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Abstract

Recently, there has been considerable interest in deriv-
ing and applying knowledge-baaed, empirical potential
functions for proteins. These empirical potentials have
been derived from the statistics of interacting, spa.
tially neighboring residues, aa may be obtained from
databases of known protein crystal structures.
In this paper we employ neural networks to redefine
empirical potential functions from the point of view
of discrimination functions. This approach general-
ires previous work, in which simple frequency count-
ing statistics are used on a database of known protein
structures. This generalization allows us to avoid re-
striction to strictly palrwise interactions. Instead of
frequency counting to fix adjustable parameters, one
now optimizes an objective function involving a neural
network p~rameterized probability distribution.
We show how our method reduces to previous work
in special situations, but also allows extensions to in-
clude orders of interaction beyond palrwise interac-
tion. Given the dose packing of proteins, steric inter-
actions etc., the inclusion of higher order interactions
is critical for developing an accurate potential. A key
feature in the approach we advocate is the develop-
ment of a representation to describe the spatial lo-
cation of interacting residues that exist in a sphere
of small fixed radius around each residue. This is
a %hape representation~ problem that has a natural
solution for the interaction neighborhoods of protein
residues. We demonstrate in a series of numerical ex-
periments that the neursJ network approach improves
discrimination over that obtained by previous method-
ologies limited to pair-wise interactions.

Introduction
Recently there has been considerable interest in
knowledge-based, empirical potential functions for pro-
teins. The idea of using a database of known pro-
tein structure/sequence pairs to derive an empirical
potential describing the interaction between residues
has a relatively long history. Some early work con-
sidered the frequency with which pairs of amino acids
appeared within a certain "contact" distance of each
other (Miyazawa & Jernigan 1985), and used a quasi-
chemical approximation to relate this frequency to

an approximate free-energy of interaction of a "gas"
of residue pairs. New work also relies on an ap-
proximate statistical mechanical interpretation (Sippl
1990). These methods typically use simple probabil-
ity approximation by frequency counting to derive ap-
proximate free energy formulae. Both older and more
recent approaches fall into two main groups. The first
group considers the observed frequency with which the
distance between pairs of amino acids appear within
one or more distance bins, in known crystal structures.
This approach, by construction, is limited to consider-
ing pair interactions only. Except in a few exceptional
cases there is insufficient data to consider triple and
other higher order interactions (Godzik, Kolinski, 
Skolnick 1992). The second group constructs a defini-
tion (by hand) of an ~environment" for an amino acid
based on polarity, secondary structure, water exposure
etc (Bowie, Luthy, & Eisenberg 1991). These defining
characteristics of an environment are coarsely binned
so that one can approximate by frequency counting the
conditional probability of a single amino acid appear-
ing in an environment.

We describe below how the different forms of em-
pirical potential functions (variously called "contact
potentials" (Sippl 1990; Godzik, Kolinski, & Skolnick
1992), or in other versions where environments are pre-
defined, "profile potentials" (Bowie, Luthy, & Eisen-
berg 1991)), may be derived as the solution to a dis-
crimination problem. This opens the door to con-
structing discrimination functions using powerful ma-
chine learning techniques such as neural networks, as
opposed to simple frequency counting methods. The
discrimination task involves a Iog-llkelihood function
of certain probabilities that are also implicit in the
prior "contact potential~ and "profile" methodologies.
Previous work of Bryant and Lawrence (Bryant 
Lawrence 1993) also rely on a log-likelihood statistical
interpretation of contact potentials, but restricts con-
sideration to log-linear models truncated at the sec-
ond order. One other approach (Goldstein, Luthey-
Schulten, & Wolynes 1992) also optimize parameters
in an empirical protein potential, and is therefore re-
lated to the approach we advocate. However, they use
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a polynomial interaction term that stops at second or-
der pair interactions, whereas our goal in using neu-
ral networks is to remove both the use of frequency
counting and the assumption of second order interac-
tions. Steric conflicts, volume constraints and other
nonlocal interactions mused by close packing in a pro-
tein interior suggest that higher order interactions are
the norm ~mong residues in a protein, as well as the
possible importance of the spatial configuration (i.e.
the relative positions) of interacting residues. Neural
networks efficiently include higher order interactions
without the explosion of parameters plaguing polyno-
mial representations. A neural network can employ
hidden neurons to detect correlations higher than sec-
ond order among interacting residues, and also does
not rely on frequency counting to approximate proba-
bility distributions. We also describe how to use struc-
tural information beyond pair contacts.

