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Abstract

A new version of the GRAIL system (Uber-
bacher and Mural, 1991; Mural et al., 1992;
Uberbacher et al., 1993), called GRAIL II,
has recently been developed (Xu et al., 1994).
GRAIL II is a hybrid AI system that supports
a number of DNA sequence analysis tools in-
cluding protein-coding region recognition, PolyA
site and transcription promoter recognition, gene
model construction, translation to protein, and
DNA/protein database searching capabilities.
This paper presents the core of GRAIL II,
the coding exon recognition and gene model
construction algorithms. The exon recogni-
tion algorithm recognizes coding exons by com-
bining coding feature analysis and edge sig-
nal (acceptor/donor/translation-start sites) de-
tection. Unlike the original GRAIL system
(Uberbacher and Mural, 1991; Mural et al.,
1992), this algorithm uses vaxiable-length win-
dows tailored to each potential exon candidate,
making its performance almost exon length-
independent. In this algorithm, the recognition
process is divided into four steps, hdtially a large
number of possible coding exon candidates are
generated. Then a rule-based prescreening algo-
rithm eliminates the majority of the improbable
candidates. As the kernel of the recognition algo-
rithm, three neural networks are trained to eval-
uate the remaining candidates. The outputs of
the neural networks are then divided into clus-
ters of candidates, corresponding to presumed
exons. The algorithm makes its final prediction
by picking the best candidate from each cluster.
The gene construction algorithm (Xu, Mural and
Uberbacher, 1994) uses a dynamic programming
approach to build gene models by using as in-
put the clusters predicted by the exon recogni-
tion algorithm. Extensive testing has been done
on these two algorithms. The exou recognition
algorithm is a significant improvement over the
original GRAIL system, and the gene construe-
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tion algorithm further improves the prediction re-
sults.

Introduction

The recent identification of genes for major genetic dis-
eases through the use of genomic DNA sequencing and
informatics analysis (Mosser et al., 1993; Legouis et al.,
1991) has underscored the importance of genomic se-
quencing for gene discovery and elucidation of gcnome
fimction. Essential for such discovery is the ability to
recognize features in genomic sequences, such as exons,
splice junctions and promoters using pattern recogni-
tion methodology.

Despite recent success, developing the technology to
accurately recognize the components of genes and to
construct gene models from anonymous genomic DNA
sequence data remains a significant challenge. We pre-
viously developed an e-mail server system for coding
exon recognition called GRAIL (Gene Recognition and
Analysis Internet Link) (Uberbacher and Mural, 1991;
Mural et al., 1992). Recently we have upgraded the
system to provide recognition capabilities for a vari-
ety of sequence features using artificial intelligence-
based pattern recognition and combinatorial optimiza-
tion methods. In this paper, we describe the subsys-
tems of GRAIL II (Xu et al., 1994) that facilitate cod-
ing exon recognition and gene model construction.

The GRAIL II coding exon recognition algorithm
recognizes a coding exon (in the following, we sim-
ply call it an ezon) by combining the coding signals,
edge signals (acceptor/donor/translation start sites)
and domain information. Three models are used to
recognize coding signals; they are a frame-dependent
preferred 6met model ((lberbacher and Mural, 1991;
Uberbacher et al., 1993), a 6mer coding preference
model (Uberbacher and Mural, 1991; Uberbacher et
al., 1993) and a non-homogeneous Markov chain model
(Uberbacher et al., 1993; T. Mitchell (personal com-
munication), 1991; Borodovsky e¢ al., 1986). To bet-
ter determine the boundaries of an exon, measures for
splice junctions and translation initiation are also used
in the exon discrimination process. The core of the
exon discrimim~tion algorithm consists of three pre-

376 ISMB-94

From: ISMB-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



trained neural networks, which are used to evaluate
three different types of exon candidates, i.e., initial,
internal and terminal, respectively.

