity between the
two sequences, one can predict with confidence that
the HUMGAMGLOA sequence has the same promoter
at the corresponding position (2011-2015). In this ap-
proach we make use of the fact that the sequences have
already been structured as a parse tree and that they
are organized in a hierarchy that groups genes of closely
related organisms together. This makes it easy to find
sequences that match to a high degree so that features
specified in one entry can be hypothesized with high
reliability in the other entry. Having the sequences
structured as a parse tree allows us to find matching
regions with little or no search since it is already known
where major features, such as coding sequences, are lo-
cated in each sequence. Typically, the procedure would
start the comparison at the beginnings of the coding
sequences of each gene as specified in the parse tree
and proceed in both directions, allowing for a certain
degree of mismatch and insertions/deletions.

Similar to predictions made by grammar based CBR,
predictions made by sequence based CBR can be as-
sessed in two ways: (1) Verification: A high degree
of similarity between two sequences indicates that a
feature that has been predicted at the same relative
location in one sequence as the corresponding feature
F in the other sequence has the same function as F.
(2) Cross-validation: Reliability can also be tested 
omitting known features and testing whether the pro-
cedure "rediscovers" them.

6 Correction of Feature Descriptions
A prerequisite for correct feature prediction is correct
input data. Unfortunately, many feature descriptions
from the input data bases contain mistakes or incon-
sistencies. However, it turns out’ that the same tech-
niques used for predicting features can also be used to
correct many such mistakes by isolating data that con-
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flict with results from CBR.. As discussed in Section 2,
QGB can detect and correct with some reliability cer-
tain inconsistencies within a GenBank entry. However,
many inconsistencies can only be detected by making
comparisons between several entries.

Grammar based CBR may predict a feature that is
inconsistent with a feature already listed. A closer ex-
amination of this discrepancy may reveal a problem in
the entry that should be corrected before it is used for
further CBR. For example the entry ALFLEGHEMA
lists several alternative polyA-signals, none of them is
consistent with the polyA-signal predicted by CBR.
Therefore, in order not to degrade the performance of
the CBR procedure, these polyA-signal entries should
be removed from the input until more reliable data are
available.

Sequence based CBR is also a powerful technique for
detecting and correcting inconsistent feature bound-
aries where applicable. For example, if the sequences
of several genes can be aligned with more than 95%
agreement, and all boundaries of a particular feature
are marked at the same relative locations except for
one, there is a high probability this feature boundary
is incorrect and should be at the same relative location
as the others.

7 Results

We examined how well QGB did in discovering fea-
tures not explicitly listed in the FEATURE TABLE
but rather inferred by the SSP. Our globin data set
contained a total of 437 introns and 665 exons. QGB
inferred an additional 130 introns (30% more) and 267
exons (40% more) not listed in the FEATURE TABLE.
These features would not be recognized or reported by
the other sequence extraction tools currently available.

The set of globin entries for which complete parses
were obtained has been organized in a hierarchy as de-
scribed in Section 3. This hierarchy has been used as
a data set for grammar based CBR. Reliability of this
procedure has been measured by iteratively removing
one of the 134 promoter and polyA-signals and test-
ing whether the deleted feature is rediscovered by the
CBR procedure. The CBR procedure was able to cor-
rectly predict 116 (87%) such features, and "missed"
18 (13%) of them (false negatives).

It is difficult to estimate the number of "false posi-
tives", i.e., wrong predictions, in this case, since most
promoter and polyA-signals are not annotated in Gen-
Bank. That is, if the system predicts a feature that
is not listed in the GenBank entry one cannot tell
whether that feature doesn’t exist or whether it exists
but has not been listed. However, if we assume that
each gene on the average has at least three promoters
and one polyA-signal, the number of false positives in
this test run can be estimated in the following way:
The grammar rules induced for the root node assumed
three promoters and one polyA-signal. Therefore, for
each gene the CBR procedure will try to predict as
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many promoters and polyA-signals as are necessary to
obtain a total of three promoters and one polyA-signal.
This means, on average, the number of predicted fea-
tures will be less than the number of existing but un-
known features. This implies that the number of false
positives is less than ttle number of false negatives.
Given our experimental result of 13% false negatives
we can therefore estimate the number of false positives
to be less than 13%.

Based on these results, we can now predict previ-
ously unknown features with a certain degree of con-
fidence. Application of grammar based CBR to all
entries in the hierarchy yielded a total of 312 new
promoter and polyA-signals. According to the above
analysis at least 271 (87%) of these features can 
expected to be "real".

The procedure for sequence based CBR has been
applied to a cluster of 111 globin genes from our data
set. Twenty of these GenBank entries have information
about promoters or polyA-signals. The total number of
promoters and polyA-signals in this set is 63. During
cross-validation sequence based CBR was able to re-
cover 50 (79%)of these features. 13 (21%) were missed
and no false predictions could be identified. Actual ap-
plication of sequence based CBR to the cluster of 111
globin genes yielded 149 new features (127 promoters
and 22 polyA-signals).

After inferring features through CBR the system
augments the grammars accordingly. The grammars
are then converted back into parse trees, and finally,
the parse trees, supplemented by information from
GenBank entry headers, are mapped into corrected,
augmented versions of the FEATURE TABLE (Fig-
ure 2C), a clear improvement over the incomplete and
inconsistent FEATURE TABLE of the original Gen-
Bank entry (Figure 2B). Only a few additions to the
feature and qualifier types are required in the improved
version. The augmented tables provide a consistent,
uniform representation of features across all entries and
further, can be used to directly regenerate the parse
tree without recourse to the SSP thus significantly re-
ducing query response times.

8 Discussion and Future Work

It is important to note that the techniques for infer-
ring, discovering, and correcting genetic knowledge di~
cussed in this paper complement and enhance each
other in various ways. For example, sequence based
CBR may use the grammars constructed by the se-
quence structure parser to correct feature boundaries
and infer features that can be inferred with high confi-
dence. Next, the grammar induction algorithm would
infer grammars for all nodes in the hierarchy which will
be used by grammar based CBR to infer additional fea-
tures and make further corrections of feature bound-
aries. The GenBank reconstruction routine would now
replace the original GenBank entries with improved
versions. The improved entries will allow the parser



to produce improved parse trees and grammars which
may yield an improved hierarchy and improved CBR
results. The process can be repeated until the hierar-
chy and its contents stabilizes.

The structure of the hierarchy itself may be influ-
enced by the result of the sequence structure parser
since, for example, mislabeled coding regions in a gene
cluster may make it difficult to determine the com-
plete coding sequence for a particular gene. Since the
clustering algorithm is based on protein sequence sim-
ilarity, an incorrect parse of the coding sequences may
lead to incorrect classification of that entry in the hi-
erarchy which may prevent useful CBR inferences.

The predictive power of the hierarchy is correlated
strongly with its structure. We are automating tech-
niques designed to eliminate noise and redundancy
from our data set, thereby improving the integrity of
our classification hierarchy. We are exploring includ-
ing additional attributes, such as time and tissue of
development, into our classification hierarchy.

Finally, we intend to set up the system in such a
way that it automatically changes various parameters
of the classification algorithm and CBR procedures and
evaluates the performance of the modified system so
that the optimal parameter settings can be determined.
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