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Abstract

Transcription factors, proteins required for the reg-
ulation of gene expression, recognize and bind short
stretches of DNA on the order of 4 to 10 bases in
length. In general, each factor recognizes a family
of “similar” sequences rather than a single unique
sequence. Ultimately, the transcriptional state of a
gene is determined by the cooperative interaction of
several bound factors. We have developed a method
using Ciibbs Sampling and the Mininium Description
Length principle for automatically and reliably cre-
ating weight matrix models of binding sites from a
database (TRANSFAC) of known binding site sequences.
Determining the relationship between sequence and
binding affinity for a particular factor is an important
first step in predicting whether a givea uncharacter-
ized sequence is part of a promoter site or other control
region. Here we describe the foundation for the meth-
ods we will use to develop weight mairix models for
transcription factor binding sites.

Introduction

The binding of transcription factors to promoter and
enhancer regions plays a major parl in controlling
gene expression. Transcription factors typically rec-
ognize a family of short DNA sequences (typically 4
- 10 base pairs) The binding affinity is determined
largely by the DNA sequence. Deterinining what se-
quences a factor binds to directly and what effects
the context of the sequence may have is an important
first step in predicting whether a given uncharacter-
ized sequence is a part of a promoter site or other
control region. There are several databases and/or
search tools of gene expression-related models such as
TRANSFAC (Wingender et al. 1996) and Promoter Scan
(Prestridge 1995). We offer a WWW-based service,
TESS, at http://agave.humgen.upenn.edun/utess/-
tess which uses TRANSFAC to locate factor binding
sites.

Clearly the importance of this information is recog-
nized, though its use is still in its infancy. We intend to
build weight matrix models for all factors in TRANSFAC.
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These models will serve as a basis for two subsequent
activities, the analysis of the TRANSFAC data and the
building of higher level models of dimers, coopera-
tive/competitive groups, and promoter sites for vari-
ous classes of genes. We expect that the models of
promoter sites will help in both predicting expression
patterns of newly sequenced genomes and in under-
standing the mechanisms and conditions of gene ex-
pression.

Models used to describe biopolymer sequences fall
into five categories: 1) consensus sequence, 2) weight
matrices, 3) hidden Markov models (HMMs), 4) neural
nets, and 5) grammars. Consensus sequences though
common and useful as mnemonics though do not con-
tain enough information to accurately model the bind-
ing process. Weight matrices offer the intuitive sim-
plicity of consensus sequences but with more accurate
modeling of base distributions at each position. Weight
matrices have the potential problem of assuming that
the positions are independent. HMMs offer a means of
including inter-position dependencies and of defining
richer models in other senses. The first three classes
form a strict hierarchy of expressive power. Neural nets
offer similar flexibility in describing relations between
distant sites. Grammars, augmented with probability
information for rule use, provide a very rich, yet intu-
itive and hierarchical means of describing a model.

We have applied HMMs to modeling transcription
factors binding sites (Raman & Overton 1994) and
have found that individual binding sites have not yet
demanded expressive power beyond that of weight ma-
trices. We have chosen a combination of Gibbs sam-
pling and minimum description length methods to
build our binding site models. Fickett has performed
similar work in (Fickett 1996). These methods work
well and should be extendible to cover the next few
levels of models. Indeed. (Grate et al. 1994) uses
Gibbs sampling to determine parameters for stochastic
contexi-free grammars.
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Methods
Weight Matrix Models

Our model for a factor site is a block of contiguous posi-
tions, each with its own base distribution, i.e., a weight
matrix. Given a multiple alignment (without gaps) of
a sequence set, the array Cy4(¢, b) is the number of oc-
currences of each base b in column ¢ of the alignment
A and Ca(c) = 3, Ca(c, b) is the number of sequences
that contribute to the data at a given position. Since
not all sequence are of the same length and the binding
site is not in the same position for all sequences, Ca(c)
varies with c. A range [¢;,, ¢myw—1] of positions as de-
fined to be the conserved binding or binding-related re-
gion. Other positions outside this range are considered
to be generated from a single background distribution.
The weight matrix model Py (c,b) is then defined as
shown in equation (1)

Par(e,b) =

Calctem,b)+p(b
{JCHcT-cT,})TiuC s for1<c<W
c.b)+ _
T tlemcmpw 1] oL for c=0
(1)

where p(b) is the prior probability for base b. This for-
mula results from using a Dirichlet prior on the back-
ground base distribution. Matrix Cay(c,b) and array
Caz(c) are defined similarly. Thus the parameters of
the model are the width of the motif and the base dis-
tributions at each column and the background. The
parameters of the alighment are the sense and start of
each sequence relative to the motif block.