The original GRAIL used a fixed-length sliding win-
dow in evaluating the coding potential of regions in a
DNA sequence. In this form, the system has difficulty
in locating exons that are much shorter than the win-
dow size, because of the inclusion of non-coding seg-
ments within the window being evaluated. A scheme
of variable-length windows is implemented in the cur-
rent algorithm. Our basic implementation of variable-
length windows considers every possible exon candi-
date, and evaluates each using a window that matches
the candidate region exactly. Using variable-length
windows has particularly improved the system’s per-
formance on short exons, which was one of the main
motivations for the current study. To fully utilize the
variable-length window scheme, we have also used the
coding (or noncoding) signals from areas surrounding
aa exon candidate in the discrimination process. This
is done mainly to distinguish an actual exon from a
partially correct exon candidate, i.e., one that partially
overlaps one or more actual exons.

hnproving the sensitivity to the exons in the A/T
rich regions without increasing the background noise
level was another motivation of this research. To make
the predictions more sensitive to coding signals in re-
gions of different G/C-content, particularly in low G/C
(or high A/T) regions, we have used G/C content-
dependent preferred 6mer models and Markov chain
model.

Making use of these considerations allows the
GRAIL I1 coding recognition algorithm to significantly
improve the sensitivity and specificity of the coding
exon recognition in human DNA sequences for both
short and long exons, in low and high A/T regions,
compared to the the original version of GRAIL.

The GRAIL II coding exon recognition algorithm di-
vides the process of coding exon recognition into four
main steps. It first generates a large candidate pool
consisting of all possible exon candidates within all
open reading frames (this is similar to the procedure
used in (Hutchinson and Hayden, 1992)). A series 
heuristic rules, each of which defines some necessary
conditions a probable exon candidate should satisfy,
then eliminates majority of the improbable candidates.
The candidates which have passed the rules are then
evaluated by three pre-trained neural networks. Using
heuristic rules to eliminate improbable candidates sim-
plifies the learning process for the neural networks and
also gains computational efficiency. The scored candi-
dates (by the neural networks) are then divided into
clusters of candidates, corresponding to presumed ex-
ons, by a clustering algorithm based on the candidates’
relative locations in the DNA sequence. The best scor-
ing candidate from each cluster is finally selected as the
initial exon prediction. During gene modeling, an al-
ternative candidate from the cluster may be used to

construct the best overall gene model.
Constructing an accurate gene model from a given

set of predicted exons is a nontrivial matter. When ap-
pending exon candidates to form a gene model a num-
ber of conditions need to be satisfied. In a gene model,
adjacent exons have to be reading-frame compatible,
and no in-frame stop codons can be formed when ap-
pending the two adjacent exons. We formulate the
gene model construction problem as a constraint op-
timization problem. The problem is solved by a fast
dynamic programming algorithm.

Coding-exon Recognition
One of the main motivations of the current study was
to improve the performance of the GRAIL system on
short exons. Using fixed-length sliding windows is one
of the reasons for the poor performance on short ex-
ons. Our current algorithm uses a window that exactly
fits a candidate to evaluate its coding potential. To do
so, the algorithm first generates all possible initial, in-
ternal and terminal exon candidates within every open
reading frame. Each candidate has an assigned trans-
lation frame, two potential edge signals and must be
at least 11 bases long. For initial exon candidates,
a possible translation start (ATG) and splice donor
junctions (GT) are required. For an internal exon can-
didate, a possible splice acceptor junction (YAG) and
a splice donor junction are the minimal requirements.
Similarly the minimal requirements for a terminal exon
candidate are a possible acceptor junction and a stop
codon (TAA, TAG, and TGA).

As in any pattern recognition problem, to recognize
exons we need to find a set of features that are associ-
ated with exons, and to design an effective method to
discriminate exons from non-exonic regions based on
these features. Three types of information are used in
our exon discrimination process. They are statistical
measures of frequencies of different "vocabularies", like
6mers, in exons versus non-exonic regions, measures of
edge signals for splicing sites and/or translation initia-
tion sites, and measures of domain information includ-
ing local G/C composition and exon length probability
profile. The first type measures the coding potential of
an exon candidate, the second type indicates the possi-
bility of an exon candidate having correct boundaries,
and the third type provides domain information to the
discrimination process in evaluating the significance of
the coding scores and edge signals. Our discrimina-
tion algorithm uses three feed-forward neural networks,
which have been trained using a back-propagation al-
gorithm, to evaluate the degree of correctness of an
exon candidate.

