
Dynamite: A flexible code generating language for dynamic

programming methods used in sequence comaprison.

Ewan Birney and Richard Durbin

The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
{birney,rd}@sanger.ac.uk

Abstract
We have developed a code generating language, called
Dynamite, specialised for the production and subsequent
manipulation of complex dynamic programming methods
for biological sequence comparison. From a relatively
simple text definition file Dynamite will produce a variety
of implementations of a dynamic programming method,
including database searches and linear space alignments.
The speed of the generated code is comparable to hand
written code, and the additional flexibility has proved
invaluable in designing and testing new algorithms. An
innovation is a flexible labelling system, which can be used
to annotate the original sequences with biological
information. We illustrate the Dynamite syntax and
flexibility by showing definitions for dynamic programming
routines (i) to align two protein sequences under the
assumption that they are both poly-topic transmembrane
proteins, with the simultaneous assignment of
transmembrane helices and (ii) to align protein information
to genomic DNA, allowing for introns and sequencing error.

Introduction

Dynamic programming methods have a successful and
varied use in computational biology. The most sensitive
techniques for comparison of biological sequences, at the
DNA or protein levels, rely on dynamic programming
(DP), including standard pairwise comparisons
(Needleman and Wunsch 1971; Smith and Waterman
1984) and motif modelling such as profiles (Gribskov et al.
1987; Bork and Gibson 1996). More recently the use of
dynamic programming has been broadened to sequence to
structure comparisons (Bowie et al. 1991), gene prediction
(Snyder and Stormo 1994; Solovyev et al. 1995),
frameshift tolerant alignment (Birney et al. 1996) and other
applications. The techniques of hidden Markov models
provide a formalised probabilistic framework for many of
these DP methods (Krogh et al. 1994; Eddy 1996).

In all the cases listed above, the DP code has been
written specifically for each problem. We discovered in
our own work that the number of DP routines which we
wanted to develop was making their successive
implementations time consuming. To overcome this we
have developed a code generating language, called

Dynamite, which implements a standard set of DP routines
in C from an abstract definition of an underlying state
machine given in a relatively simple text file.

Dynamite is designed for problems where one is
comparing two objects, the query and the target (figure 1),
that both have a repetitive sequence-like structure, i.e.
each can be considered as a series of units (e.g. for proteins
each unit would be a residue). The comparison is made in
a dynamic programming matrix of c e l l s , each
corresponding to a unit of the query being compared to a
unit of the target. Within a cell, there can be an arbitrary
number of states, each of which holds a numerical value
that is calculated using the DP recurrence relations from
state values in previous cells, combined with information
from the two units defining the current cell. More
specifically, each recurrence allows for a number of
transitions (called sources in the Dynamite definitions)
from specific states in previous cells at specific unit offsets.
The value for the current state is taken as the maximum of
the values of these transitions.

For example, the following recurrence relations define the
Smith-Waterman algorithm (Smith Waterman 1984).

M i j M i j I i j D i j Match i j

D i j M i j gapopen D i j gapextension

I i j M i j gapopen D i j gapextension

(,) max (,), (,), (,) (,)

(,) max{ (,) , (,) }

(,) max{ (,) , (,) }

= − − − − − −{ } +
= − + − +

= − + − +

1 1 1 1 1 1

1 1

1 1

The corresponding Dynamite definition is given in figure
2. Although this example corresponds to a standard
algorithm, for which there are many implementations, it is
easy to use the same approach to generate the code for
more complicated algorithms, with additional states and
transitions representing alternative interpretations of the
units, as we will show later in this paper.

Searls and Murphy (Searls and Murphy 1995; Searls
1996) have previously described a similar dynamic
programming architecture based on Finite State Automata
for aligning biological sequences. We introduce a number
of new features which extend their model and improve the
power and practical utility of these methods. First, we have

From: ISMB-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved.

introduced a new class of states called special states,
which sit outside the cell structure of the matrix, and allow
complex boundary conditions. Second we support user
defined data types, in addition to the standard DNA and
Protein sequence types, allowing us to use hidden Markov
models of protein domains, Profiles, and other information
such as gene splicing predictions in query or target
objects. Third we have added the ability to label the units
on the basis of the transitions used in the optimal
alignment. This allows Dynamite to classify each sequence
into biologically meaningful regions at the same time as
finding the alignment between them. This classification
process is often more important than the alignment itself.

