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Abstract

Crystallographic studies play a major role in current
efforts towards protein structure determination. How-
ever, despite recent advances in computational tools
for molecular modelinE and graphics, the task of con-
structing a protein model from crystallographic data
remalna complex and time-con~a~mlng, requiring ex-
tensive expert intervention. This l~per describes an
approach to automating the proce~ of model con-
struction, where a model is represented as an anno-
tated trace (or partial trace) of the three-dimensional
backbone of the structure. Potential models are gen-
erated using an evolutionary algorithm, which incor-
porates multiple fitness functions tailored to different
structural levels in the protein. Preliminary experi-
mental results, which demonstrate the viability of the
approach, are reported.

Introduction
A fundamental goal of research in molecular biology
is to understand protein structure. Protein crystal-
lography is currently at the forefront of methods for
determining the three-dlmensional conformation of a
protein, yet it remains labor intensive and relies on an
expert’s ability to construct, evaluate and refine poten-
tial models for the structure. A protein model repre-
sents a hypothesis of the tertiary structure of a protein;
a good model is one which makes sense (in terms of our
knowledge of the chemistry, biology and physics of the
molecule) and is consistent with the experimental data.
Currently, building a protein model is a trial-and-error
process, which is assisted by the use of computer graph-
ics for tracing the polypeptide chains and modeling the
side chains, and for viewing and improving the result-
ing model (Jones et al. 1991). Errors in the initial, and
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subsequent, models may be corrected using a refine-
ment process, which involves modifying the model to
minimize the difference between the experimentally ob-
served data and the data calculated using a hypotheti-
cal crystal containing the model. It has been proposed
that the process of protein model building could be
improved through the development of computational
tools (Branden & Jones February 1990). This paper
reports on such a tool for model construction, which
will be incorporated in a fully automated system for
protein structure determination from crystallographic
data.

An approach to molecular scene analysis has pre-
viously been proposed (Fortier et al. 1993; Glasgow,
Foztier, & Alien 1993) where a scene model is gen-
erated using a topological analysis of the protein im-
age data (Leherte et el. 1994). Although initial re-
sults suggest that this approach is promising, it rehes
on a single model which may not correspond to the
optimal trace of the protein backbone for the given
data. The research described in this paper addresses
the shortcomings of the previous approach by propos-
ing a technique that generates and evaluates multiple
possible protein models using an evolutionary compu-
tation methodology. In this approach, mutation op-
erators are applied to build structural models using
data derived from a topological analysis of a protein
image. A novel aspect of the research is that multiple
fitness functions are used to evaluate potential models
on the basis of criteria applicable to different lengths
of substructures. This approach can be incorporated
into a heuristic search strategy that will determine a
path from an initial uninterpreted protein image to a
fully-interpreted model.

The goal of the research described in this paper
is to design an approach to protein model construc-
tion and to implement it in a comprehensive computa-
tional system for molecular scene analysis. At medium
resolution(,,, 3 ,~), we define a protein model as 
path (or subpath) through a graph consisting of critical
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point nodes, corresponding to amino acid residues, and
weighted edges, corresponding to potential polypep.
tide bonds. A model also specifies a set of environ-
ments, which describe properties of the individual crit-
ical point nodes on the graph corresponding to amino
acid residue classes.

Model Construction

In this section we describe an intelligent system for
generating protein models from a critical point graph.
A model corresponds to a trace of the graph corre-
sponding to a potential backbone for the protein. It
is not our goal to find the "best" model for the struc-
ture, only to determine a set of reasonable - in terms of
our knowledge of the molecule and physical/chemical
constraints - models which can then be put through a
more rigorous evaluation process to find the best can-
didates to participate in the next iteration of image
refinement and generation.

