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Abstract

Assembly of genomic sequences and maps re-
lies on a primary set of experimental data (e.g.,
the sequences of individual DNA fragments, or
hybridization fingerprints of individual clone in-
serts), but almost always also relies on several
streams of related but distinct kinds of data for
completeness and accuracy of the final construc-
tion. These secondary data sets, which we term
ancillary information, usually contain errors (as
do the primary data sets, therefore creating the
possibility of conflict between data sets), often
arise from different experimental protocols and
correspond to different scales of measurement,
and occasionally include non-quantitative state-
ments about the data. We present an approach
for integration of ancillary assertions in the ow
timization of genome assembly, based on simul-
taneous balancing among the primary and sec-
ondary data sets, and include specific examples in
the context of assembling DNA sequencing frag-
ments to reconstruct a parent sequence.

Genome Assembly

Mapping the human and other genomes involves many
strategies and scales. However, most of these ap-
proaches have in common the methodology of indi-
vidually characterizing small pieces of the object be-
ing mapped, evaluating the pairwise similarity of the
pieces’ characteristic(s), and assembling the pieces into
an interleaved tiling, or layoul, from which can be de-
rived an overview map of the relations of the pieces to
each other (and to the original, parent object). Explo-
ration of all possible assemblies, given the antecedent
data, is combinatorially complex and therefore com-
putationally prohibitive for data sets involving large
numbers of pieces. Both the evaluation of pairwise
relationships and the optimization of assembly are fur-
ther complicated by the typical use of multiple kinds
and sources of input data and the universal presence
of error in the input data sets.

We focus here on the context of large-scale DNA
sequencing (Hunkapiller el al. 1991; Venter 1994),
the highest-resolution approach to genome mapping,

and in particular on integrating the effects of different
kinds of ancillary information from multiple sources
into the optimization of genome assembly by simulta-
neously balancing among the primary and secondary
data sets used to influence the layout of fragments.
A DNA sequence is represented by a string of char-
acters drawn from a four-letter alphabet (A, C, G,
and T) corresponding to the four bases found in the
DNA polymer. A piece, or .fragment, corresponds
in our context to a string of 100-1000 bases; overlap
strength and offset between pairs of fragments is based
on character string comparison. The output overview
map represents a consensus sequence on the order of
1000-1,000,000 bases, generated by voting in aligned
columns of bases resulting from the assembly of the
input fragments.

Large-scale sequencing

A number of groups have recently published the results
of large-scale sequencing projects generating from tens
of thousands to millions of contiguous bases (e.g., (Wil-
son el al. 1994)). These recent efforts are note-
worthy because of their conception and implementa-
tion as short-term, globally-comprehensive sequencing
projects; this contrasts with previously published se-
quences of comparable size, which have been the re-
sult of piecing together many smaller projects. The
limitation of experimental methods to stretches of
100.1000 contiguous bases for direct determination of
DNA sequences has meant that longer regions of DNA
have to be determined as shorter, overlapping frag-
ments. For a large project, involving hundreds or
thousands of sequence fragments, the computation of
an optimal layout requires alternatives to the sys-
tematic exploration of all possible assemblies. The
most prevalent algorithmic approach is the greedy con-
struction of a single or a few solutions (e.g., (Dear 
Staden 1991; Huang 1992)), though others have experi-
mented with stochastic search (e.g., (Burks et al. 1994;
Churchill el al. 1993; Parsons, Forrest, & Burks 1993;
1994)) or rapid approximations to exact constructions
(e.g., (Kececioglu & Myers 1989; Kececioglu 1991)).
These algorithms have recently been reviewed by My-
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ers (Myers 1994).
A number of other factors further complicate the

computational complexity of sequence assembly. The
input fragment sequences usually include experimen-
tal ambiguities or errors that affect assessment of pair-
wise overlap strength and subsequent detailed align-
ments. Though sequencing both strands contributes
to minimizing errors arising in base calling, it also
leads to the necessity for assigning and tracking strand
sense through the assembly and alignment calculations.
Naturally-occurring DNA sequences tend to be repet-
itive on many different scales. Repetitive sequences
longer than individual fragments may cause ambigui-
ties in the sequence assembly that cannot be resolved
without additionM information; this problem is exacer-
bated by higher rates of conservation among and larger
repeat units in a repeat family. Finally, the rates and
distributions of errors can vary with source (e.g., dif-
ferent protocols, technicians, and sources of material).