Overview of data types used in Dynamite

Dynamite defines a data structure to hold the query and
target objects, along with any additional resource which the
programmer requires and a structure for the actual dynamic
programming values. The memory structure for these
matrix values will change depending on the
implementation of the DP method, and can be accessed
directly by debugging routines. The query dimension has
the index i associated with it, the target dimension the
index j.

Each of the query and target objects can either have user
defined types or logical types, which support standard
biological types. The logical types provided, with the
allowed methods to retrieve data from them are give in
table below. Dynamite can handle the IO itself for these
types, which means in particular that it can generate
efficient database searching routines.

Type Methods
PROTEIN AMINOACID(obj,pos)
DNA BASE(obj,pos)

CODING BASE(obj,pos)
CODON(obj,pos)

GENOMIC BASE(obj,pos)
CODON(obj,pos)
5’SS(obj,pos)
3’SS(obj,pos)

COMPMAT AAMATCH(obj,a,b)
CODONTABLE AACODON(obj,c)

Dynamite produces two basic types of alignment: a) a
path alignment, b) a label alignment. The path alignment is
simply the list of [i,j,state] triples (each triple defining one
number in the matrix) which produced the final score. The
label alignment can be produced when each transition is
provided with both a query and target label. The label
alignment is a series of coupled regions, each having a start
and end point in its appropriate index and a label. For
example, it can be used to label a transmembrane segments
in a protein or exons in DNA sequence.

The Dynamite state machine definition

A Dynamite file (see figure 3 for an example) has a header
and footer regions, defined by %{ %} and a central
definition region, where any number of Dynamite
definitions can occur. A Dynamite state machine
definition, indicated by the lines matrix <matrix-name> ...
endmatrix, contains the following information:

a) A query data structure, indicated by the keyword
query, with a name, type and method to determine its
length.

b) A target data structure, indicated by the keyword
target, with a name, type and method to determine its
length.

c) Any number of resource data structures, indicated by
the keyword resource, with a name and type.

d) A series of state definitions, defined in the lines
between the keywords state <state-name>
endstate. Special states are indicated !special.

Each state must have one or more of sources, each
source corresponding to the origin for one transition to this
state, indicated by the lines source <source-state-name>
endsource. Each source block must have an offset in i
(query dimension) given by offi=“<number>” and an offset
in j (target dimension) given by offj=“<number>”.

Each source block must have a single calc line, indicated
by the keyword calc="..." with the update calculation
which can involve any combination of the indexes i,j, and
the query, target or resource data structures, using C
syntax.

Query dimension, index in i
T
ar

g
et

 d
im

en
si

o
n
,
in

d
ex

 in
 j

Cell of values for i,j

Dynamic programming matrix

Unit[i]
U

n
it

[j
]

State in cell

Transition (source)
between two
states

Cell of values for i-1,j-1

Figure 1 A diagram showing the general datastructures common
to all Dynamite DP routines

Each state information can have a source independent
calc line, and give defaults for either offi, offj or the labels
which will be applied to all sources of that state

The dynamite compiler parses the data structure and
cross checks the information provided in it. For example,
every source which refers to a state is cross referenced to
the state, and a "stateless" source triggers a compiler error.
Although the calc lines are parsed by the dynamite
compiler, the dynamite compiler can only check the usage
of logical types which it knows about: complete type-
checking is provided later by the C compiler.

Each state machine definition produces code for the
following routines:

a) Functions for creating and destroying the primary data
structure.

b) A function to execute the dynamic programming
calculations to fill the matrix.

c) A path alignment trace-back on a calculated matrix.

d) Debugging routines to access and query positions in
the matrix.

e) A linear space score implementation.

f) A linear space score implementation also returning
start/end point for local methods.

g) A divide and conquer function for linear space path
alignment.

h) A converter from a path alignment to a label
alignment.

