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Abstract
A neural network classification method has been
developed as an alternative approach to the search/
organization problem of large molecular databases.
Two artificial neural systems have been implemented
on a Cray supercomputer for rapid protein/nucleic acid
sequence classifications. The neural networks used are
three-layered, feed-forward networks that employ
back-propagation learning algorithm. The molecular
sequences are encoded into neural input vectors by

applying an n-gram hashing method or a SVD
(singular value decomposition) method. Once trained
with known sequences in the molecular databases, the
nettral system becomes an associative memory capable
of classifying unknown sequences based on the class
information embedded in its neural interconnections.
The protein system, which classifies proteins into PIR

(Protein Identification Resource) superfamilies,
showed a 82% to a close to 100% sensitivity at a speed
that is about an order of magnitude faster than other

search methods. The pilot nucleic acid system, which
classifies ribosomal RNA sequences according to
phylogenetic groups, has achieved a 100%
classification accuracy. The system could be used to
reduce the database search time and help organize the
molecular sequence databases. The tool is generally
applicable to any databases that are organized
according to family relationships.

Introduction

One major challenge in contemporary molecular biology

is the analysis and management of the vast amount of

sequence data. Currently, a database search for sequence

similarities represents the most direct computational

approach to decipher the codes connecting molecular

sequences with protein structure and function. There exist

good algorithms and mature software for database search

and sequence analysis (see von Heijne 1991 and Gribskov

& Devereux 1991 for recent reviews). However, the

accelerating growth of sequence data has made the

database search computationaUy intensive and ever more
forbidding. It is, therefore, desirable to develop methods

whose search time is not constrained by the database size.

A classification/clustering method can be used as an

alternative approach to the large database search/

organization problem with several advantages: (1) speed,

because the search time grows linearly with the number of

families, instead of the number of sequence entries; (2)

sensitivity, because the search is based on information of

a homologous family, instead of any sequence alone; and

(3) automated family assignment. We have developed 

new method for sequence classification using back-

propagation neural networks (Wu et al. 1992i 1993). 

addition, two other sequence classification methods have

been devised. One uses a multivariant statistical

technique (van Heel 1991), the other uses a binary

similarity comparison followed by an unsupervised

learning procedure (Harris, Hunter, & States 1992). All

three classification methods are very fast, thus, applicable

to the large sequence databases. The major difference

between these approaches is that the classification neural

network is based on "supervised" learning, whereas the

other two are "unsupervised". The supervised learning

can be performed using training set compiled from any

existing second generation database and used to classify

new sequences into the database according to the

predefined organization scheme of the database. The

unsupervised system, on the other hand, defines own
family clusters and can be used to generate new second

generation databases.
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As an artificial intelligence and computational technique,
neural network technology has been applied to many
studies involving the sequence data analysis (see Hirst 
Sternberg 1992 for a recent review). Back-propagation
networks have been used to predict protein secondary
structure (Qian & Sejnowski 1988; Holley & Karplus
1989; Kneller, Cohen, & Langridge 1990) and tertiary

structure (Bohr et al. 1990; Chen 1993; Liebman 1993;
Wilcox et al. 1993), to distinguish ribosomal binding sites
from non-binding sites (Stormo et al. 1982) and encoding
regions from non-coding sequences (Lapedes et al. 1990;

Uberbacher & Mural 1991), and to predict bacterial
promoter sequences (Demeler & Zhou 1991; O’Neill
1992; Horton & Kanehisa 1992). This paper updates the
progress made in our neural classification systems,
introduces a new sequence encoding schema, and
discusses system applications.

System Design

The neural network system was designed to embed class

information from molecular databases and used as an
associative memory to classify unknown sequences
(Figure 1). There are three major design issues: (1) 
input/output mapping, (2) the neural network architecture,

and (3) the sequence encoding schema.