Sensors

Features are computed by different algorithms, called
sensors, a term borrowed from robotics, in keeping
with the tradition of the original GRAIL system (Uber-
bacher and Mural, 1991; Mural et al., 1992). Each sen-
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sor "recognizes", with some probability, some prot)erty
related to the existence of an exon.

Protein-coding sensors Two independent hy-
potheses are made about a DNA sequence. The first
hypothesis is that an exon in a certain reading frame
can be decomposed into a set of components which
possess similar properties. In particular, an exon in
a certain reading frame can be decomposed into a set
of 6reefs in that frame, which possess coding poten-
tial. We use the ratio of the normalized frequencies of
a 6met in coding and non-coding regions to measure
its coding potential. The second hypothesis is that a
DNA sequence forms a stochastic process, in which the
probability of the next event (base) being in a certain
state (A, C, G, T) depends only on a finite number
of previous events, and hence the sequence forms a
Markov chain. To distinguish three possible reading
frames of an exon a non-homogeneous Markov chain is
assumed (T. Mitchell (personal communication), 1991;
Borodovsky et al., 1986).

Based on these hypotheses, we have implemented
a frame-dependent preferred 6mer model, a 6mer cod-
ing preference model and a 5th order non-homogeneous
Markov chain as sensors of coding potential. The for-
mulation of the three models is illustrated by the fol-
lowing example.

Let 31a2 .... a3k+2 be an exon candidate and each ai
represent a base. We want to evaluate the coding po-
tential of the candidate in reading frame 0 using the
three models. Let P(X), Po(X), PI(X), P2(X), 
Pn(X) denote the probabilities of a 6met X (with re-
spect to all 6mers) appearing in bulk DNA sequence,
in a coding region with reading frame 0, 1, 2, and in a
non-coding region, respectively. The coding potential
of ala2...a3k+2 in reading frame 0, using the frame-
dependent preferred 6met model, is evaluated by the
following expression:

iik._2 Po(aai+l ...33i+5a3i+6) P1 (a3i+2...33i+633i+7)
,=0 Pn (33i+1...a3i+533i+6) Pn (33i+2-..33i+6a3i+7) x

P2 (33i+3... a3i+733i+8)

Pn ( a3k +3...331+733i+8)’

and the coding potential of axa2...azk+3 in reading
frame 0, using the 5th order Markov chain model, is
estimated as follows:

Po(al...as) k-2 Po(u31+6 Ja3i+l...a3i+~)C × P(al...as) ×IIi=° P(a3i+6133i+1...33i+5) ×

Pl (331+7 J33i+2...33i+6) P2(33i+8 ]33i+3...33i+7)

P(a3i+7133i+2...a3i+6) P(a3i+sJazi+3...a3i+7)"
where C is our estimate of the ratio of coding versus
non-coding bases in a DNA sequence (we set C = 9 in
our implementation).

The 6mer coding preference model, which is mainly
useful in situations where frame-dependent character-
istics are weak or where sequence errors violate frame
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information, measures the coding potential (in any
frame) ms follows:

l-ik-2 Pc(a3i+l...a3i+sa3i+6) Pc(a3i+2...a3i+633i+7)
i=(l X

P,,(a3i+~...a3i+:3~+~) P,(a3i+~...a3i+:3i+7)

Pc(a3i+3...a3i+Ta31+s)

Pn (a3k+3...a3i+733i+s)’

where P~(X) = Po(X) + PI(X) P2(X).
In essence, all three models recognize coding poten-

tial by comparing the a priori probabilities of 6mers
of the sequence appearing in coding regions and non-
coding regions. Vqe can see that the frame-dependent
preferred 6mer model and the 5th order Markov model
provide similar information except that each term in of
the Markov model is a conditional probability rather
than the probability of a 6met. Our test results sug-
gest that each model has its own prediction strengths
and weaknesses.