We show how our new formulation reduces to pre-
vious work in special situations, and also extends the
power of previous approaches. Finally, we demonstrate
that the network approach has improved discrimina-
tion power over previous methodologies by using spa,
tial information.

Empirical Potentials as Log-Likelihood

Ratios

Various groups have employed differing approaches to
define empirical potentials for proteins. These poten-
tials are often considered to be appro~mations to free
energies. We find it useful to reconsider these poten-
tials in statistical, instead of statistical mechanical,
terms to make the extension to using neural network
techniques more natural. This view of previous work
also serves to point out the relationships between previ-
ous approaches. The statistical approach involving log-
likelihood potentials to construct potential functions
was first used in this context by Bryant and Lawrence
(Bryant & Lawrence 1993), but was of necessity re-
stricted to pair-wise interactions. Our approach differs
in our use of Bayes theorem to relate differing methods
and our use of neural networks to capture higher order
effects.

We briefly summarize the essential features of the
~profLle" approach (Bowie, Luthy, & Eisenberg 1991),
as well as the "contact potential" approach (Bryant 
Lawrence 1993; Sippl 1990; Godzik, Kolinski, & Skol-
nick 1992), in order to point out the different log-
likelihood ratios that each approach implicitly uses.
In Sippl (Sippl 1990), the probability for amino acid
pairs, ab, to be separated by a (binned) distance, 
is approximated by frequency counting in a database
of known structures. This probability is represented
as the conditional probability, P(rlab), of finding the
distance bin r given each of the order 20 x 20 amino
acid pairs. Arguments are given by Sippl (Sippl 1990)

relating

( P(r, ab)log ~, P(r) / -- log ~,P"("r-)’P~b)’/ (1)

to approximate statistical mechanical free-energies.
We note that this expression may alternatively be
viewed as a statistical log-likelihood ratio. This lat-
ter interpretation quantifies the relation between P(r)
and P(ab) by comparing the joint probability, P(r, ab)
to that obtained under the assumption of independence
of the distance bin, r, and the pair ab.

After obtaining these approximate free energy or log-
likelihood quantities from a "training-set" of proteins,
one may evaluate the compatibility of any specific
amino acid sequence with a given structure of interest.
The known structure enables the distances (and hence
distance bins) between all pairs of amino acids in that
structure to be calculated. One may consider a sphere
surrounding each residue of the protein that contains
the interacting spatial neighbors for each residue. An
approximate free-energy, or log-likelihood ratio, for
each sphere can be calculated by summing the appro-
priate pair-wise free-energy contributions of residues
in the sphere interacting with the central residue. The
energy, or log-likelihood ratio, for the complete protein
is approximated by adding together the energies of all
the individual spheres.

Hence this process may be given a statistical inter-
pretation in which one approximates the log-likelihood
ratio for each sphere and assumes independence of the
spheres, i.e. additivity of the sphere log-likelihood
ratios, to derive a log-likelihood ratio for the com-
plete protein. A key feature of the neural net ap-
proach introduced below is that while one still as-
sumes that the spheres contribute additively to the
overall log-likelihood or free-energy, the interactions of
the residues within each sphere are sot assumed to
be the additive contribution of independent pair in-
teractions, but rather includes high order interactions
within the interaction radius for each residue. The sta-
tistical interpretation advocated here also serves to re-
late seemingly different approaches published in the lit-
erature. For example, Sippl (Sippl 1990) expresses the

log-likelihood ratio as log (P ~_(r]_~ while Wilmanns
\ PC~b) 

and Eisenberg (Wilmanns & Eisenberg 1993) use

log (P ~_(gkl~ These, of course, are identical expres-
\ P(,) 

sions when related by Bayes theorem

P(’I ~b) = P(~blr)
P(r) P(ab)