If the target type is one of the Sequence logical types, a
database searching routine is also generated which iterates
over an appropriate sequence database. This routine has no
restriction on the size of the sequence database entries.

Special states and boundary conditions

There are two mechanisms for initialising a matrix and
handling boundary conditions: special states and boundary
sources.

Any state can be described as “special”. Rather than
these states being repeated in every cell, only one copy of
each state is held for each strip of matrix at a position j in
the target (this means that the target and query dimensions
are not completely symmetric). Source definitions to and
from special states to normal states are considered to
happen for every i position at that j position, and the i,j
index for the calc line is taken as being the recipient or
source cell. Source definitions between special states are
allowed as long as there is an offset in j. Every Dynamite
matrix must have two special states, given any name, but
one with the identifier !start, and one with the identifier
!end.

The special state mechanism was developed to handle
local and wrapped alignments. Local alignments generally
will have a source line from the special !start state to all
states, and the !end special state will have a sources from
all the normal states. Wrapped alignments allow multiple
matches of one object to the other object. In the Dynamite
definition, only the query object can be matched multiple
times. In wrapped alignments additional special states
are added, which act as both the source and recipient of
the main cell entry/exit points. By including specific
transitions between special states, complex wrapped
alignments can be developed. For example, one can model
the common occurrence of specific linker regions (for
example, high glycine content) between copies of a protein
domain using a wrapped method.

%{
#include "dyna.h"

%}

#
ProteinSW: Dynamite implementation of
Smith-Waterman algorithm
#

matrix ProteinSW
query type="PROTEIN" name="query"
target type="PROTEIN" name="target"
resource type="COMPMAT" name="comp"
resource type="int" name="gap"
resource type="int" name="ext"
globaldefaultscore NEGI
state MATCH offi="1" offj="1"

calc="AAMATCH(comp_matrix, \
 AMINOACID(query,i),\

 AMINOACID(target,j))"
source MATCH calc="0" endsource
source INSERT calc="0" endsource
source DELETE calc="0" endsource
source START calc="0" endsource
query_label SEQUENCE
target_label SEQUENCE

endstate
state INSERT offi="0" offj="1"

source MATCH calc="gap" endsource
source INSERT calc="ext" endsource
query_label INSERT
target_label SEQUENCE

endstate
state DELETE offi="1" offj="0"

source MATCH calc="gap" endsource
source DELETE calc="ext" endsource
query_label SEQUENCE
target_label INSERT

endstate
state START SPECIAL_I defscore="0" !start

query_label START
target_label START

endstate
state END SPECIAL_I !end

source MATCH ALLSTATES
calc="0"
endsource

query_label END
target_label END

endstate
endmatrix
#
End Dynamite definition
#

Figure 2 The Dynamite defintion for the Smith Waterman
algorithm

In addition to this basic mechanism to initialise and
terminate DP matrices, certain sources can be described as
boundary sources which are restricted to be used only on
the left, right, top or bottom of the matrix, as specified by
the modifiers !left !right etc. These modifiers can only
occur to or from special states, and are used to force global
or semi-local methods.

Dynamite compiler implementation

The Dynamite compiler (dyc) reads in a dynamite file (by
convention .dy file) and produces two C files; a header file
(.h) which contains a data structure definition and function
prototypes which manipulate it and a function file (.c) file
which provides the actual function code. Mapping between