Optimization with ancillary assertions

Several potential sources of ancillary information are
available to compensate for either incompleteness or
errors in the primary sequence data. For example,
subsets of a fragment set may be known to be prox-
imal to one another by virtue of previous, independent
characterization of sub-cloned regions of the insert be-
ing sequenced. At the same time, it is desirable to
avoid implementing these ancillary data as absolute
constraints because they too will often contain errors.
Ideally, one would like to integrate their impact into
the overall objective function driving the optimization
of layout.

The typical approach to sequence assembly involves
reliance on a well-defined algorithm to automatically
generate an optimal layout based only on the un-
derlying, primary sequence data, usually followed by
a lengthy manual editing process to incorporate the
ancillary information that the experimentalist has at
hand. We present here a new strategy based on the in-
tegration of these ancillary assertions into the initial,
automated layout, and present three examples of how
such ancillary data can be built into and influence the
objective functions controlling the assembly optimiza-
tion. In developing this strategy, we plan to develop a
limited library of possible functions representing char-
acteristics of, or relations between, the pieces being
assembled so that new sources and kinds of ancillary
information can be implemented by casting the new
kinds of information in terms of an existing library of
functions.

Systems, Data and Software
The software was developed on a Sun Microsystems
(Mountain View, CA) workstation running SunOS
UNIX. Programs were written in the C programming
language, and the interface was implemented on the
OpenWindows (X-ll compatible) platform.

All artificial fragment sets were generated by
extracting known nucleotide sequences from Gen-
Bank (Burks et al. 1992) and fragmenting them com-
putationally, using genfrag (v. 2.0), to conform to 
range of desired vMues for coverage, fragment length,
repeat density, and error rate (Eagle & Burks 1993;
1994).

Sequence fragments were assembled into output con-
sensus sequences using the following modules:

score was used for scoring pairwise overlap
strengths; it counts the number of identical words
along each diagonal in the string comparison matrix,
and has been described previously (Churchill et al.
1993).

layout takes a given ordered list of the fragments,
permutes them, and evaluates a corresponding objec-
tive function to optimize layout; though we have exper-
imented with several approaches, we typically use self-
adaptive annealing to drive the optimization (Burks et
al. 1994). The permutations are based on alternat-
ing sets of randomly-selected sequentiM pairwise ex-
changes of ordinal assignments in the list (Churchill et
al. 1993) with sets of randomly-selected transpositions
and inversions of neighboring blocks of ordinal assign-
ments in the list (Burks et al. 1993). For straight-
forward layout determination without use of ancillary
information, this optimization is driven by an objective
function, F, eq,

N N

F, eq = ~ ~_, IPi - PJ Isi,i (1)
i=1 j=l

where pi and pj are the ordinal assignments of
fragments i and j, and sij is their overlap
strength (Churchill et al. 1993). The addition of ancil-
lary assertions is mediated by adding other objective
function components to this component.

Finally, tufa generates a multiple alignment by per-
forming a series of global alignments using dynamic
programming on overlapping successive pairs of over-
lapping fragments in the layout (Eagle, Parsons, 
Burks 1994), using the order of neighboring fragments
generated by layout. The final step of generating a
consensus from the multiple sequence alignment is ac-
complished using a simple column majority to call a
base at each position. The quality of this final consen-
sus sequences is assessed by examining percent match
to and percent coverage of the initial parent sequence
using the align program (Pearson 1993).

General Approach and Sample

Implementations

Sequencing efforts frequently require significant man-
ual editing that relies on information other than the
overlap strengths used in the layout process. The goal
of this work is to provide a general framework through
which this additional information, ancillary informa-
tion, can be incorporated into and exploited by the



layout process. There are important differences in the
kinds of information available. As a result, we have
designed a very general system which should accom-
modate these different classes of information, from a
wide variety of sources, within the objective function
used during the layout process.