Still different log-likelihood expressions are used by
Bryant and Lawrence (Bryant & Lawrence 1993) and
implicitly by Skolnick et.al. (Godzik, Kolinski, & Skol-
nick 1992). In this work, the probabilities of the vari-
ous pairs of amino acids to have inter-residue distances
within certain distance bins are computed in a simi-
lar frequency counting fashion to the above. However,
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the log-likelihood ratio that is used differs from the
above. The probabilities of the various pairs of amino
acids to have inter-residue distances within certain dis-
tance bins are compared to the probability assuming
the sequence was randomly permuted and re-threaded
through the protein. This approach lea~is to likelihood

ratios, ~, different than the above.

The relationship of the Bryant and Lawrence, and
Skolnick et.al, approaches to that of Wilmanns and
Eisenberg (Wilmanns & Eisenberg 1993), is clari-
fied if one considers the central amino acid in each
sphere to exist in an Uenvironment" comprised of its
spatially neighboring residues. Then the approach
of (WilmAnns & Eisenberg 1993) may be viewed 
discriminating between spheres that have the natu-
ral amino acid at their center, versus environment
spheres that have an arbitrary and possibly incom-
patible amino acid at their center. The alternative
log-likelihood ratio implicit in (Godsik, Kolinski, 
Skolnick 1992; Bryant & Lawrence 1993), on the other
hand, involves a discrimination task in which not only
the central residue of each sphere is randomly per-
muted, but also permuted are the rest of the residues
in the sphere that comprise the environment of the
central residue.

Finally we note that "3D-1D profile methods"
(Bowie, Luthy, & Eisenberg 1991) are related to the
approaches of (Wilmanns & Eisenberg 1993; Sippl
1990) where the environment remains unchanged and
the central amino acids in each sphere are permuted.
These profile approaches don’t rely on the statistics
of residue pairs in inter-residue distance bins. In-
stead, a fixed set of environment classes are pre-
defined (depending, e.g., on polarity, hydrophobicity
and secondary structure characteristics). The condi-
tional probability of each amino acid type to associate
with a particular environment is then computed from
a "training set" of proteins. Log-Likelihood ratios of a
central amino acid in relation to its environment may
be computed and used as a "score" to represent the
compatibility of an amino acid with its environment.

The choice of which type of log-likelihood ratio
(Bryant & Lawrence 1993; Wilmanns & Eisenberg
1993; Sippl 1990; Godzik, Kollnski, & Skolnick 1992),
to use depends on the nature of the problem being con-
sidered. In this paper we consider the type of "scram-
bled" log-likelihood ratio used in (Godzik, Kolinski,
& Skolnick 1992; Bryant & Lawrence 1993). Scram-
bling a sequence is a good approximation to both (1)
threaAing that sequence through an arbitrarily selected
non-native and inappropriate structure, in which case
residues are arbitrarily put into contact and (2) thread-
ing an arbitrary and inappropriate sequence (but hav-
ing the same amino acid distribution) through a native
structure, in which case arbitrary residues are put into
contact.
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Neural Networks as Log-Likelihood
Ratios

The view advanced above, that constructing empiri-
cal protein potentials is usefully viewed as a problem
in statistical approximation of log-likelihood ratios, as
opposed to a statistical mechanical problem of approxi-
mating free-energies, prompts the use of machine learn-
ing techniques. In this section we show how neural
networks approximate log-likelihood ratios.

The basic point is simple. Leaving aside details of
representation for the following section, consider the
pair consisting of an Input vector, I, and an Output
vector, O: (I,O). Normally, a neural network would 
trained, using e.g. backpropagation in a feed-forward
architecture, to predict Output from Input. If a suit-
able objective function is used for training (Hopfield
1987; Banrn & Wilcsek 1987), then the Output of
the network approximates the conditional probability,
P(O~pst]Input), which can be used in log-likelihood
ratios.

