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Abstract
We construct a graphical representation of protein structure
based on the 3D C-alpha carbon point set, using the
Delaunay tessellation to define interacting quadruples of
amino acid residues. The tessellation is filtered by two
criteria: interaction distance less than 9.5 angstroms and
circumsphere radius less than 8.0 angstroms using dataset
of 608 protein structures of low mutual sequence identity
and a likelihood ratio test, we show that 3-body and 4-body
interactions are indeed significant. We identify particular
significant three-body interactions by first reducing the
dataset to interacting triples, and classifying amino acid
residues in a reduced alphabet. Although cystein was
previously shown to be a dominant source of 3-body
interactions, we now identity additional significant 3-body
interactions of charged, hydrophobic and small residues.

Introduction

The internal organization of peptide residues within a
protein is a reflection of both the primary amino acid
sequence and the folding process determining its three-
dimensional structure. Understanding this organization is
key to recognizing the correct "fold" for a given sequence,
using threading techniques. Current threading techniques
generally use empirical potentials with at most pairwise
interactions to describe this organization. The performance
of such techniques appears to be bounded by the lack of
specificity of the potential. We sought to extend empirical
potentials with 3-body and 4-body interactions (Singh,
Tropsha et al. 1996; Munson and Singh 1997). Here we
refine our definition of relevant multi-body interactions
and categorize the significant three-body interactions
according to the physical properties of the participating
amino acids.

The geometric organization of the peptide residues
within a protein structure may be represented by the
Delaunay tessellation. This tessellation divides the interior
volume of the protein into a set of nonoverlapping
tetrabedra with vertices at the C~ carbons, thereby uniquely
defining interacting quadruples of residues. Several
advantages have been noted for this representation:
nearest-neighbors are defined without reference to a

distance cutoff; each portion of interior volume is bounded
by exactly four vertices thus facilitating statistical
calculations of multi-body interactions and the necessary
computational geometry algorithms are generally available.
We and others have shown this representation to be useful
for fold recognition using threading approaches (Munson
and Singh 1997; Zheng, Cho et al. 1997).

Previously, we investigated the statistical significance of
three- and four-body terms using three methods:
likelihood-based log-linear statistical models, potential
energy differences in fold-recognition and sequence-
recognition tests, and graphical display of the complete
four-body potential. The most dramatic feature of the four-
body potential arises from interactions of cystein residues
in pairs, triples and quadruples. This is not surprising, as
the covalent disulfide bridges found between cystein pairs
imply a strongly "attractive" pairwise term which must be
compensated at the three- and four-body level.

A 4-body potential is actually made up of many terms
including 4 one-body, 6 two-body, 4 three-body and only I
pure four-body term. While the pure four-body
interactions as a group were clearly significant, only
interactions involving four cysteins (CCCC) could 
judged statistically significant by itself. Given the
limitations of the dataset, we now explore in detail the
individual pure three-body terms. We find that even in the
non-cystein bearing triples there are significant higher-
order interactions. The strongly interacting triples of
residues fall into patterns involving interactions of charged
and hydrophobic residues.

Methods

Delaunay tessellation is a technique to establish the spatial
neighbors of a 3-D point set. It is the mathematical dual of
the Voronoi diagram for that set. Basically, the tessellation
divides the convex hull of the point set into a (nearly
always) unique set of non-overlapping tetrahedra whose
vertices are the original points. A feature of Delaunay
tessellation is that the circumsphere of each tetrahedron
(sphere with the four vertices on its surface) does not
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contain any other points in the set. The edges of the
resulting tetrahedra connect pairs of vertices which are
"nearest-neighbors". Groups of four vertices in a
tetrahedron are considered a clique in the connection
graph for the point set and are available for analysis of the
four-body and lower-order interactions. The tessellation
can be efficiently calculated with available software
(Barber, Dobkin et al. 1995).