To make the coding models more sensitive to coding
signals in regions of different G/C composition, our
current algorithm uses G/C content-dependent 6met
probabilities in all three models. These probabilities
are functions of the G/C content of the region sur-
rounding the exon candidate. We use the preferred
6mer model as an example to illustrate this basic idea.
When estimating coding potential, different 6mer pref-
erence values, the ratio ofa 6mer’s probabilities in cod-
ing regions of frame 0 and non-coding region, are used
depending on the local G/C-content (measured in the
surrounding region of 2kb long) of the sequence under
evaluation. To avoid abrupt behavior, we have inter-
polated the 6met preference values derived in discrete
G/C regions using a simple function. In our current
implementation, we have divided the whole region into
two, i.e., low and high G/C regions. 6mer preference
values are estimated in both regions and are interpo-
lated by a piecewise linear function.

The goal of the exon discrimination process is not
just to discriminate exons from non-exonic regions but
also to score the degree of correctness of a candidate
that overlaps actual exons. To achieve this, we have
used coding (or non-coding) signals from the surround-
ing areas in addition to the coding signals of the candi-
date. The rationale is that strong coding signals from
tim neighboring areas indicate that the candidate may
be just a portion of an exon. As the candidate more
closely approximates an actual exon, more non-coding
elements will be included in its surrounding areas and
hence the surroundings will exhibit a weaker coding
signal. In our current implementation, we have used
60 bases on each side of an exon candidate as the sur-
rounding area. In addition to the sensors described
above, we have also used the following four values,
two for each surrounding areas, as features in our dis-
crimination process: the coding potentials obtained by
the frame-dependent preferred 6mer model and by the
Markov chain model.



Edge-signal sensors Recognizing exon boundaries
is accomplished by using a splice acceptor junction sen-
sor, a splice donor junction sensor and a translation
start sensor (Uberbacher el al., 1993).

Domain sensors Though our coding models are
"normalized" with respect to the G/C content by sepa-
rately estimating (6mer and Markov) preference values
in different G/C regions, to help the neural networks
refine the significance of the coding measures in differ-
ent compositional regions, we have included the G/C
content of a 2 kb region surrounding each exon candi-
date as aa additional sensor.

Since the exon candidates evaluated by the system
vary in length, we have also included the length of a
candidate and an exon length probability profile, which
is derived from a length histogram for exons, as addi-
tional factors (sensors) in the discrimination process 
help evaluate the significance of the coding scores.

Heuristic rules
On average, about 5,200 candidates are generated for
a DNA sequence of 10 kb, and about 85% of these
candidates do not overlap any actual exons. The vast
majority of the false candidates show very weak or no
coding signals and/or poor edge signals. Filtering out
most of these candidates can greatly simplify the dis-
crimination process facilitated by neural networks.

We have developed a set of heuristic rules, based
on existing knowledge and statistical analysis. Each
of the rules defines some necessary conditions that a
probable candidate should satisfy. On average, about
130 candidates per 10 kb pass the rules, which account
only for 2.5% of the generated candidates, and about
40% of the surviving candidates do not overlap any
actual exons. Only 2% of the actual exons are lost
through the use of heuristic rules.

Neural networks
The core of the discrimination algorithm consists of
three feed-forward neural networks. The neural net-
work for internal exons, for example, is represented
mathematically by the following formula:

3 6 11

ou,pu, = w g(E ) ) ) 
k=l j=l i=1

where
1g(~) 

1 + exp(-x)"
The network, as shown schematically in Figure 1, has

twelve input nodes and two hidden layers consisting of
6 and 3 nodes. The parameters W’s are "learned" us-
ing the hack-propagation method. In training the net-
work, our goal is to develop a network which can score
the "partial correctness" of each potential candidate.
A simple matching function M0 is used to represent
the correspondence of a given candidate with the ac-
tual exon(s):

Exon Candidate
Parameters

[ 6-rner In-flame j~l~ \\\

/

Score

Figure 1: Neural network for evaluating exon candi-
dates

M(candidate) = (E mi/length(candidate)) 
i

(E mJ E length(exon/))
i j

where )-~i ml is the total number of bases of the candi-
date that overlap some actual exons (in the same read-
ing frame), and ~1 length(exon/) is the total length
of all the exons that overlap the candidate. Using such
a function helps "teach" the neural network to dis-
criminate between candidates with different degrees of
overlap with actual exon(s).