Various log-likelihood ratios may be obtained, which
we label (A), (B) and (C) below, depending on 
is being represented in the Input and Output vectors:

(A) If the Output represents the central amino acid
in a sphere of fixed radius, and the Input represents
the surrounding neighbors in the sphere, then a log-
likelihood ratio, LLR, can be constructed as

LLR = log /

which quantifies the relation of the central amino acid
to its environment comprised of its spatial neighbors.

(B) One can also consider a particular two class
(True, False) discrimination problem that yields the
same log-likelihood ratio as (A) above. First concate-
nate the Input and Output pairs (i.e. environment and
central residue) into a new Input vector, Newl~pz~.
Assign a new Output class label ~rrue" to all such
concatenated residue-environment vectors that may be
obtained from a representative set of known crystal
structures. To construct a new False set, randomly
permute the central residue among the environment
vectors of the True set, and assign the label ~False"
to all such vectors. These vectors have the relation of
the central amino acid to its environment broken by
the permutation, so that the probability of Nezu~rnput
given False class will factorize.

Consider the situation of equal numbers of True and
False examples in the training set, and where the single
output is a standard sigmoid function,

1
g(X) - l +~PC-X) (3)

representing P(TrueClass[Newlntmt).



Algebraically expressing X in terms of g yields

gCx)
i = log 1-g(X)1 (4)

(P(T~’ueClass]Newlnput)= log )

= log

The False class was explicitly constructed by
random permutation such that the expression
P(NewInputlFalseClass) factorizes into the product
of P(CentralResidue) x P(Environrnent), while the
expression P(NewlnputtTrueClass) is the joint prob-
ability P ( CentralResidue, Environment), of Central-
Residue and Environment as seen in un-permuted
data.

Hence, X is a neural expression of the same form of
log-likelihood ratio,

LLR = log \
~ ]

(5)
used in (Wilmanns & Eisenberg 1993; Sippl 1990).

(C) Alternatively, if one constructs a ~False" set
by randomly permuting each protein sequence and
rethreading it through its structure, then the form of
the log-likelihood ratio of (Godzik, Kolinski, & Skol-
nick 1992; Bryant & Lawrence 1993) is recovered. This
is the form of log-likelihood ratio we consider in this
paper. As noted above, this provides a good approxi-
mation for problems in which sequences are threaded
through a given structure, or the reverse, in which a
given sequence is threaded through a variety of un-
related structures. Creating efficient threading algo-
rithms that can handle gaps for the more complicated
potentials we develop remains an interesting and open
problem (Lathrop). Assuming that gapped threadings
are of interest, then performing an exhaustive enumer-
ation of gapped threadings, following the procedures of
(Bryant & Lawrence 1993), is a possible solution until
more efficient algorithmic methods are devised.

An essential advantage of the neural network ap-
proach is that a network is able to represent these
forms of log-likelihood ratios without using the pair-
wise interaction assumption and frequency counting.
Use of hidden neurons allows incorporation of interac-
tions higher than pairwise, second order interactions.
The ability of neural networks to "generalize" to input
data not present in the training set replaces frequency
counting. However, one needs a suitable representa-
tion of the data with which to train the network. We
discuss data representation in the next section.

A Representation for the Spatial

Neighborhood of an Amino Acid
The database of crystal structures contains full atomic
information on the location of each atom of residues

and the backbone chain to which each residue is con-
nected. A key issue is how to represent this infor-
mation. A simple list of, e.g., XYZ co-ordinates of
each object of interest relative to the coordinates of
the central residue of the sphere is insufficient with-
out a method to invariantly order this list. This is the
classic issue of representing shape.