In applying this technique to protein structures, we
represent the protein as simply a 3-D point set with one
point placed at the center of each C~ carbon. More
complex representations (points at the ~ carbon, or other
representative atoms, etc.) have been tried, but do not make
a substantial difference for the current purposes. Clearly, a
more detailed representation of the protein can be useful
for protein threading-fold recognition. To make the
tessellation more representative of actual interactions
within proteins, we employed a filtering technique
described elsewhere (Munson and Singh 1997). Basically
tetrahedra with any edges are greater than 9.5,~ or with
circumsphere radius greater than 8.0/tL are rejected. This
eliminates about half of the original tetrahedra, which
generally lie outside the water-accessible surface of the
protein.

For this study we tessellated a dataset of 608 protein
chains of known structure having less than 35% pairwise
sequence identity and a resolution of less than 3.0 ,/~
(Hobohm and Sander 1994).

The frequencies of observed tetrahedra, labeled by the
standard 20-letter amino acid residue code, are arranged
into a 20x20x20x20 table and form the basis for our
analyses. We use a log-linear statistical model to represent
the natural logarithm of the frequencies as a sum of zero-
th, first-, second, third and fourth order terms. The full 4-
body model is:

In m4kl =u +u~+uj+uk+uI 1-body effects

+u~+utt+u~+uk+uj~+u~t 2-body interaction

+u~jk+u~:t+uoa+ujn 3-body interaction

+ uijks 4-body interaction

where the predicted frequencies mow, are subject to the

symmetry constraint (mukt = m~j~) for all 24 permutations
¢~ ). This model and all hierarchical submodels are
estimated using the maximum likelihood iterative
proportional fitting algorithm (Bishop, Fienberg et al.
1975) programmed in MATLAB (The Mathworks, Inc.,
Natick, Mass., USA). Log likelihood differences (A’s)
between models are compared to the difference in number
of parameters for two models, and the result is given as a
Z-score, Z = (2A log likelihood - Adf) I ~--~,

where df is the degrees of freedom or number of

parameters associated with each model. This statistic is
asymptotically distributed as a standard normal variate and
can be used to judge the significance of a high-order model
compared to a lower-order model. Absolute values greater
than 3.3 correspond to P-values of about 0.001 or less.

The potential energy associated with any particular
assignment of residues to the four tetrahedral vertices is
estimated from the modeled frequencies as

Eijkl =-lnIrn~kl l NPiPjPkPlI where the p, are the

proportion of residue type i in the database. Full graphical
displays of the 20x20x20x20=160,000 terms in the
potential have been presented elsewhere (Munson and
Singh 1997). Components of the potential energy can be
obtained by referring to the appropriate u term of the log-
linear model.

Because many of the observed or expected frequencies
are quite low (average observed frequency is about 50 per
cell), some of the energy components are unreliably
estimated. Thus, judging the true significance of individual
components may be problematic. To account for this
sparse data, we have also calculated the Freeman-Tukey
residual ((Bishop, Fienberg et al. 1975), p 136) which
combines observed, x, and predicted, m, frequencies into a
statistic of approximately unit variance regardless of the
small frequencies. It is z = "~ + ~ - ~/4m + 1.

Invoking the permutabiiity assumption, we sum over all
distinct permutations of the subscripts for the observed and
expected frequencies, yielding a smaller number (8,855
rather than 160,000) of categories and larger average
frequencies.

To find patterns in the three-body terms, a 3-way table
of the frequencies of triangles in the original tessellation is
required. A three-way table is obtained by summing one of
the factors of the four-way table. Thus, the expected

number m~jk of triangles with vertices i,j,k is given by

3 4.~m4
mijk = 2 1=1 tjkl,

where the factor 4 arises since there are four triangular
faces on each tetrahedron, and the factor 2 since each
triangle is present in approximately 2 tetrahedra; those on
the surface are present in only one. Invoking
permutability, we can again condense 8,000 categories to
1330. The observed and expected frequencies for triangles
can be studied with the methods given above. Still further
reduction is obtained by recoding the standard 20 letter
amino acid residue code as follows: hydrophobic
"h"= { A,F,I,L,M,V,W,Y }, positively charged "+" = { K,R },
negatively charged "-"={D,E,N,Q}, small "s"={P,S,T}.
Other residues C, G, H were not recoded.
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Results & Discussion