The ancillary information available to aid in the frag-
ment assembly process suffers from the same prob-
lems conlmon to most of the experimental biological
data: ambiguities or errors in the data, conflicting as-
sertions, varying reliability of data, etc. Therefore,
the information can not be introduced simply as ab-
solute constraints on the optimization; this would lead
to no solution in any case with conflicting information.
Instead, we treat these data items as assertions, al-
lowing them to each contribute independently to the
objective function used for the optimization process.
The assertions compete with each other, as opposed
to exclusively constraining the search space to one as-
sertion or another. Additionally, we have defined a
system for which objective function customization to
accommodate a new kind of ancillary information will
draw upon a library of primitive assertions and cor-
responding objective function components rather than
requiring development of new functions specific to that
information.

Our conceptual framework can be viewed as a logical
system whose universe consists of objects and sets of
objects, assertions about objects, and assertions about
relationships among objects. For the sequencing pro-
cess, objects are fragments, parent sequences, layouts
(a contig is a layout in which no gaps are present),
etc. A contig can be viewed both as an individual ob-
ject and as an ordered set of objects -- the component
fragments of the contigs are the members of the set.

The information used by the assembly process is rep-
resented as assertions about objects. The framework
includes different classes of assertions that character-
ize the manner in which an assertion can be incor-
porated into the objective function. Incorporating a
new kind of ancillary information into this layout pro-
cess requires mapping the information into one or more
of the classes of assertions defined within the frame-
work and potentially introducing new objects into the
system over which these new assertions are then de-
fined. This framework allows the objective function
to be built incrementally from the components speci-
fied by the different classes of assertions. Each of the
components can be weighted separately, altering the
relative influence each factor has on the overall objec-
tive function. In general terms, the overall objective
function, Ftot~Z, is defined for a particular layout l in
terms of the component objective functions, Fi, corre-
sponding to different sources or kinds of information,
i,

r, oto,(0 = ~[~ wi ¯ r~(t) (2)
i

These weights, wi, can be set by empirical approaches
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Generic Object:

objectlnfo(type, ID, label)
objectlength(value,method)
{element_info(type, ID, label)}
span_characteristics(type, start, stop, value)

Set of Objects:

object_info(type, ID, label)
cardinality
span_characteristics(type, start, stop, value)
set_characteristics(type, frequency, value)
{object_l D }

Table 1: Object definitions.

or by a more formal training scheme (the latter being
possible when kinds and sources of ancillary informa-
tion are fixed for a series of data sets). Though we
focus here on integrating ancillary assertions into op-
timization of layouts, some kinds of ancillary informa-
tion would best be integrated into other steps (e.g.,
overlap strength determination) in the overall assem-
bly.

In the traditional scenario where layout optimiza-
tion is based only on overlap strengths determined by
sequence comparison, there is a single Fi, Fseq, so Eq.
2 reduces to Ftot,a = Fseq (see Eq. 1).

Definition of framework

The framework for ancillary data includes object spec-
ifications and relation specifications. It is sometimes
useful to treat a collection of objects, such as a set of
fragments, as an object itself. Therefore, the frame-
work includes a generic definition for objects as well as
definitions for ordered and unordered sets of objects.
Assertions capture the specific information about these
objects. These assertions take the form of relations
among objects.

Table 1 includes the generic definition of objects and
sets of objects. Each object has a standard set of
identifying information: an identifier, a type specifier
(fragment, clone, etc.), and a label. A length can 
associated with an object along with the method used
to determine the length (the reliability of length in-
formation depends on how the length is determined).
Components of objects are specified in the element set
for the object. Finally, span_characteristics represent
information that might hold over some portion of the
object. For example, if the object is a fragment, the
fact that the first 1000 bases are GC-rich would be rep-
resented using the span characteristic. For object sets,
there is additional information for the set cardinality,
whether or not the set has an ordering over it, the ob-
jects which make up the set, and any characteristics
that hold for the set.

Table 2 includes an initial list of the types of as-



Spatial Relations: Assertion Schemas:

contaJns(x,y)
contaJned_in(x,y)
left_overlap (x,y, [if)
left_of(x,y,[i])
right_overlap(x,y,[i])
right_of(x,y,[i])
offset(x,y,[i])

latger_PROP(x,y,[i])
smaller_PROP (x,y,[i])
equaLPROP(x,y,[i])
not_equal_PROP(x,y,[i])
approx_PROP(x,y,[i])
PROPI_LOP_PROP2(x,y,[i])

Table 2: Definition of object relations, x and y are ob-
jects, PROP is some property or quantity (e.g., strand
orientation), and LOP is a logical operator.

sertion classes required to capture biological sequenc-
ing data. Spatial relationships among fragments are
prevalent in biological data, so these are enumerated
separately. We then include some assertion schemas
that should capture other sources of information. For
example, a statement that the GC content of fragment
x is 10% greater than fragment y could be stated as:
larger_GC%(x,y,10). The assertion list is still under de-
velopment; however, for a wide variety of ancillary in-
formation that we have identified, the list is adequate.
The challenge remains to design, for each class of as-
sertion, a mechanism within which to incorporate the
assertion into the objective function and to incorpo-
rate more classes of data into the framework to further
analyze its completeness.