We solve this problem by making use of a special and
natural co-ordinate system implicit in protein back-
bones. Each residue is attached to the backbone of
a protein at the Ca position. There are two "spe-
cial directions" defined by the relative positions along
the backbone of the two neighboring atoms to the Ca
atom. If we choose each Ca atom to be the center of a
local neighborhood, it is natural to define the reference
frame of this neighborhood by the the relative direc-
tions of the two atoms, N and C, connected to the Ca
origin. The angle between the N - Ca and Ca - C
vectors is essentially constant by virtue of the nature
of the chemical bond (Branden & Tooze 1991). Also
constant to a high degree of accuracy is the distance
between N, C, and Ca atoms. These atoms therefore
define a special co-ordinate system, centered at each
residue, spanned by the N - Ca and Ca - C vectors,
and their cross product (which defines the perpendic-
ular to the plane) as shown in Fig.1. We take the 
axis to be in the Ca - N direction, the x axis is the z
- orthogonal component of the Ca - C direction, and
y is their vector product.

In this work we consider the Ca, or the C~ atoms
of other residues as the objects of interest, and the
Uneighborhood sphere" is the structure defined by the
positions of those that are within a distance d (the
radius of the sphere) from the center, with respect to
the local reference frame. If C~ atoms are used to note
residue locations, instead of 6’= locations, then glycine,
which has no Cp, is represented by its Ca atom.

To solve the problem of how to usefully order the list
of co-ordinates of the spatial neighbors we divide the
sphere surrounding each residue into a small number of
finite bins. The bins are invariantly defined according
to the co-ordinate system described above. Various
binnings are possible, and a number of suitable bin-
nings are described in detail in the following section. If
a bin is occupied by a spatially neighboring residue we
increment an integer counter in that bin. A more elab-
orate partition may be needed for other applications,
and the exact number of bins, and their boundaries,
are parameters that can be optimized according to the
problem considered. In contrast to other approaches,
it is not necessary to ignore the sequence neighbors
of a residue. We may include these chain-neighbors
because they contain information on local secondary
structure which is ultimately weighted by the neural
network in an automatic fashion.

An integer valued vector therefore serves to in-
wriantly represent the geometrical location of spatial
neighbors within each sphere. Each sphere is allocated
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Figure 1: The definition of the reference frame around
the backbone Ca. The polar coordinates of an object R
(e.g. the C,, atom of another residue) within the sphere
are also shown. 8 is the angle between the vector R
and the z axis (the Ca - N direction). ~b is the angle
between the projection of R on the x-y plane and the
x axis.

a fixed number of bins regardless of how many neigh-
bors are in the sphere (a variant of unary representa-
tion). Naturally, one can represent M bins in fewer
than M integers, but this extended unary-style repre-
sentation is useful for inputing data to a neural net-
work, as described in the following section. One can
augment this representation to also indicate the amino
acid(s) residing in each bin. This is accomplished 
using 20 integers per bin as a unary representation of
the amino acid(s) in each bin. Thus, an empty bin
is represented by 20 zero entries, a bin occupied by
one residue with amino acid index j will have one as
its j’th entry and zero for the other 19 components,
etc. This representation has the advantage of keep-
ing a fixed-size description of the neighborhood (even
with different number of objects in a sphere), having 
standard ordering of the objects (invariant spatial de-
scription), and uses a unary form suitable for neural
networks.

Bin representations of Neighborhood
Spheres

Construction of algorithms for determining the "opti-
mal" bin representation containing relevant informa-
tion is an interesting problem for which we will re-
port results elsewhere. In this paper, we report results
obtained with several different examples of binnings
representing the identity and spatial position of neigh-
boring residues within an interaction radius surround-
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ing each centred residue. There are several parameters
which define the representation:

1. Type of object:. The "objects of interest" inside each
sphere are either the backbone Ca of each amino
acid, or its C~. In the case of the C~ representa-
tion, only the position of the C~ atoms is recorded,
and the reference frame produced by the backbone
N - Ca - C~ is translated to the C~ of the center
residue (i.e. the one around which the neighbor-
hood sphere is evaluated), which is the center of the
sphere. Glycines have their "C~" position set at the
Ca position.