The network for internal exons has been trained on
a set containing 335 internal exons and 2000 (par-
tially) true or false candidates. Each training exam-
ple includes twelve normalized features, as described
in the previous subsections, and a M0 value. All se-
quences used for training were from the Genome Se-
quence Database (GSDB) (Bilofsky and Burks, 1988).

Figure 2(a) shows the prediction of exon candidates
from all three neural networks combined. We can see
that candidates fall into non-overlapping natural "clus-
ters". In most cases, a "cluster" corresponds to one
actual exon. In some cases, a "cluster" may corre-
spond to two or even more actual exons as shown in
Figure 2(a). In the next subsection, we will present
a clustering algorithm which resolves this clustering
problem so that candidates are divided into more "ac-
curate" clusters, those having better one-to-one corre-
spondence with actual exons.

In the output of the neural network (after deleting
candidates with very low scores), about 94% of the ac-
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a

Figure 2: Each rectangle in Figure 2(a) represents an exon candidate, where the width and height of the rectangle
represent its length and score, respectively. The vertical lines in Figure 2(b) are the centers of the corresponding
exon candidates in part (a), and the arcs indicates the algorithmically defined clusters. Figure 2(c) shows the 
scoring candidate picked from each cluster. Figure 2(d) is the gene model constructed by our algorithm. Note that
the best scoring candidate in (c) is not necessarily used ill the best gene model. The solid bars on the top represent
the actual exons. The sequence used here is ItUMKERTRA.

tual exons are overlapped by some clusters, and about
10% of the clusters do not overlap any actual exons.

Clustering
The candidates scored by the neural networks tbrm a
set of "clusters" of overlapping candidates. In the ideal
situation, each "cluster" would correspond to one ac-
tual exon. However, as we have seen from Figure 2(a),
in sequences with long open reading frames, one clus-
ter may cover a region corresponding to more than one
exon. For clarity, we use "cluster" to denote a natural
cluster observed in Figure 2(a). Clustering in this sub-
section means to divide a "cluster" corresponding to
more than one exon into smaller groups so that each
group has a better one-to-one correspondence with a
single exon.

Figure 2(b) shows that centers of the candidates
form groups that have better one-to-one correspon-
dence with actual exons. We have implemented the
following algorithm that separates each natural "clus-
ter" into one or more groups using the centers of the
candidates. The algorithm has the following two steps.

¯ Separate Step: Divides each "natural" cluster into
smaller groups so a given objective function is opti-
mized.

¯ Merge Step: Selects the highest scoring candidate
fro,n each group, and merges groups which have their
highest scoring candidates overlapping.

Tile Separate Step divides candidates’ centers into
groups so that the distance between two adjacent
groups is "significantly" larger than the average dis-
tance between adjacent centers within each group, and
the total number of groups formed from the "clus-
ter" is "reasonably small". Specifically, it uses two
application-specific parameters R and G, and guaran-
tees the ratio of the distance between two adjacent
groups and the average distance between two adjacent
centers within each group to be bigger than R, and
the mmlher of partitioned groups to be less than G.
The algorithm finds a partition of the "cluster" that
satisfies these conditions and furthermore minimizes
the sum of the average distances between two adjacent
centers of all groups.
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Gene Model Construction

The goal of the gene model construction is to linearly
append the predicted exons (not necessarily including
all non-overlapping exons) in such a way that a series
of constraints are satisfied. These constraints include
the following: (1) adjacent exons in the gene model
are reading-frame compatible; (2) the distance between
two adjacent exons is bigger than some given constant
- the minimum intron size; (3) no in-frame stop codons
can be formed when appending two adjacent exons; (4)
the gene model should include as many high scoring
candidates as possible.