%{
#include "dyna.h"
#include "tmpara.h"
%}

matrix TMrix
query type="PROTEIN" name="query"
target type="PROTEIN" name="target"
resource type="TMparaScore *" name="tms"
globaldefaultscore NEGI
state INTERNAL
 source INTERNAL offi="1" offj="1"
 calc="tms->cyt[AMINOACID(query,i)]\
 [AMINOACID(target,j)]+tms->trans[INTMATCH]"
 endsource
 source INTERNAL offi="1" offj="0"
 calc="tms->cyt_ins[AMINOACID(query,i)]\
 + tms->trans[INTMATCH]"
 target_label INSERT
 endsource
 source INTERNAL offi="0" offj="1"
 calc="tms->cyt_ins[AMINOACID(target,j)]\
 + tms->trans[INTMATCH]"
 query_label INSERT
 endsource
 source HY_OUT2INT offi="1" offj="1"
 calc="tms->cyt[AMINOACID(query,i)]\
 [AMINOACID(target,j)]+tms->trans[HY2INT]"
 endsource
 source START offi="1" offj="1"
 calc="tms->trans[START2INT]" !top !left
 endsource
 query_label INTERNAL
 target_label INTERNAL
 endstate
state EXTERNAL
 source EXTERNAL offi="1" offj="1"
 calc="tms->ext[AMINOACID(query,i)]\
 [AMINOACID(target,j)]+tms->trans[EXTMATCH]"
 endsource
 source EXTERNAL offi="1" offj="0"
 calc="tms->ext_ins[AMINOACID(query,i)]\
 +tms->trans[EXTINSERT]"
 target_label INSERT
 endsource
 source EXTERNAL offi="0" offj="1"
 calc="tms->ext_ins[AMINOACID(target,j)]\
 +tms->trans[EXTINSERT]"
 query_label INSERT
 endsource
 source HY_INT2OUT offi="1" offj="1"
 calc="tms->ext[AMINOACID(query,i)]\
 [AMINOACID(target,j)]+tms->trans[HY2EXT]"
 endsource
 source START offi="1" offj="1"
 calc="tms->trans[START2EXT]" !top !left
 endsource
 query_label EXTERNAL
 target_label EXTERNAL
 endstate

state HY_INT2OUT
 source HY_INT2OUT offi="1" offj="1"
 calc="tms->hy[AMINOACID(query,i)]
 [AMINOACID(target,j)]+tms->trans[HYMATCH]"
 endsource
 source HY_INT2OUT offi="1" offj="0"
 calc="tms->hy_insert[AMINOACID(query,i)]\
 +tms->trans[HYINSERT]"
 target_label INSERT
 endsource
 source HY_INT2OUT offi="0" offj="1"
 calc="tms->hy_insert[AMINOACID(target,j)]\
 +tms->trans[HYINSERT]"
 query_label INSERT
 endsource
 source INTERNAL offi="1" offj="1"
 calc="tms->hy[AMINOACID(query,i)]\
 [AMINOACID(target,j)]+tms->trans[INT2HY]"
 endsource
 query_label HYDROPHOBIC
 target_label HYDROPHOBIC
 endstate
state HY_OUT2INT
 source HY_OUT2INT offi="1" offj="1"
 calc="tms->hy[AMINOACID(query,i)]\
 [AMINOACID(target,j)]+tms->trans[HYMATCH]"
 endsource
 source HY_OUT2INT offi="1" offj="0"
 calc="tms->hy_insert[AMINOACID(query,i)]\
 +tms->trans[HYINSERT]"
 target_label INSERT
 endsource
 source HY_OUT2INT offi="0" offj="1"
 calc="tms->hy_insert[AMINOACID(target,j)]\
 +tms->trans[HYINSERT]"
 query_label INSERT
 endsource
 source EXTERNAL offi="1" offj="1"
 calc="tms->hy[AMINOACID(query,i)]\
 [AMINOACID(target,j)]+tms->trans[EXT2HY]"
 endsource
 query_label HYDROPHOBIC
 target_label HYDROPHOBIC
 endstate
state START defscore="0" SPECIAL_I !start
 endstate
state END offj="0" !end SPECIAL_I
 source EXTERNAL ALLSTATES
 calc="tms->trans[EXT2END]" !bottom !right
 endsource
 source INTERNAL ALLSTATES
 calc="tms->trans[INT2END]" !bottom !right
 endsource
 query_label END
 target_label END
endstate
endmatrix

Figure 3 The Dynamite defintion for the algorithm Tmrix, which compares two proteins under the assumption that they are both intergal
membrane proteins

.dy files and .c/.h files can be provided as a suffix rule in
UNIX makefiles, allowing the seamless use of the .dy file
as "source code".