Input/output mapping
The neural system is designed to classify new (unknown)

sequences into predefined (known) classes. In other
words, it would map molecular sequences (input) into
sequence classes (output). Two neural systems have been

developed using "second generation" molecular databases
as the training sets. These databases are termed second

generation because they are organized according to
biological principles, or more specifically, within these
databases, the sequence entries are grouped into classes

based on sequence similarities or other properties. The
first neural system, the Protein Classification Artificial

Neural System (ProCANS), is trained with the annotated
PIR database (Barker et al. 1992) and classifies protein
sequences into PIR supeffamilies. The second system, a
pilot Nucleic Acid Classification Artificial Neural System
(NACANS), is trained with the Ribosomal RNA Database
Project (RDP) database (Olsen et al. 1992), and 
ribosomal RNA sequences into phylogenetic classes
(Woese 1987).

Neural network architecture

The neural networks used are three-layered, feed-forward
networks (Figure 1) that employ back-propagation
learning algorithm (Rumelhart & McClelland 1986) (see
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Figure 1. A neural network system for molecular sequence classification. The molecular sequences are first
converted by a sequence encoding schema into neural net input vectors. The neural networks then classifies
them into predefined classes according to sequence information embedded in the neural interconnect.ions after
network training.
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Wu et at. 1992 for a detail description of the neural
network model). In the three-layered architecture, the

input layer is used to represent sequence data, the hidden
layer to capture information in non-linear parameters, and
the output layer to represent sequence classes. The size of
the input layer is dictated by the sequence encoding
schema chosen, the output layer size is determined by the
number of classes represented in the network, whereas the
hidden size is determined heuristically, usually a number
between input and output sizes. The networks are trained

using weight matrices initialized with random weights
ranging from -0.3 to 0.3. Other network parameters
included the learning factor of 0.3, momentum term of
0.2, a constant bias term of -1.0, and training epochs

(iterations) of 400.

Sequence encoding schema

The sequence encoding schema is used to convert

molecular sequences (character strings) into input vectors
(numbers) of the neural network classifier (Figure 1). 

ideal encoding scheme should satisfy the basic coding
assumption so that encodings of similar sequences are
represented by ’close’ vectors. There are two different
approaches for the sequence encoding. Once can either
use the sequence data directly, as in most neural network
applications of molecular sequence analysis, or use the
sequence data indirectly, as in Uberbacher and Mural
(1991). Where sequence data is encoded directly, most

studies (e.g., Qian& Sejnowski 1988; Lapedes et al. 1990)
use an indicator vector to represent each molecular
residue in the sequence string. That is, a vector of 20
input units (among which 19 have a value of zero, and one
has a value of one) to represent an amino acid, and 
vector of four units (three are zeroes and one is one) for 
nucleotide. This representation, however, is not suitable
for sequence classifications where long and varied-length
sequences are to he compared.

N-gram method. We have been using a n-gram hashing
function (Cherkassky & Vassilas 1989) that extracts and
counts the occurrences of patterns of n consecutive

residues (i.e., a sliding window of size n) from a sequence
string. The counts of the n-gram patterns are then

converted into real-valued input vectors for the neural
network. The size of the input vector for each n-gram
extraction is mn, where m is the size of the alphabet. (See
Wu et al. 1992 or Wu 1993 for a detail description and
schematic representation). The n-gram method has

several advantages: (1) it maps sequences of different
lengths into input vectors of the same length; (2) 
provides certain representation invariance with respea to
residue insertion and deletion; and (3) it is independent
from the a priori recognition of certain specific patterns.

The original sequence string is represented by different
alphabet sets in the encoding. The alphabet sets used for
protein sequences include the 20-letter amino acids and

the six-letter exchange groups derived from the PAM
matrix. The alphabets for nucleic acid sequences inehide

the four-letter AT(U)GC, the two-letter RY for purine and
pyrimidine, and the two-letter SW for strong and weak
hydrogen binding.

Twenty five n-gram encodings were tested for
ProCANS, among which ael2 encoding was the best (Wu
et al. 1992). The input vector for ael2 encoding is
concatenated from vectors representing four separate n-
grams, namely, al (monograms of amino acids), 
(monograms of exchange groups), a2 (bigrams of amino

acids), and e2 (bigrams of exchange groups). The vector
has 462 units, which is the sum of the size of the four

vectors (i.e., 20 + 6 + 400 + 36). An example of one such
input vector is shown in Figure 1.

The major drawback of the n-gram method is that the
size of the input vector tends to he large. This indicates
that the size of the weight matrix (i.e., the number of
neural interconnections) would also be large because the

weight matrix size equals to n, where n = input size x
hidden size + hidden size x output size. This prohibits the
use of even larger n-gram sizes, e.g., the trigrams of
amino acids would require 203 or 8000 input units.