Statement of the problem

Formally, a DNA sequence S is a sequence consisting
of four letters {A,C,G,T}. An exon candidate is a
suhsequence S[i, j] of S that starts with a start codon
(ATG) or on the base following an acceptor junction
site (CAG or TAG), and ends with a stop codon (TAA,
TAG, or TGA) or on the base preceding a splice donor
site (GT), where i and j are indices of edges. It has
an assigned reading frame ~ E {0, 1,2} and has no
in-frame stop codons, i.e., no stop codons S[k, k + 2]
(= TAA, TAG, or TGA) with (k - 1) mod 3 = a and
i < k < j- 2. Each exon candidate has a non-negative
score P0 ~ [0..1]. An exon candidate is an initial exon
candidate if it starts with a start codon, or is a terminal
exon candidate if it ends with a stop codon, otherwise
it is an internal exon candidate. Two non-overlapping
exon candidates S[i, j] and Sire, n], m > j, are said to
be reading-frame compatible if

/~=(m-j-l+a) mod3, (1)

where S[i, j] and S[m, n] are in reading-frames ~ and
/~, respectively.

Let S[bl, el], S[b2, e2],..., S[bi, ek] be a set of k non-
overlapping exon candidates (within a region assumed
to contain a gene), with bl < b2... < bk E [1..IS[].
S[bl, el]S[b2, e2]...S[bk, ek] forms a partial gene model
if (1) S[bi, ei] and S[bi+x, ei+l] are reading-frame com-
patible, (2) no in-frame stop codon is formed when
appending S[bi+x, ei+~] to S[bi, el], (3) bi+~ - ei > 
where K is a constant, the minimum intron size (in
GRAIL II, It" = 60), for all/ E [1..k- 1], and (4) 
S[bi, ei]’s are internal exons except possibly for S[bx, e~]
and S[b~, e/c]; they can be an initial exon and a termi-
nal exon, respectively.

Let {C1, C2t ..., Cn} be a set of clusters and each Ci
contain a number of exon candidates, i E [1..hi. Our
goal is to select a set of non-overlapping exon candi-
dates Ex,E2 .... ,Era, at most one, from each cluster,
m < n, to form a partial gene model that maximizes
the following function:

?Ti

p(E,) + + P,,
i=1

where p(Ei) is the score of exon candidate Ei, and Pl
and Pt are two penalty factors. P! (or Pt) is a fixed
negative real number when a partial gene model does
not have an initial (or terminal) exon, otherwise it 
zero.

Dynamic programming algorithm (GAP
III)

A dynamic programming approach is used to solve the
optimization problem defined in the previous subsec-
tion. Dynamic programming approachs have been used
to solve the gene assembly problem in different set-
tings (Snyder and Stormo; 1993; Gelfand and Royt-
berg, 1993). Because of the limited space, we give only
an informal introduction to our solution to this prob-
lem.

For each cluster, the algorithm builds (at most) 
best partial gene models that end with exon candidates
of the current cluster, based on the best partial gene
models which end with exon candidates of the previous
clusters, counted from left to right. When extending a
current partial gene model to the right to include one
more exon, the algorithm checks if the conditions for
a partial gene model are satisfied. It repeatedly does
this until all clusters are processed. By doing so, the
algorithm finds a partial gene model that optimizes the
objective function given in the previous subsection.

To check if the conditions for a gene model are sat-
isfied when extending gene models from left to right,
some information needs to be provided about the read-
ing frames and ending edges of (the last exons of) the
previous models. We do this as follows. For each clus-
ter nnder consideration, we construct a best partial
gene model that ends with an exon of this cluster for
each of the following possible situations. The exon can
be in any reading frame a E {0, 1,2} and its right edge
modulo 3 can be any fl E {0, 1, 2}. To also take into
consideration the possibility of forming an in-frame
stop codon when appending two adjacent exons, we,
for each possible ot and fl, distinquish the following
situations. For each a, when P = (a + 3 - ~) rood
3 = 0 the exon can end with a T or a non-T letter,
and when ~ = 1, the exon can end with TA, TG, or
any other doublet. We can show that considering all
these 18 possible situations provides sufficient and nec-
essary information for our optimal partial gene model
construction algorithm. Figure 2(d) gives an example
of the results of gene model construction.