Examples

We present three contexts where ancillary informa-
tion is available and can be translated into assertions:
primer-directed walking, end-sequence screening, and
mapping clusters. A schematic view of these three se-
quencing approaches and the associated ancillary in-
formation is presented in Fig. 1. For the last case,
mapping clusters, we have implemented the assertion
scheme and present results for a hypothetical sequence
data set, comparing the success of assembly with and
without use of the ancillary information.

Primer-directed walking. Though the vast major-
ity of sequence data available to date has been gener-
ated predominantly with random (shotgun) methods,
directed methods have often been used to fill in gaps
left over by the random approach. More recently, di-
rected methodologies have been explored as a possible
substitute for random methods altogether, not only
because of their effectiveness in gap closure but also
because of the reduced experimental redundancy and
elimination of the need for computing the overall lay-
out of the fragments.

One method of directed sequencing is primer-
directed walking (see, for example, (Kieleczawa, Dunn,
& Studier 1992)). In this technique, a first segment 
the parent is sequenced and analyzed. Then, a se-
quencing primer is chosen that is contained by and

close to the end of the first sequence. The primer is
used as an anchor point from which to begin sequenc-
ing again, with the aim of extending the new sequence
beyond the end of the first sequencing run. While the
task of assembling these data is not as computationally
complex as that required for shotgun sequencing, com-
putational assistance is still desirable. In addition to
the fragment overlap information generated by com-
paring the sequences, we have ancillary information
corresponding to the link between the fragment from
which the primer was selected and the fragment re-
sulting.from sequencing beginning at that primer. This
can be translated into assertions about the relative off-
set and strandedness between any these pair of frag-
ments (see Fig. lb): the position of the primer gives
an approximate offset of the second fragment relative
to the first, and the known orientation of the primer
gives the strandedness of the second fragment relative
to the first.

We then instantiate the overall objective function
according to Eq. 2,

F,o,~l = (w,~q * Fo,q) + (Wolf,,, * Fo11,~t) +

* (3)
where F,~q is given in Eq. 1. Foyt,~, is determined as,

Foyy,a = E ~ l°f fset(i’ J)~"" - offset(i, j)t~, l
i j

(4)
for pairs of fragments, i, j, included in the input an-
cillary assertion list. The anc and lay subscripts
denote data supplied as an input ancillary assertion
and data generated by analysis of an output layout,
respectively.1 F,*rand is determined as,

F,,~,~d = E E strand(i,j) (5)
i j

where

strand(i,j)=

0 if equal_str(i,j)~,~
and equal_str( i, J)t~v

0 if not_equal_str(i,j)~,,
and not_equal_str( i, j)t~y

1 if neither equal_str(i,j)an~
nor not_equal_str( i, j)~n¢
can be asserted

2 if otherwise
(6)

for pairs of fragments, i, j, included in the input an-
ciliary assertion list. Minimizing this objective func-
tion drives toward solutions for which fragments will
be offset and strand-related as indicated by the input
ancillary assertions.

loffset(i,j)lau can be calculated in several different
ways: some requiring a preliminary layout, some requiring
estimates of overlaps, etc. A discussion of this computation
and its implications for layout strategies overall is beyond
the scope of this paper.
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Figure 1: Schematic representation of sequencing strategies. Solid lines represent DNA sequences; dotted lines
represent ancillary information linking the sequences. (a) Parent (double-stranded) DNA sequence. (b) Primer-
directed walking. (c) End-sequence screening. (d) Mapped clusters.