Furthermore, accepted statistical techniques and current

trends in neural networks favor minimal architecane (with
fewer neurons and interconnections) for its better
generalization capability (Le Ctm et al. 1989). To address

this problem, we have attempted different approaches to
reduce the size of n-gram vectors.

SVD (Singular-Value Decomposition) method.
Recently, we have developed an alternative sequence
encoding method by adopting the Latent Semantic
Indexing (LSI) analysis (Deerwester et at. 1990) used 
the field of information retrieval and information filtering.
The LSI approach is to take advantage of implicit high-
order structure in the association of terms with documents
in order to improve the detection of relevant documents
on the bases of terms used. The particular technique used
is SVD, in which a large "term-by-document" matrix is

decomposed into a set of factors from which the original
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matrix can be approximated by linear combination (Figure
2).

In the present study, the term-by-document matrix is
replaced by the "term-by-sequence" matrix, where "temls"

are the n-grams. For example, a 8000 by 894 matrix can
be used to represent the term vectors of 894 protein
sequences, with each term vector containing the 8000
trigrams of amino acids. The large sparse term-by-
sequence matrix would be decomposed into singular
triplets, i.e., the singular (s) values, and the left and right
singular vectors (Figure 2). The right s-vectors
corresponding to the k-largest s-values are then used as
the input vectors for neural networks. In this example, if
the right s-vectors corresponding to the 100-largest s-

values axe used, then the size of the input vector would be
reduced from 8000 to 100.

System Implementation

The system software has three components: a
preprocessor to create from input sequences the training

and prediction patterns, a neural network program to train
and classify patterns, and a postprocessor to summarize

classification results. All programs have been
implemented on the Cray Y-MPS/864 supercomputer of
the Center for High Performance Computing of the
University of Texas System.

The preprocessor has two programs, one for the n-gram
extraction, the other for the SVD computation. The n-

gram program converts sequence strings into real-valued
n-gram vectors that are scaled between 0 and 1. In the n-

gram encoding, these vectors are directly used as neural
network input vectors. In the SVD encoding, the n-gram
vectors are further reduced into right singular vectors
using a SVD program. The program, which is developed
by Michael Berry, one of the co-authors, employs a
single-vector Lanczos method (Berry, 1992). The right 
vectors are then processed before input into the neural
network such that the component values are scaled
between 0 and 1.

ProCANS Performance

N.gram encoding studies

In ProCANS, a modular neural network architecture that
involves multiple independent network modules is used to
embed the large PIR database (please see Wu, 1993 for 
discussion of the modular network architecture). The
current system has four modules developed with seven
protein functional groups, consisting of 690 superfamilies
and 2724 entries of the annotated PIR database. These

include the electron transfer proteins and the six enzyme
groups (oxidoreductases, t~ansferases, hydrolases, lyases,
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Figure 2. The singular-value decomposition (SVD) of a "term-by-sequence" matrix. The original term-by-
sequence matrix (X) is approximated using the k-largest singular values and their corresponding singular
vectors. S is the diagonal matrix of singular values. T and P, both have orthogonal, unit-length columns, are
the matrices of the left and right singular vectors, respectively, t and p are the numbers of rows and columns of

X, respectively, m is the rank of X (m < min (t,d)), whereas k is the chosen number of dimensions in 
reduced model (k < m).
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Table 1. Comparisons of n-gram and SVD sequence encoding methods for ProCANS.

Encoding Network Number of Trained Predictive
Method Configuration Connections Patterm(%) Accuracy(%)

N-gram (ael2)* 462 x 200 x 164 125,200 96.05 94.89
SVD (ae123) 50 x 100 x 164 21,400 97.57 94.47
SVD (a23) 100 x 100 x 164 26,400 98.63 94.89
N-gram + SVD 512 x 100 x 164 67,600 97.88 97.02

*The code used in parenthesis represents the type of n-gram vectors (please see text).

isomerases and ligases). The configuration of the four

networks is 462 input units (derived from the ael2 n-gram
encoding), 200 hidden units and 164, 180, 192, and 154

output units, respectively. During the training phase, each
network module is trained separately using the sequences
of known superfamilies (i.e., training patterns). During
the prediction phase, the unknown sequences (prediction
patterns) are classified on all modules with classification
results combined. The classification score ranges from

1.0 for perfect match to 0.0 for no match. A protein entry
is considered to be accurately classified if one of the five
best-fits (the superfamilies with five highest scores)

matches the target value (the known superfamily number
of the entry) with a threshold (the cut-off classification
score) of 0.01.