Alignment Using Gibbs Sampling

We use a Gibbs sampling technique to perform the
multiple alignment. The algorithm consists of two
phases, sampling and clipping, which are repeated un-
til completion. Sampling is the process of realigning
a single sequence by selecting a new alignment for it
based on the likelihood of each possible alignment be-
ing correct given the current alignment of the other
sequences. A score is computed for each possible align-
ment of the target sequence which is a function of the
sequence, the current alignment, and temperature pa-
rameter. One of these alignments is selected nondeter-
ministically according to the probability distribution
achieved by normalizing the likelihood scores. We re-
peat this process for all sequences and consider this
to be a step. Our algorithm is derived from extensive
work by Lawrence and others (Lawrence et al. 1993;
Neuwald, Liu, & Lawrence 1995; Lawrence et al. 1994;
Lawrence & Reilly 1996; Liu, Neuwald, & Lawrence
1995; Liu 1994), but tailored to our application. Clip-
ping is the process of determining which block of con-

tiguous columns of the alignment shows significant con-
servation and using this block as the new motif. These
steps are alternated until an annealing schedule similar
to one in {Geman & Geman 1984) for the temperature
parameter has been completed.

The alignment of the sequences takes place in a box
which has a width W0 = 2% Lygz — 1 where Lyar
is the length of the longest sequence in the data set.
When a sequence is placed in an alignment, it is re-
quired to overlap the central position, or to have an
end point within two bases of the center. This forces
all the sequences to overlap. Were they not forced
to overlap or were there no penalty for non overlap,
the sequences would be free to spread out so that
there is no overlap and therefore no mismatch. We
extend this requirement during sampling to penalize
alignments that do not overlap the conserved region
to a large enough degree. The alignment can be ini-
tialized in one of two ways, random and short-to-long
sequential alignment. A random initialization consists
of pseudo-random choices for the start and sense of
each sequence, with the restriction that the string must
overlap the center of the motif. These are made using
a uniform distribution over all legal alignments. In
a short-to-long initialization we perform a sequential
alignment on the sequences ordered by length from
shortest-to-longest. The weight matrix is then com-
puted from the initial alignment.

The likelihood score of the data given the alignment
is computed using equation (2).

w
P(z|A) = [T I Pr(e, b)Srte® (2)

c=1beB

Positions of the sequence which are in background
columns are not considered. A multiplicative penalty
may be applied in addition if the sequence covers less
than half or a third of the motif and it is long enough
to cover it all. This weights against alignments and
motifs which are one base long,.

The likelihood score for an alignment is modified
by a temperature parameter: Pr{z|A} = P{z|A}'/7,
where we usually have 0 < T < 1. At lower temper-
atures the selection process closely approximates the
deterministic algorithm that always chooses the best
alignment. At T'= 1 we select according to the likeli-
hood score. As T — oo the selection distribution be-
comes uniform. As mentioned above this is controlled
by an annealing schedule as indicated in (Geman &
Geman 1984) of the form T = BH({TtT where t is the
number of steps performed.

We set a limit on the number of consecutive sampling
iterations that will be performed without improvement
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in the total alignment score, typically 10 to 20. Once
this limit is reached, clipping takes place. In prelimi-
nary tests, this method is efficient and effective. Clip-
ping is the process where by the best contiguous block
of the alignment is chosen to be the motif. It is called
clipping, but in fact it is possible for the motif to get
wider at a clipping step if the well conserved region ex-
tends beyond the current motif boundaries. We have
tried several techniques but settled on MDL. The ap-
propriate technique we feel should be either parameter-
less or have parameters which can be set in a principled
manner and have a reasonable physical interpretation.

Model Selection Using the Minimum
Description Length Principle

The minimum description length principle holds that
the best model is the one which minimizes the total
description costs of the data as well as the model. Ris-
sanen, in (Rissanen 1983), derives equation (3) to mea-
sure the total description length of a set of data and
its model.

L(z,8) = —In P(z|6) + In"(C(k)[(¢', M (6)0))*/%) (3)

Here k is the number of model parameters ((W +1) %3
in our case), 8 is a column vector of the parameters,
M (0) is the second partials matrix of —1n P(z|6) with
respect to 8, C(k) is the volume of the unit k-sphere,
and In*(z) = In(z) + In(In(z)) + ... where only the
positive terms are used.