2. Radit~s: In this work we use a six Angstrom radius
for each sphere.

3. Sequence neighbors: Sequence neighbors may be in-
cluded as "special objects" in the bin representation,
or not. Like the center residue, the nearest sequence
neighbors are "special" objects in the neighborhood
sphere, since they are connected by peptide bonds
to the center amino acid. Therefore when included
(the other option is not to include them at all), they
are each represented by a 20 integers representation
of the residue identity, plus 4 bits each to represent
their position. The 4 bit representation for posi-
tion was determined by a simple, manual procedure
in which we examined the the distribution of posi-
tions in a subset of the training set of proteins to
determine representative spatial bins. This binning,
which is somewhat different for the Ca and Cg repre-
sentations, is given by the following partitions. Each
partition into 4 bins is accomplished by testing two
conditions (except for the N neighbor in the C= rep-
resentation where we use only 2 bins) on the x,y,z or
0, ¢ coordinates of the neighbors’ C~ (or C~) posi-
tions:

Ct neighbor, C~ representation: z _< y ,
z <_ -y - 2.0.

N neighbor, C~ representation: z < 0.5 ,
< -2.0.

C~ neighbor, Co representation: 0 < 1.9 ,
~b <_ 1.430 - 3.0.

N neighbor, C= representation (only 2 bins, 1 con-
dition): ~b < 0.

4. Binnin9 resolution: The partition of the sphere into
bins should provide relevant information about the
local structure, but, on the other hand, the reso-
lution is limited by the available data. In principle,
one can try to optimize the binning by adaptive clus-
tering techniques. We plan to explore this direction
in the future. In the experiments reported here we
tested a few basic options.

(a) Radial shell partitions: the distance of the object
from the center of the sphere is partitioned into
several shells. Here we use either a two shell par-
tition in which the inner shell is 0 - 5 A, and the



outer shell is 5 -6 .~; or a single shell partition (i.e.
no binning of the distance).

(b) Octants partition: when this option is used, the
angular position of an object is provided by the
octant in which it is located. The octants are de-
termined by the local reference frame. For exam-
ple, when both the shell and octants partitions are
used, we have 16 bins in our bin representation,
and when neither are used we have only one.

As noted earlier, each spatial bin has attached a
"composition vector" of 20 integers, representing the
number of residues of a given type occurring in the
bin. Occurances of two residues of the same type
occupying the same bin is possible, and hence val-
ues greater than one may occur in the composition
vector of a bin (with the finer bin representations,
this is a rare event). Thus the input representation
to the network is not strictly a unary representation.

Data preparation

The October 1994 EMBL list of proteins with less than
25% sequence homology (Hobohm & Sander 1994) was
used to obtain a reasonably structurally diverse set of
proteins. The chain selection suggestion for each pro-
tein in the EMBL list was used. This choice suffers
from at least two possible defects, shared by most other
investigations: (1) the list may not contain as struc-
turally a diverse set of proteins as desired (2) Non-
monomeric proteins, and complexes etc. may not have
their full co-ordinates properly represented.

This set of 365 protein structures/sequences con-
rained five proteins that are no longer found in the cur-
rent (October 1994 release) Brookhaven PDB (Bern-
stein & et al. 1977), contained 17 proteins with only
the C= co-ordinates (no C~, N, C’), and contained 
proteins with more than one structural model. These
proteins were not retained. The remaining list of 312
proteins was partitioned at random into 3 sets: a train-
ing set, containing 188 proteins, a cross-validation set
with 62 proteins, and a prediction set with 62 proteins.

For every protein in the data, the neighborhood
sphere around each residue was calculated, except for
those for which we determined that the local struc-
ture was not reliable. These %nreliable" cases include
residues which don’t have one or more of the back-
bone atoms, or for which the coordinates of the back-
bone triplet N - Ca - C’ do not have canonical values.
We eliminated neighborhood spheres around residues
which did not have two valid sequence neighbors and
consequently none of the terminal residues is used in
the data. If any residue in the neighborhood sphere
of a central residue was an "invalid" residues (for any
of the reasons mentioned above) then the whole neigh-
borhood sphere was eliminated from consideration.