We had previously established the presence of higher-order
(greater than 2-body) interactions in the frequency 
tetrahedra in tessellated proteins (Munson and Singh 1997).
One line of evidence is repeated in Table 1 for a refined
dataset (more stringent filtering of the original tessellation,
see Methods ). The hierarchical comparison of the three-
body model to the two-body model yields a Z-score of 54,
which is extremely significant. The comparison of the 4-
to the 3-body model yields a Z-score which is significant
(more so than previously reported), but still uncomfortably
close to the usual cutoff (121>3.1). Nevertheless, with 32%
of the total log-likelihood or information from all the
multibody terms (2,3, and 4), the 4-body term seems 
make an important contribution.

Table 1. Hierarchical Comparison of Models.

Comparison A logLikelihood Adf Z-score
1 vs 0 -18676 19 6056
2 vs 1 -12904 190 1314

3 vs 2 -2059 1330 54
4 vs 3 -3947 7315 4.8

We previously sought important pure 4-body interactions
responsible for the significance of the 4-body vs 3-body
comparison. (Munson and Singh 1997). Only the 4-body
term associated with the quadruple CCCC was clearly
significant. Multibody interactions involving cystein arise
from the ability of C to form covalently linked pairs. Such
pairs imply a very strong pairwise term, which contribute
to all six pairs of edges in a tetrahedra and thereby over-
predict the occurrences of CCC and CCCC.

To look beyond this group of effects, we removed all
tetrahedra with C at any of their vertices. Of the original
385,161 tetrahedra, 355,500 remained. Repeating the
analysis of significance of the high-order models shows
(Table 2) that both the three- and four-body components
remain significant (Z-score = 38 and 4, resp.), although the
Z-score values are noticeably reduced. Thus, even after C
is removed from the analysis, there appears to be high-
order interactions.

Table 2. Hierarchical Comparison of Models after
Removing Cystein

Comparison A logLikelihood A df Z-score
1 vs 0 -17053 18 5681
2 vs 1 -7077 171 756
3 vs 2 -1476 1140 38
4 vs3 -3190 5985 4
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To investigate for significant three-body interactions, we
reduced our dataset from a tetrahedral representation to one
embodying only triangles of residues. Accordingly, we
computed a three-way table of the frequencies of all triples
(triangles in the original tessellation) of residues (see
Methods). From the original filtered tessellation, we found
about 770,300 triangles. The three-way table showed a
strongly significant three-body component (Z=18.6).
When cystein-containing triangles were dropped (yielding
711,000 triangles), the three-body Z-score dropped to 8.5,
but was still highly significant.

After dropping the C residues, the set of Freeman-Tukey
residuals (versus two-body predictions) were ranked,
yielding a list of 1,140 values (all distinct combinations of
19 letters), the most over-represented triples were DRV,
EKL, EKV, AER, DFK, all examples of an oppositely
charged pair with a hydrophobic residue. At the bottom of
the list we find a more heterogeneous group: GMR, DER,
ELV, NQR, EEK. To find common patterns in this list, we
re-expressed the 20 letter amino acid code into a reduced
alphabet (see Methods). We then looked for consistent
patterns of residue types in the top 40 and the bottom 40
Freeman-Tukey residuals.

Six patterns emerged from this analysis (Table 3). The
first pattern (+ - h) involves oppositely charged pairs with
hydrophobic residues. This pattern produced the largest
positive value of any residual (rank 1), and had a total 
13 members in the top 40. Taking all 64 members of the
group together, the average tendency was significantly
positive (Student’s t statistic value = 5.8), indicating that 
a group the (+ - h) pattern was significant. Three-body
interactions between oppositely charged residues and a
hydrophobic have been observed (Godzik, Kolinski et al.
1992; Godzik and Skolnick 1992; Munson and Singh
1997).