The first term in equation (3) corresponds to the
description length of the data, the second term is the
description length of the model. Minimizing the first
term alone corresponds to choosing the model that best
explains the data. In our case, the best model is one
that has width W,4z.

We use the base probabilities for each column and
the background distribution as the model parameters
to be transmitted. We leave out the motif start indices
since we make no prior judgment as to their value. The
motif width W may be included in the model using
either Rissanen’s universal prior for integers or by a
more biologically motivated prior. In either case this
is an additive term in equation (3).

A significant contribution of (Rissanen 1983) is de-
termining the precision required for specifying real-
valued parameters. Without limiting the precision of
a real-valued parameter an infinite amount of infor-
mation would be required to specify it. Selecting the
precision of the parameters is important since it di-
rectly influences the model cost. 1f the model cost is
too high then given a number of observed bases, it will
be cheaper to transmit the bases using a single distri-
bution for all columns. If the model cost is too low,
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then there is no pressure to choose a small model and
W will expand to Wynar. ({Rissanen 1983) makes a
choice for the precision based on first principles which
we adopt. The precision for each parameter is different
depending on the effect the parameter has on the value
of —In P(z|0).

The log-likelihood of the data given the model is
expressed as shown in equation (4).

w
—In Ppr(z|6) = Z Z Cmlc,b)Pr(c,b)  (4)

c=0b€B

(Rissanen 1983) requires that the parameters’ range
be (—o0,00) and that there be no redundant param-
eters. The four parameters of a DNA base distribu-
tion do not meet either of these criteria; their ranges
are [0, 1] and there are only 3 independent parameters.
Hence we first re-parameterize the model as

eqcb

Plc,h) = — (5)

where 7, = ZbeB e to meet the range requirement.
To remove the redundant parameter we set gep, = 0.0
and do not consider ¢.,, a parameter of the model in
the MDL context. It does not matter which base is
chosen to be removed from the parameterization; the
results are the same for all choices. One consequence
of equation (1) is that Ve,b 0 < Pps(c,b) < 1, hence
the g.p are not required to take on values of —2c or oc.

Using the re-parameterization as shown in equa-
tion (6), the partials of —In P(z|@) are shown in equa-
tion 7.

hid

~ln P(zlf) = - [Z Car(3,8)gib — Car (i) In z,-]

i=0 beB
(6)
0 ifij
& —nP(zlo) | iy, (5 ife#d
o ica j - q ' 9 2
Hie@ 5 [e — — (e“z—) ]CM(i) else
(7)

To select the most conserved region, we let the width
and start position vary over all legal combinations and
choose the combination with the shortest total descrip-
tion length.

Choosing the Final Model

Since the Gibbs sampler is a stochastic technique and
we arc performing a finite number of iterations, we
repeat the annealing schedule some number of times



with different initial configurations. Typically, for a
large data set, we would find about 15 different solu-
tions for 50 runs. Our heuristic is to choose the model
that appears most often, considering a model and its
reverse complement to be the same.

Discussion

Equation (2) applies to sequences which do not con-
tain any ambiguous base characters. When ambiguous
bases are allowed P(z|0) is computed somewhat differ-
ently and the expressions for the partials of — In P(z|6)
are slightly more complex but reduce to those given in
equation (7) when the input data sequences have no
ambiguous bases.

We will probably switch to a Bernoulli sampler (Liu,
Neuwald, & Lawrence 1995) for alignments which will
allow multiple instances of a motif in a single se-
quence since this is common in TRANSFAC. This entails
a change in the alignment parameter structure, but not
in the model, since we will still use a block model. A
block model is likely to be appropriate for most factors,
however it can not model dimer binding where the con-
served motif consists of two block motifs separated by
a variable distance. In this case we can identify the
parts of the binding site, possibly using prior informa-
tion, and then model the spacing between the two sites
in a second-level model.

In work by Lawrence, {(Lawrence et al. 1993), there
was a broad peak in the average information content
per column around the natural motif width. The width
which achieved the maximum value was then selected
to be the criterion for choosing the motif width. For
transcription factors, there does not appear to be such
a peak; the shorter the motif, the higher the informa-
tion content. Typically there is a very short region,
of 3 of 4 bases which gives a very high score. As the
motif gets wider, the average information content per
column drops steadily but not precipitously.
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