This procedure resulted in 81,402 spheres (using the
C~. representation) in the training set, 26,290 spheres
in the cross-validation set and 26,998 in the prediction

set. For the C~ representation, this procedure resulted
in 81,570 spheres in the training set, 26,300 spheres in
the cross-validation set, and 27,048 in the prediction
set. The numbers of examples are a bit larger when
using the Us representation, since the C~-C~ distances
are usually larger than the C,~-C~ distances (for the
same pair of amino acids) due to the extra freedom
of the residues around the backbone. As a result, less
spheres are rejected due to "invalid ~ neighbors in the
C~ representation (we use the same sphere radius).

The training and testing methodology used in all
the experiments reported here is as follows: for each in-
put representation and network architecture a network
was trained on the training set using back-propagation
and the relative-entropy error function (tlopfield 1987;
Baum & Wilcsek 1987). During the training process,
"snapshots~ of the network weights were examined at
10 iteration intervals of a conjugate gradient minimiza-
tion algorithm. These weights were used to perform
predictions on the cross-validation set. The network
performing best on the validation set was selected as
the final predictor. The prediction performance of
the chosen network on the (totally disjoint) prediction
set was then evaluated. A network architecture with
twenty hidden units was evaluated for each representa-
tion below. In order to demonstrate the effect of higher
order correlations, we report for the last two represen-
tations (representation 6 and 7) the results obtained
for a net with no hidden units (a simple perceptron).

Results
Six different representations were tested. For each we
report the prediction rate per sphere obtained by the
evaluation procedures described above. In all these
experiments, the final prediction rates for True and
False examples were almost identical, with up to 1 or
2% difference.
Representation 1: The simplest representation used
included only the unary 20 bit representation for the
central residue identity, as well as the 20-integer com-
position vector for the non-neighbor residues in the
sphere, based on C~ positions. Therefore there was one
radial shell - which was the interior of the interaction
sphere out to six Angstroms. The sequence neighbors
were not included. The input size is therefore forty.
The prediction accuracy was 60%.
Representation 2: This representation uses the 2
radial shells to identify radial positions of the non-
neighbor residues, as described in section 4. Other
parameters are the same as Representation (1). The
input size is sixty. The prediction accuracy was 61%.
Representation 3: This representation uses only
1 shell, similar to Representation (1), but adds the
residue identity for the two sequence neighbors (i.e.
two additional 20 bit vectors are used in the input rep-
resentation). The input size is eighty. The prediction
accuracy was 61%.
Representation 4: This representation uses both the
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2 shell representation for the radial positions of the
non-sequence neighbors, the representation of the iden-
tity of the central residue, and the representation of the
identity of the sequence neighbors. The input size is
100. The prediction accuracy was 61%.
Representation 5: This representation uses the C~
representation. It includes 2 radial shells, octant bin-
ning for non sequence-neighbor positions, and also the
residue identity and 4 bin spatial representation for the
sequence neighbors. Together with the representation
of the identity of the central residue, there are 388 in-
puts (20 q- 2 x 24 + 16 x 20). The prediction accuracy
was 68%.
Representation 6: This representation is identical to
Representation 5, but with additional information on
exposure and secondary structure of the central residue
included. The program Dssp (Kabsch ~ Sander 1983)
was used to calculate the exposure and secondary
structure (alpha helix, beta strand, and coil) of the cen-
tral residue. The secondary structure was represented
by a 3 bit unary representation. The calculated sol-
vent accessibility was histogrammed and binned into
4 bins (0-50,50-100,100-150,>150) which were repre-
sented by a 4 bit unary representation. This additional
secondary structure and accessibility information was
concatenated on to the input representation used in
Representation (5). The input size that resulted was
395 (388%7). The prediction accuracy was 71% and 
the highest accuracy we were able to achieve with this
data.