Interestingly, the pattern (- - h) also appeared with 
significant positive three-body interaction. However, the
pattern (+ + h) did not appear in any of the top 40 residuals.
The pattern (+/- h s) appeared 5 times in the top 40 and had
a significant t-value overall.

For the underrepresented patterns, the most striking
pattern involves three charged residues (+ - - ) or (+ + 
Almost as important are the two groups (- h h) and (+ h 
involving a single charge with two hydrophobics. It should
be noted that the hierarchical statistical model creates the
situation where these various patterns may be linked: a
large positive interaction in the model for one cell, say, for
a (+ - h) pattern, implies that other interactions must 
negative, in order that the sum of three-body interactions
be zero. Thus, the patterns involving hydrophobic and
charged residues are obviously interrelated.

What is clearly new in this analysis is the following.
Significant three-body interactions remain after removing
the masking effect of cystein interactions. Not only do the



previously identified oppositely charge pair-hydrophobic
interactions emerge as significant, but a strong tendency is
identified for similarly-charged pair and hydrophobic
triples to cluster. These interactions are balanced by
significant anti-clustering for charged residue triples, or
single charged residues with two hydrophobic residues.

Within each of the general patterns, there is clearly
heterogeneity as some (+ - h) members (DRV for example)
produce a much more positive residual than others. Some
members actually underrepresented (for example ERF).
Precisely how these residue combinations interact in
protein structures remains to be explained fully.

Finally, we offer an explanation for the interaction terms
involving charged and hydrophobic residues. The
paradoxical clustering of a charged pair with a hydrophobic
residue must be interpreted in the context of the pairwise
co~oponents acting on this same set. There are three
pairwise components (one negative, two positive in this
instance) and three one-body components to consider as
well. Thus, the pure three body term is really a correction
added to the otherwise largely repulsive pairwise terms
between the hydrophobic and the charged residues.

Table 3. Prominent 3-body Interactions not Involving
Cystetn

Pattern* and Top Group Group
Members in Top or Bottom 40 rank size t-value

Over-represented (positive interaction)
(+ - h) 1 64 5.8

DRV,EKL,EKV,AER,DFK,AQR,
EIICERV,DLR,EIR,DIK,ELR,LNR

(+/- h s) 8 96 2.8
ADP, MRT, QSV, KLP, EFT

(- - h) 9 80 4.2
DEI,NNV,NQV,DEV,EIN,DDM

Under-represented (negative interaction)
(+. - ) or ( + + 2 20 -4.4

DER,NQR,EEK,DDK,KNN,DEK
(- h h) 3 144 -4.8

ELV, LNV, IQV, EIV, AEV
(+ h h) 11 72 -2.4

ILR,FIK,ARV,KLV,KLM,IKL,MRW

*See Methods for reduced alphabet in patterns.

Three-body terms may arise partly as a consequence of
the permutability assumption. A logical consequence of
that assumption is that the model does not distinguish any
individual vertex position in the graph; all positions are
assumed to have the identical distribution on the set of 20
residues. In reality, the presence of a surface boundary

implies that some vertices are special; they lie on the
solvent accessible surface and are much more likely to be
occupied by charged residues, while other vertices are
more likely to be occupied by hydrophobic residues.
Depending on the geometric arrangement of residues near
the surface, pairs of charged residues, likely to lie on the
surface, may also be likely to interact with a buried
hydrophobic neighbor. Multi-body interactions also arise
when special relationships (covalent bonding of C-C pairs
but not of triples or quadruples), are present. Advancing
the statistical description of the protein structure clearly
requires inclusion of this detailed information.

For now, it is clear that many threading methods which
look primarily at two-body interactions are missing about
50% of the available information in these higher-order
interactions. Here, we have confirmed the existence of
high-order interactions on a large dataset, and identified
two major sources of these interactions: cystein
interactions and hydrophobic-charge combinations. The
power of protein threading methods which use pairwise
pseudopotentials would surely be enhanced if such
multibody interactions were incorporated.
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