End-sequence screening. Another sequencing
strategy currently being explored as an improvement
on shotgun sequencing is that of end-sequence screen-
ing (see, for example (Chen, Schlessinger, & Kere 1993;
Smith et al. 1994) ). A specific example is Or-
dered Shotgun Sequencing (OSS), where sequencing
of a large parent DNA begins by breaking the parent
down into smaller fragments, each several thousand
bases long, that are more amenable to pure shotgun
sequencing (Chen, Schlessinger, & Kere 1993). These
smaller fragments’ ends are sequenced, yielding sev-
eral hundred bases of sequence information (in oppos-
ing strand orientation) for each end of each fragment.
The approximate length of each fragment is also deter-
mined. This information can be used to identify a min-
imal spanning set of the fragments that will be com-
pletely sequenced, reducing the number of fragments
which must be individually sequenced, and increasing
the efficiency of generating a parent sequence.

The identification of the minimal spanning set relies
on aligning the fragments’ end sequences, and using the
strand and fragment length information to develop a
layout for the implied full-size fragments (see Fig. lc).
As one relies on the primary sequence data, along with
ancillary information on pairwise sequence fragment
offsets and strand-relatedness, to complete the layout,
Eq. 3 applies equally well.

Mapped dusters. In some cases, fragments may
have been localized to a sub-region of the parent DNA
as a result of mapping of the sub-regions to the par-
ent (see Fig. ld). This can be viewed as supplying
non-ordered cluster information corresponding to iden-
tification of the sub-set of fragments with a particular
sub-region of the parent. Thus, we assume one or more
subsets of an input set of sequence fragments have
additionally been assigned to distinct clusters. (Be-
low, we model unique cluster assignments for the case
where, for example, the linking of fragments to sub-
regions does not bridge across sub-regions boundaries.
It would also be desirable to model the case where clus-
ter assignments could bridge these boundaries, leading

to some fragments being assigned to multiple clusters).
In this case, for a layout with ordinal assignments, i,
for each fragment in a set of N fragments,

F~otal = (w,~q * F,~q) + (w~l,~,t~r * F¢l~,,t~r), (7)

N-1

F¢,~,,,,, = ~ cluster(i, i + 1), (8)
i=1

and

0 if
1 if

cluster(i, j) 

2 if

equal_cl D( i, j)a,~
neither equal_cl D( i, j)ane
nor not_equal_cl D( i, j)~n¢
is asserted
otherwise

(9)
This composite objective function was tested on

assembly of an artificial set of 177 sequence frag-
ments drawn by gonfrag (Engle & Burks 1993; 1994)
from a known 8815 base parent sequence, lqUMD-
KERB (Krauss & Franke 1990); the parent sequence
features, and corresponding assigned clustering bins,
are shown in Fig. 2.

Table 3 summarizes the results of several runs on
a sample data set. Half of these runs use only se-
quence overlap information for the assembly optimiza-
tion (designated with an A), while the other half ad-
ditionally include ancillary (mapping cluster) informa-
tion (designated with a B). Cluster IDs were assigned
to each fragment in the input set as follows: the par-
ent sequence was randomly divided into sections, and
fragments assigned to one of six bins according to their
location on the parent sequence (see Fig. 2). The re-
sults indicate that while the ancillary data does not
make a major difference in all cases, it does do so a
significant percentage of the time and it’s results are
much more consistent. Runs 1A and 1B provide an
illustration: while both solutions resolved to a sin-
gle contig, the finished consensus sequence of Run 1A
matched the parent much less well and accounted for
only 52% of the parent sequence. This solution reflects
the mis-alignment of many fragments in the optimized
layout, probably due to the presence of Alu repeats
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Figure 2: Schematic representation of DNA sequence containing repeats.

(and, in particular, the presence of an Alu at the ex-
treme end of the parent sequence). The composite ob-
jective function generates a solution that provides a
very good finished sequence although this consensus
sequence is 12 bases longer than the parent (as shown
in Table 3). This increase in precision and reliability
only costs about 20% in execution time (13:36 to 17:32
in cpu time for a typicM run).