The C code produced by Dynamite has been designed
with the following guidelines: (i) it passes strict ANSI C
checks, and does not produce memory leaks or array access
violations as tested by Purify™ (Pure Software Inc) (ii) it
has been tested on multiple UNIX platforms (Sun, SGI,
Digital, Linux), (iii) it uses explicit parameters for inter
function communication rather than static buffers, (iv) the
function bodies are readable C (formatted and commented)
and the header file has function documentation. The
definitions and functions to manipulate the logical data
types and the underlying memory and alignment structures
common to all DP routines produced by Dynamite are
provided as a library as part of the distribution.

The run time speed of the C code produced by Dynamite
is just a little slower hand written code: for example, when
used to produce a standard protein HMM comparison to a
protein sequence it is 15%-20% (depending on the
platform) slower than the corresponding programs in the

HMMER package (Eddy 1996). There is room for
improvement in the dyc compiler, such as pre-processing
certain common sub-parts of calc lines, however this is not
implemented. A more promising route is perhaps to
provide a compiler to specialised or parallel hardware. To
this end we are writing a port to the BIOXL/G family of
products from Compugen, and we are interested in any
other hardware or parallel implementation.

Examples

Figure 2 is the Dynamite file for the Smith-Waterman DP
algorithm. Notice the two special states START and END.
A more interesting example is shown in Figure 3, which
gives a Dynamite file for the algorithm Tmrix. Tmrix
compares two transmembrane protein sequences to each
other with a concurrent transmembrane topology prediction
(Hugh Salter, E.B and R.D., work in progress). Figure 4 is
an example output. The algorithm allows for different
substitution matrices and different insertion frequencies
for the different regions held in the data structure
“TMparaScore *”, which is a resource for this matrix. This

Tmrix output (pre-alpha)

Sequence 1:cbm.pep
Sequence 2:cbp.pep

Score (in bits over random models) 521.17

 +++++++++++++++++++++++ ++++++ +++++ ++
CB21_MAIZE 1 MAASTMAISSTAMAGTPIKVGSF-GEGRIT--MRKTV--GK
CB23_LYCES 1 MA-S-MAA--TASSTTVVKATPFLGQTKNANPLRDVVAMGS
 ++ + +++ +++++++++++++++++++++++++++++++

 +++
CB21_MAIZE 37 PKVAASGSPWYGPDRVKYLGPFSGEPPSYLTGEFPGDYGWD
CB23_LYCES 38 ARFTMSNDLWYGPDRVKYLGPFSAQTPSYLNGEFPGDYGWD
 +++

 ++++++++++++++++++===============------ -
CB21_MAIZE 78 TAGLSADPETFAKNRELEVIHSRWAMLGALGCVFPELLS-R
CB23_LYCES 79 TAGLSADPEAFAKNRALEVIHGRWAMLGALGCIFPEVLEKW
 ++++++++++++++++++===============--------

 -----------------------------============
CB21_MAIZE 118 NGVKFGEAVWFKAGSQIFSEGGLDYLGNPSLIHAQSILAIW
CB23_LYCES 120 VKVDFKEPVWFKAGSQIFSDGGLDYLGNPNLVHAQSILAVL
 -----------------------------============

 ===============++++ +++++++++++++ +++++++
CB21_MAIZE 159 ACQVVLMGAVEGYRIAGGP-LGEVVDPLYPGGS-FDPLGLA
CB23_LYCES 161 GFQVVLMGLVEGFRINGLPGVGEGND-LYPGGQYFDPLGLA
 ===============+++++++++++ ++++++++++++++

 +++++++++++++++==================--------
CB21_MAIZE 198 DDPEAFAELKVKELKNGRLAMFSMFGFFVQAIVTGKGPLEN
CB23_LYCES 201 DDPTTFAELKVKEIKNGRLAMFSMFGFFVQAIVTGKGPLEN
 +++++++++++++++==================--------

CB21_MAIZE 239 LADHIADPVNNNAWAYATNFVPGN
CB23_LYCES 242 LLDHLDNPVANNAWVYATKFVPGA

Figure 4 An example output of the Tmrix algorithm. The location of the peptide
sequence is indicated by + for intracellular, = for transmembrane and - for

extracellular

way we can model directly specific properties of different
regions of transmembrane proteins; in particular there is a
bias towards positively charged residues in the internal
domains with a similar increase of negatively charged
residues in external domains, and the substitution patterns
transmembrane helices are different from globular
domains. With these biological insights providing the basis
of the construction of this algorithm, and by labelling the
transitions correctly, Dynamite can produce predictions of
the transmembrane topology of these proteins
simultaneously with finding their alignment. Performing
both tasks together significantly enhances the performance
of each taken separately.