The following gives the dynamic programming recur-
rence we have used to solve the gene assembly problem.
Let N,,(~, e, j) denote the total score of the best (par-
tial) gene model that ends with a non-terminal exon
candidate in cluster j, whose reading frame is/3 and
right-edge modulo 3 is e, and similarly Nt(/3, e, j) de-
note the total score of the best (partial) gene model
that ends with an exon in cluster j, whose reading
frame is/3 and right edge modulo 3 is e.
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max,:,,j,{N,,(ct,e’,j’) + p(E~),
for rf(EJi) =/3, 1 < / < 

fl=(left(Ei) - # - 1 + or) mod 
right(E~) = e, and E~ is 
non-initial exon. }

Nt(/3, e, j) 

maxE~ ~ cj

PlEa) + "PI(E~) + T~t(E~),

max~,e,,), {g,~(a, e’, j’) + p(E{ )+
v,
for rilE{). =/3, 1 < j’ < j,
/3=(left(E~) - e’ - 1 + a) mod 
right(E{) = e, and E{ is 
non-initial exon. }

where left(Ei) and right(E/) are the indices of the 
and right edges of E~, respectively.

Note that the best gene model corresponds to

max Nt(/3, e, j).IL e ,f

Our algorithm for solving the above recurrence runs
in time O(E x C) and space O(E), where C is tile
number of clusters and E is the total number of exon
candidates. In situations where a limit can be placed
on the number of clusters that can potentially be ex-
cluded from the optimal gene model tile running time
is further reduced to O(E + C).

Results and Discussion
The performance of the algorithms presented in this
paper and implemented in the GRAIL II system show
a significant improvement compared to the original
GRAIL by several different measures. Oil tile training
set consisting of 61 Human DNA sequences, our exon
recognition algorithm recognizes about 94% of all ex-
ons with about 10% false positives; On an independent
test set consisting of 110 Human and Mouse DNA se-
quences, the algorithm recognizes 90% of all the exons,
with about 8% false positives, compared to about 80%
for the original GRAIL. Tile original GRAIL recog-
nizes about 50% of exons less than 100 bases in length
(Uberbacher and Mural, 1991) while our current algo-
rithm located about 75% in the test set. Most of these
statistics are further improved by the gene construction
program (GAP III), particularly for false positive rate
and edge accuracy. This is achieved mainly because
of the enforcement of the reading-frame compatibility
between consecutive exons.

Part of the performance improvement in the GRAIL
II exon recognition algorithm is due to additional and
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more accurate information used in making coding-exon
prediction. The 6mer probabilities are estimated based
on a data set consisting of about 140,000 coding bases
and 1,200,000 non-coding bases. In addition to several
strong coding measures, scores at the specific edges
of each candidate (splice junctions, translation starts
where appropriate) and information related to the non-
coding character of sequences adjacent to potential
exon candidate are considered in the discrimination
process. Essentially the algorithm uses the character of
the expanded sequence context of the potential coding
region to make its decision. However the algorithm
may not always function well if coding segments do
not have splice junctions, and neighboring intronic or
non-coding DNA, as in cDNAs. Such regions do not
meet the basic genomic context requirements for the
GRAIL II coding exon recognition and the original
GRAIL coding analysis is more appropriate for such
sequences.

Tables I and II summarize the performance of the
exon recognition and gene model construction algo-
rithms on an independent test set consisting 110 se-
quences.

Figure 3 gives three examples of exon prediction and
gene assembly by GRAIL II.

The high sensitivity and specificity of the GRAIL II
exon recognition and gene construction program and
its availability through e-mail and client/server mecha-
nism greatly increases the viability of the gene hunting
strategies based on genomic sequencing and informat-
ics analysis. We have shown that the detailed struc-
ture of genes can be characterized with considerable
fidelity, and expect that, in terms of providing rela-
tively complete information about uncharacterized re-
gions of the genome, this overall technology will fair
well when compared to alternatives such as exon trap-
ping and eDNA based methods. Computational char-
acterization of genes in their genomic sequence context
will increasingly provide an important framework for
understanding aspects of gene regulation and larger
questions related to the functional organization of the
genome.
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Figure 3: (a) HUMATPGG. (b) HUMBMYH7. (c) HUMDES. (d) IIUMODC1A. Each rectangle reprcsents 
GRAIL exon prediction; The width and the height represent its length and score, respectively. The bars connected
represent the assembly result. The bars on the top are the actual exons.
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