Two data sets are used to evaluate the system
performance. The first data set divides the 2724 PIRI
(containing annotated and classified entries) entries into

disjoined training and prediction sets. The prediction
patterns are every third entries from superfamilies with
more than two entries. The second data set uses all 2724
PIR1 entries for training, and 482 PIR2 (containing

unclassified entries) entries for prediction. The predictive
accuracy is 91.7% and 81.6%, respectively, for the two
data sets. A detail analysis of the misclassified sequence

patterns reveals three important factors affecting
classification accuracy: the size of the superfamily, the

sequence length, and the degree of similarity (see Wu
1993 for detail discussion). It is observed that the
superfamily size is inversely correlated with the
misclassification rate. And, generally, a sequence can be
correctly classified if its length is at least 20% of the
original length, although some sequences as short as 10%
are classified. The main reason that the second prediction

set has a lower accuracy is due to the large number of
sequences belonging to single-membered or double-
membered superfamilies, and sequences of small
fragments. In other studies that involve only large

superfamilies, the predictive accuracy has approached
100% (Wu et al., 1993). Therefore, the classification
accuracy of ProCANS is expected to increase with the
continuing accumulation of sequence entries available for
training.

SVD encoding studies

Preliminary studies have been conducted for the SVD
encoding method and compared with the ael2 n-gram
encoding (Table 1). The data set used has 894 PIR1
proteins classified into 164 supeffamilies. Among the
sequences, 659 are used for training, and the remaining
235 for prediction. The SVD results of two n-gram

vectors are shown, one for a23 (concatenates a2 and a3,
the bigrams and trigrams of amino acids), one for ae123
(concatenates al, a2, a3, the monograms, bigrams and
trigrams of amino acids, and el, e2, e3, the monograms,

bigrams and trigrams of exchange groups). The a23 n-
gram extraction of the 894 protein sequences generates a
term-by-sequence matrix with a dimension of 8400 x 894.
The ae 123 n-gram extraction generates a 8678 x 894
term-by-sequence matrix. The SVD computation of the
ae123 matrix yields 884 s-values, only ten less than the

total number (Figure 3). The plot shows a sharp drop 
the values at ca. the first 30 s-value positions. Similar
plots are obtained from all term-by-sequence matrices
studied. This seems to suggest that a set of less than 50 or
100 orthogonal factors are sufficient to approximate the
original matrix. Indeed, it is found that the fight s-vectors
corresponding to the 50 to 100-1argest s-values usuaUy
give the best results (i.e., better than ff a Larger s-vectors is
used). In the present study, a reduced model of 50 to 100

dimensions is used to reduce the size of input vectors
from 8400 or 8678 to 50-100. Figure 4 plots the right s-

vectors corresponding to the 20-largest s-values computed
from the a3 term-by-sequence matrix. While the s-vectors

of sequences within the same superfamily are similar, the
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Figure 3. The 884 singular values computed from a 8678 x 894 "term-by-sequence" matrix.
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Figure 4. The input vectors derived from the SVD encoding method for a 8000 x 894 "term-by-
sequence" matrix. The right singular vectors corresponding to the 20-largest singular values are
plotted. 1-1, I-2, 21-1, and 21-2 represents the first and second sequence entries of superfamily 1,
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Table 2. Comparisons of n-gram and SVD sequence encoding methods for NACANS.

Encoding Network Number of Trained Predictive
Method Configuration Connections Patterns(%) Accuracy(%)

N-gram (drs5)* 1088 x 80 x 28 89,280 100.00 96.18
SVD (d45) 80 x 50 x 28 5,400 100.00 99.32
SVD (d7) 80 x 50 x 28 5,400 100.00 100.00

*The code used in parenthesis represents the type of n-gram vectors (please see text).

s-vectors of different superfamilies (i.e., superfamilies 
vs. 21) are very different. Therefore, as with the n-gram
sequence encoding method, the SVD method also satisfies
the basic coding assumption.