A more complex example, GeneWise21:93, is shown
schematically in Figure 5. GeneWise21:93 matches a
hidden Markov model of a protein domain to genomic
DNA. Figure 6 is an example output. It finds the best
alignment considering both the protein information and
gene prediction information, and is one instance of a family
of algorithms, the GeneWise family, designed for this
purpose (E.B., Mor Amitai and R.D., manuscript in
preparation). Note that the short match after the second
intron in Figure 6 is unlikely to be found using a simple six
frame translation comparison. In this case the standard
protein HMM method had to be recast to (i) match codon
triplets rather than amino acids (ii) allow for sequencing
errors of insertions or deletions of bases, which would
make for positions in the HMM being represented by more
than (insertion) or less than (deletion) 3 bases in the DNA
(iii) allow for introns of up to 5,000 or more bases with
characteristic sequence features defining their start and end
points. In particular we wished to combine a probabilistic
model of gene intron/exon structure with the probabilistic
model of a protein domain to allow all the available
information about a gene to be combined consistently.
There are many different features known to be important
in gene structure, for example the 5’ and 3’ splice sites of
the introns, the poly pyrimidine tract (a region of C or Ts
often seen before the 3’ splice site), the branch point (a
very weak consensus upstream of the poly-pyrimidine
tract), all of which can be modelled by specific Dynamite
states and transitions. Again, if this is done, as well as
potentially improving the search one would be identifying
the specified features in the sequence.

Dynamite was central to the development of the
GeneWise algorithms. First many of the methods are
inherently complex, with 93 transitions occurring in
GeneWise21:93 (the numbering refers to the number of
states:number of transitions), involving over 300 array
access positions per cell. Maintaining such a method by
hand, in particular the more complicated linear space
methods would become quite intensive. Second the
flexibility of Dynamite allowed us to experiment with a
variety of methods without a heavy overhead of writing
new functions and without worrying about keeping every
implementation in sync. Third we did not have to commit

to one best method but can both provide a variety of
methods and we can continue to try to incorporate new
features in a consistent and robust manner. For example, in
addition to the 21:93 model we have designed a smaller
4:21 model (4 states, 21 transitions) for faster database
searching. Given a match to GeneWise4:21 it would be
possible to run GeneWise21:93 to check the detailed
alignment and assignment of gene structure features.

Again the labelling process of Dynamite provided an
intuitive way of converting the combined homology and
gene prediction process to simply a gene prediction parse
with the confidence that the additional homology
information had enforced the correct gene prediction. The
more accurate GeneWise methods, such as the one shown
in figure 5 required quite complex boundary conditions.
The homology information does not necessarily span the
entire gene; however, in such cases the gene prediction
apparatus in a GeneWise algorithm will find gene features
which it can distinguish from random DNA. The correct
algorithm therefore requires a general gene predictor
flanking each side of the homology segment to prevent a
spurious matching of the homology based information
solely on the basis of the gene prediction information. This
type of boundary condition requires a series of special
states to model the gene structure in flanking regions (the
special states are omitted from Figure 5 for clarity). We
have also experimented with wrapped alignments for cases
where there are multiple copies of a single domain in a
protein: in this case the linker sequence models a general
gene prediction method that does not lose frame
information even across introns.