To test the effect of higher order interactions we re-
peated the same run using a no-hiddens architecture.
The prediction accuracy dropped from 71% to 58%,
indicating the importance of higher order interactions.
Representation 7: This representation tests the
accuracy achievable using only pair-wise information
about contacting residues, and first order informa-
tion about secondary structure and accessibility. This
presents the network with the explicit first order and
second order pair-wise information that is used in pre-
vious constructions of pair-wise contact potentials. No
additional spatial information is available to the net-
work. The pair-wise contacts of residues with the cen-
tral residue were represented by 20 x 20 -- 400 in-
puts neurons, corresponding to the number of pairs of
each type of the 400 possible (central residue, spatial
neighbor) contacts. In addition the input contains the
secondary structure classification of the central residue
and its solvent accessibility, calculated by the Dssp pro-
gram (Kabsch & Sander 1983). Solvent exposure and
secondary structure were represented as before, using
four bits and three bits, respectively. The total input
size was therefore 407.

The prediction accuracy of the network using twenty
hidden units was 62%, which is significantly less than
the 71% accuracy achieved with spatial information
explicit in Representation 6. An architecture with no
hidden units achieved an accuracy of 57%.
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Table 1: The input
each representation (see text).

repino.

2
3
4
5
6
6
7
7

8(Co)

size and prediction accuracy for

size network arch.
40 20 hidden
60 20 hidden
80 20 hidden
100 20 hidden
388 20 hidden
395 20 hidden

1395 perceptron
I 407 20 hidden
[407 perceptron

I 386 20 hidden

accuracy
0.60
0.61
0.60
0.61
0.68
0.71
0.58
0.62
0.57
0.65

Representation 8: This is the only Ca representa-
tion reported here. It includes the same information
as representation 5. The only difference is that we use
only 2 bins (instead of 4) to represent the position 
the N neighbor, which makes the input size 386. The
prediction rate obtained was 65%.

Conclusions

We have introduced a statistical, instead of a statistical
mechanical, formalism with which to construct "con-
tact potentials". This formalism has numerous advan-
tages over previous approaches. First, clear distinc-
tions between various contact potentials already pro-
posed in the literature may be easily illuminated using
this approach. Furthermore, the formalism allows the
introduction of powerful machine learning techniques,
such as neural networks, for constructing contact po-
tentials that include higher than second order pair-wise
interactions. An essential ingredient of our approach
is the development of a natural spatial representation,
based on back bone co-ordinates, of the residues within
an interaction radius of a central residue.

In a series of numerical investigations we compared
the accuracy achieved using the new statistical formal-
ism coupled with neural networks, to that achieved by
limiting interaction information at second order. A
significant increase in predictive accuracy (using Rep-
resentation 6) was obtained, compared to a represen-
tation that limited interaction information to second
order (pair-wise Representation 7).

The better result obtained with the C~ repre~n-
tation 5, compared to the similar Ca representation
8, suggests that, as expected, the positions of the C~
atoms provide more information about the interactions
between the residues in a local environment. The Ca
representation, however, may become useful in scenar-
ios where the Cts positions are unknown.

We also tested the network using the more con-
ventional %tructure-matches-sequence" protocol on a
smaller, but still representative selection of data. In
this test the network correctly identified, for each pro-



tein, the native sequence from among the other se-
quences belonging to the other proteins in the pre-
dict set. All sequences equal to, or longer, than each
test protein structure were evaluated in all (ungapped)
alignments, and the log-likelihood for the sequence was
taken to be the sum of the log-likelihoods for the indi-
vidual spheres and was used as a discriminant. These
results will be reported elsewhere, as well as more rig-
orous comparisons with standard empirical potentials.

We are currently investigating additional representa-
tions for the spatially neighboring residues within an
interaction radius of a central residue, and improved
methods to form the optimal spatial binni,~g. Tech-
niques for optimizing the network architecture (or com-
bining networks) for better prediction will be tried as
well. Other directions of research we are pursuing now
following the work described here are: building a "li-
brary" of neighborhood spheres that serve as tertiary
structure building blocks (which can be used in protein
design), and using the neural net potential together
with structural models to predict secondary structure
(and other 3D structural motifs) from sequence.
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