The comparison between the ael2 n-gram encoding
and the two SVD encodings shows that the sizes of the
input vectors and the weight matrices can he reduced by
SVD without reducing the predictive accuracy. When the
input vectors from the ael2 n-gram method and the a23
SVD method axe combined, the classification accuracy is
improved to 97.02% (p.s., the 94.89% has been 
performance ceiling for this data set using n-gram
encodings) (Table 1). Conceivably, the improvement
results from additional sequence information embedded in
the a3 n-grams. It would be difficult to input the a3 n-
gram vector directly to the neural network without a
reduction: it would he too large (with 8000 units), and the
vector would be too sparse (too many zeros) for the neural
network to he trained effectively.

NACANS Performance

The pilot NACANS is developed with 473 entries in 28
phylogenetic classes of the RDP database. The neural

network is trained with 316 of the 473 16S ribosomal
RNA sequences, and tested with the remaining 157
sequences. The best n-gram encoding method is drs5,
which concatenates d5, r5 and s5, pentagram patterns of
AUGC, RY (puriue, pyrimidine) and SW (strong, weak

hydrogen bonding) alphabets. Other network parameters
are the same as the ProCANS. A predictive accuracy of
96.2% is achieved counting only first-fit at a cut-off
classification score of 0.0I (Table 2).

The same data set is also processed by the SVD
method as a comparison. Two n-gram vectors are used,
d45 (concatenates d4 and d5, the tetragram and pentagram
patterns of AUGC alphabet) and d7 (heptagrams 
AUGC alphabet). These generates two term-by-sequence
matrices with dimensions of 1280 (d45 n-grams) x 473
(RNA sequences) and 16384 (d7 n-grams)x 473. 

matrices axe reduced to a 80 x 473 matrix of right s-
vectors by SVD. The results show that with the SVD

encoding, classification accuracy can be improved (up to

100%) even with a much smaller network architecture
(Table 2). Significantly, the information embedded in d7
n-grams alone is sufficient for 100% classification. This
information would be very difficult to capture without the
SVD reduction, however, due to its size (16,384 units).

The result of the two systems indicates that both
sequence encoding methods can apply equally well to the
protein or nucleic acid sequences, although the former has
a 20-letter alphabet and the latter has a four-letter
alphabet.

System Applications

The major applications of the classification neural

networks are rapid sequence annotation and automated
family assignment. ProCANS is an alternative database
search method. It can be used as a filter program for other

database search methods to minimize the lime required to
find relatively close relationships. The saving in search
time will become increasingly significant due to the
accelerating growth of the sequence databases. A second
version of ProCANS, ProCANS II, is being developed
using the Blocks database (Henikoff & Henikoff, 1991),

which lists all sequences of the motif region(s) of 
protein family. Since the Blocks database is compiled
based on the protein groups of the ProSite database
(Bairoch, 1992), the system would map protein sequences
into ProSite groups. This second system is aiming at
sensitive protein classification by applying motif
information. The goal is to build an integrated system

that permits both rapid identification of close relationships
and sensitive detection of distant relationships. As an
automated classification tool, the neural systems are
hoped to help organize databases according to family
relationships and to handle the influx of new data in a
timely manner.
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The neural networks used in this research are larger than

most used in other sequence analysis studies. While the
sensitivity of the system is expected to increase with the
continuing accumulation of sequence entries available for
training, minimal architecture will be adopted to improve
network generalization. When the n-gram encoding
method is used, the number of weights trained in the
networks exceeds by two orders of magnitude the number

of training samples. The SVD computation has reduced
the input vector and weight matrix sizes significantly.

The neural system has two products: a "neural

database" which consists of a set of weight matrices that
embed family information in the neural intercormections
after iterative training, and a system software that utilizes
the neural database for rapid sequence classification. The

neural database and the system software has been ported
to other computer platforms, including an intel iPSC
hypercube and a microcomputer, for speedy on-line
protein classification. The system will be distributed to
the research community via the use of an anonymous ftp
and an electronic mail server.
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