Discussion

Dynamite provides a flexible dynamic programming
definition, both with respect to the types of dynamic
programming matrices produced and the types of input
data used. The run-time speed is comparable to hand
written code, and the ability to be provided immediately
with a full set of implementations, including linear space
and database searching methods, allows rapid prototyping
and testing of new algorithms. The above two examples
illustrate how useful the flexibility is in designing and
implementing new algorithms. All these methods can use
the established probabilistic frameworks of HMMs or
probabilistic Finite State Machines to allow rigorous
Bayesian deductions to be inferred from the algorithms.
The additional flexibility which Dynamite provides allows
us to model the biological phenomena in an intuitive
manner, by using labels to provide separate interpretations
of a biological sequence, while the probabilistic framework
greatly simplifies the problem of parameterisation from
annotated datasets. In some cases, it may also be feasible to
find optimal parameters from unannotated datasets using
posterior maximum likelihood techniques

Match

Delete Insert

Phase 0

Phase 1

Phase 2

Phase 0

Phase 1

Phase 2

Introns in Match position

Introns in Insert position

x4

x4

x4

x4

x4

x4

Codon emitting transitions. Di=1or 0, Dj=3

Intron emitting transitions

Phase 0
Introns are modelled as 3 states , with the 5' and 3' splice sites
as fixed length regions.

GeneWise21:93

4 sequencing error transitions Di=1, Dj=1,2,4 or 5
x4

Protein model delete transitions Di=1, Dj=0

Central Py-tract Spacer
5'SS 3'SS

Dj=10,9,8 Dj=6,5,4

Dj=1,Di=0

Di=1
Di=0

Figure 5 A schematic diagram of the GeneWise 21:93 algorithm, which compares a protein HMM to genomic sequence allowing for
introns and frameshifts. The states are represented as circles, with transitions (sources) between them as arrows; this is similar to the

notation used by Searls and Murphy (1995).

We believe that the more biological information that we
can use in designing these finite state machine models, the
better we will be able to generate correct alignments, and,
perhaps more importantly, the better we will be able to
automatically annotate the individual sequences with
biological information.

Homologous sequence detection is now the primary
method used to infer function when a new gene is
sequenced, either in a targetted investigation, or as part of a
large scale sequencing project. During the last few years,
there has also been increased use of homology information
to assist in gene prediction methods, sequencing error
detection and secondary structure assignment. The basis of
these methods is that different selective pressures act in
regions of different biological function. The labelling
mechanism of Dynamite codifies this common practice, by
combining pairwise comparison with the partitioning of
each sequence into biologically meaningful regions. The
two examples illustrate this. The Tmrix method predicts
transmembrane helix placement and topology in two
sequences by relying on previously observed features of
integral membrane protein regions to drive the prediction
process. The GeneWise21:93 method derives a gene
structure prediction on a single piece of DNA which is
consistent with protein similarity to another sequence or a
HMM of a protein domain. We hope to use the labelling
mechanism of Dynamite as a general way of “marking-up”
sequences into biologically interesting regions in a way
which can be easily automated and implemented.

There are a variety of improvements we plan to
incorporate into Dynamite in the future. First we want to
support sequencing traces (as produced by ABI automated
sequencing machines) as a logical type in Dynamite. This

would allow alignment of single sequencing reads, such as
ESTs, to genomic sequence, extending the alignment into
the poorer quality part of the read, where however there is
still sufficient information to confirm an exon assignment,
for example. Second, we hope to make the calculation
process used in the dynamic programming pass through the
DP matrix more flexible. In particular, the ability to add
transition scores (in fact probably log-add them because
scores correspond typically to log probabilities) rather than
take their max, would allow use of the forward-backward
algorithm used in HMM training (Rabiner 1989). This
would also allow derivation of posterior probabilities on
sequence features, such as exons, TM helices etc., rather
than relying on the optimal path correctly representing
every feature. Third, it should be relatively easy for
Dynamite to produce the necessary wrapper code to bundle
each DP matrix as a valid object type into scripting
languages such as Perl, Python or Tcl. This would combine
the speed of compiled C code written specifically for each
DP method with the flexibility of scripting languages to
develop new programs on demand.