Run Ctgs % Cvg % Match
1A 1 64.9 52.2
1B 1 I00.1 99.9
2A 1 96.6 96.0
2B 1 100.1 99.8
3A 1 100.2 99.9
3B 1 100.2 99.4
4A 1 100.0 99.9
4B 1 100.0 99.4
5A 2 95.9 83.4
5B 1 99.9 99.7

Table 3: Results of integrating ancillary mapping clus-
ter information. Each numbered pair of runs corre-
sponds to a different random seed; within each pair,
the A run corresponds to assembly based only on pair-
wise sequence overlap information, while the B run ad-
ditionally uses ancillary clustering information. Ctgs
indicate the number of contigs in the final solution;
Cvg is the percent of the parent that is covered by the
final solution; Match is the percent of the parent that
is correctly matched by the final solution.

The wi values for these runs were set so that the wi*
Fi were of approximately the same magnitude (given
initial values of Fi), based on the intuitive notion of
exploring the effect of equal contributions from the two
kinds of data, and within a range where minor changes
in wi did not appear to have a major effect on the
output solutions. As noted above, it would be desirable
to develop a theoretical basis for assigning these values.

Discussion
We have presented an exploratory description of an ap-
proach to integrating competing ancillary assertions in
genome assembly optimization. Though our results are
preliminary, they are consistent with our goals. Two
apparently different kinds of information (the first and
second examples in the section above) were mapped
to the same class of assertions and resulting composite
objective function. The third, implemented example
demonstrated a situation where ancillary information
drives the assembly optimization to a better result than
otherwise. We intend to begin a more systematic col-
lection and translation of different kinds of ancillary in-
formation, to implement more of the basic component
objective functions, and to begin testing this approach
on experimental data.

Alternative approaches

One technique frequently explored for dealing with dif-
ferent classes of information is to translate the addi-
tional information into constraints and perform some
form of constraint propagation to yield a result. This
approach has been implemented for optimizing the or-
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dering of genetic maps (Letovsky g: Berlyn 1992) and
physical maps (Soderlund &Burks 1994); more re-
cently, similar strategies for sequence assembly have
been described (Burcham 1994; Jain, Larson, & My-
ers 1993). While this technique has been used suc-
cessfully in many different areas of optimization, con-
straint propagation requires any solution to satisfy all
constraints. This is not possible if constraints are con-
tradictory. In addition, it is not always possible to
precisely quantify a particular constraint; length in-
formation is imprecise, as an example. One can use
intervals to address the ambiguity (Letovsky ~ Berlyn
1992), but this requires a precise estimate of the pos-
sible error.

Another potential approach to this problem would
be to use bayesian techniques, which are useful in
balancing related probabilistic events [see for exam-
ple (Press 1989)]. However, it is not clear how to map
several of the important assertions into this framework,
given the arbitrariness required for the selection of the
probability distributions.

Potential for generalizing the current
approach

Although we have implemented our strategy in the con-
text of a particular model for assembling sequences
with stochastic searches, we believe that the concep-
tual framework will be applicable to other assem-
bly strategies. For example, in greedy strategies -
rather than casting the ancillary assertions in terms of
globally-summed objective functions - the summation
of component objective functions would have to oc-
cur at the level of pairwise fragment relations. These
summed pairwise assessments could then be used in
the usual way to drive the greedy construction. The
results of an implementation in a greedy context would
be expected to differ from those presented here.

As shown above, the current approach is not lim-
ited to a particular sequencing strategy. Similarly, it
should be applicable to mapping strategies based on a
larger scale than sequencing (e.g., building restriction
maps, or physical mapping based on clone fingerprint-
ing). These problems can often be cast in very sim-
ilar terms, and are certainly at least as complicated
due to the presence of experimental error as well as
multiple sources and kinds of input information (see,
for example (Fickett & Cinkosky 1993; Graves 1993;
Letovsky ~z Berlyn 1992; Pratt ~ Dix 1993; Skiena

Sundaram 1993; Soderlund, Torney, &Burks 1993;
Stam 1993; Soderlund ~ Burks 1994)).

Using ancillary assertions in data mining contexts
involving sequence or higher-level, mapping data might
also be greatly advantageous. An example would be
the assembly of published sequences that are likely to
overlap with other published sequences, but stored in
separate pieces, in different places, and with different
annotation standards.

Finally, the class of problems (genome map assem-
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bly) we have addressed here can be abstracted as the
generation of interleaved tilings of overlapping one-
dimensional objects. The possibility exists of apply-
ing our approach to integration of competing ancillary
assertions in similarly abstracted contexts such as the
alignment of geological core samples or the alignment
of overlapping tasks in manufacturing process control.
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