Acknowledgements

This work was started in Professor I. Campbell’s group
(OCMS, Oxford University). E.B. is funded by a Wellcome
Trust Prize Studentship. R.D. is supported by the
Wellcome Trust. We would like to thank Ian Holmes, Sean
Eddy, Mor Amitai and Toby Gibson for their interest,
support and discussions during the development of
Dynamite. A stable URL for Dynamite documentation,
help and information is
http://www.sanger.ac.uk/~birney/dynamite/

Protein HMM: RRM
DNA sequence: HSHNRNPA

Score in bits 141.42

Output notation

<X ---- X> intron of phase X
+ predicted poly-pyrimidine tract
Central Intron Central region of introns residues omitted

RRM 1 KLFVGNLPPDTTEEELRELFSQFGEIESIK VMRDKPETGKSRGFGFVT
HSHNRNPA 1 KLFIGGLSFETTDESLRSHFEQWGTLTDCV Central Intron VMRD-PNTKRSRGFGFVT
 1404 actaggtatgaaggacaactgctgacagtgGTAAGATT 1500 <-> 1780 TTCTcAGgaag caaactagtgtga
 atttggtgtaccaagtggataaggctcagt<0------ ++++ 0>ttga cacagcggtgttc
 gcctaggctaattgcggcttgagagcgctg agat accgctgctgtca

RRM 49 FESEEDAEKAIEALNGKVLGGRPLRVKAAQKK EERQ
HSHNRNPA 48 YATVEEVDAAMNARPHKVDGRVVEPKRAVSRE Central Intron DSQR
 1840 tgagggggggaagaccagggagggcaaggtagGTGAGTGG 1942 <-> 2067 TTTTTCTCCTattAGgtca
 acctaatacctacgcaataggttacagctcga<0------ ++++++++++ 0>acag
 tctggggtatgtagacggtaatgaagatccaa ttaa

Figure 6 The alignment of a Hidden Markov Model of the RNA Recognition motif to the genomic sequence of hnRNPA1.

References

Birney, E.; Thompson, J.D; and Gibson, T.J. 1996.
PairWise and SearchWise: finding the optimal alignment in
a simultaneous comparison of a protein profile against all
DNA translation frames Nucleic Acids Research 24: 2730-
2739

Bork P.; and Gibson T.J. 1996 Applying motif and profile
searches. Methods in Enzymology 266: 162-184

Bowie, J.U.; Luthy, R. and Eisenberg, D. 1991 A method
to Identify Protein Sequences That Fold into a Known
Three-Dimensional Structure Science 253: 164-170

Eddy, S. 1996 Hidden Markov Models . Current Opinion in
Structual Biology. 6: 361-365

Gribskov, M.; McLachlan, A.D.; and Eisenberg, D. 1987
Profile analysis: Detection of distantly related proteins.
Proc Natl. Acad. Sci USA 84: 4355-4358

Krogh, A.; Brown, M.; Mian, I.S.; Sjolander, K.; and
Haussler D. 1994. Hidden Markov Models in
computational biology: Applications to protein modeling.
Journal Molecular Biollogy 235: 1501-1531

Krogh, A. 1995. Hidden Markov models for labeled
sequences. Proc 12th International Conference on Pattern
Recognition (Jerusalem, Oct. 1994).

Needlman, S.B. and Wunsch, C.D. 1970. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins Journal Molecular Biology. 48:
443-453

Rabiner, L.R. 1989 A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition
Proceedings of the IEEE 77: 257-285

Searls, D.B. 1996 Sequence alignment through pictures
Trends in Genetics 12: 35-37

Searls, D.B. and Murphy, K.P. 1995 Automata-Theoretic
Models of Mutation an d Alignment Intelligent Systems
for Molecular Biology 3: 341-350

Smith, T.F. and Waterman, M.S. 1981. Advanced Applied.
Mathematics. 2: 482-489

Snyder, E.E. and Stormo, G.D. 1994. Identification of
coding regions in genomic DNA sequences: an application
of dynamic programming and neural networks. Nucleic
Acids Research 21: 607-613

Solovyev, V.V.; Salamov, A.A. and Lawrence, C.B. 1995
Identification of human gene structure using linear
discriminant functions and dynamic programming
Intelligent Systems for Molecular Biology 5: 367