An evolutionary programming (Fogel 1995) approach
was developed to generate potential backbone traces
for a protein. This approach involves taking a popu-
lation (a set of potential traces) and probabilistically
selecting the "fittest" traces with respect to a given
evaluation function. The chosen traces are then mod-
ified and placed in the next generation for a popula-
tion. Successive generations of populations lead to new
and expanded protein traces being created and exam-
ined. A gro~rth model is utilized to track the back-
bone trace through the graph. The basic tenet of this
growth methodology is to apply transformational (in-
telligent mutation) operators to incrementally extend
and develop members of a population of traces. We
incorporate three such operations in our system: 1)
an add mutation extends a trace by adding an edge to
the path; 2) a delete mutation removes an edge from
the end of a path; and 3) a split mutation probablis-
tically removes an internal edge resulting in two new
subtraces. Figure 1 illustrates the application of these
three operations to a trace in a given population.

Our evolutionary system is novel in the sense that
it evaluates potential models at varying structural lev-
els of the protein. We divide our traces into multiple
classes and use specialized fitness criteria for each class
as specified in Table 1. Note that individual criteria
not only address different lengths of traces, but also
different structural levels: Class 1 focuses on local dis-
tance and angle criteria among residues; Class 2 looks
at secondary structure conformations; and Class 3 ex-
amines super-secondary structure interactions.

Different fitness functions are incorporated into the
system using a variation of the island model (Davis
1991). Instead of maintaining a single population of
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Figure 1: Mutation operations for evolutionary approach
to trace generation.

PD n~ h
Population

Figure 2: Abstract view of the evolutionary program using
a three-islands model.

traces, the system considers multiple populations, one
for each class of traces. Individual populations are iso-
lated and do not communicate with other populations
except through the process of emigration: when a pop-
ulation generates a trace that is outside its bounds,
then the trace is moved to the appropriate population.
For example, if the population illustrated in Figure
1 was restricted to traces of length 7 to 20, then the
traces resulting from the split mutation could emigrate
to a population of smaller paths. Thus, the popula-
tions can be viewed abstractly as a group of islands
(see Figure 2) where paths may emigrate from one is-
land to another as a result of intelligent mutation.

The basic algorithm for the evolutionary program
consists of the following steps:

¯ Build the initial population of traces by randomly
selecting single edges from the critical point graph.

¯ Repeat until the new population is full:

-Retrieve a trace from the population using a



Table 1: Fitness function criteria for different island classes.

[[ CLASS [ TRACE LENGTH I FITNESS FUNGI’ION CRITERIA I!
1 1- 6 Graph edge weights and simple bond angles
2 7-20 Bond and torsion angles, residue dis/~ces
3 21 - 30 Super-secondary structure

tournamentI selection technique.

- Perform mutation in a probabilistic fashion.

- Add the trace to the new population.

Iteratively process the multiple populations (using
intelligent mutation operations) until a desired result
or stopping criteria is achieved.

Test Results
The evolutionary algorithm for generating traces was
implemented and tested using two islands. Following,
we describe the fitness functions for each of these is-
lands and experimental results of applying the algo-
rithm to critical point graphs constructed from crys-
tallographic data.

Island 1: Traces of length 1 to 6 are ranked
using a fitness function based on edge weights (from
the critical point graph) and bond angles. In order to
determine the preferred ranges for values, experimental
data were acquired and a discrete binned distribution
(histogram) was calculated for both the weights and
angles.

A reward/punishment technique was used to calcu-
late the fitness value for a trace. Rewards (positive
values) or punishments (negative values) are awarded
based on the region the weights and angles fell into for
a given trace. The fitness value for a trace T is simply
a sum of the reward/punishment function (RPF1) ap-
plied to the weight of each edge (We) and each angle
(0) in the trace:

fitness(T) = ~ RPFI(W,) + ~ RPFI(O)
eET $ET

The fitness function for island 1 was tested on pro-
teins Phospholipase A2 (f389) and Ribonuclease 
(2rn2). Testing was performed for an island size 
100 and a single run consisted of 20 generations.~

The algorithm was run 40 times for protein 2rn2 and
100 times for protein f389 and the fittest member of

t A tournament selection involves repeatedly randomly
choosing some number n of individuals from the popula.
tion and retaining the fittest individual for the intermediate
population.

~Initially tests were carried out with longer runs. How-
ever, little improvement was found after 20 generations.

Table 2: Results of testing fitness function for island
1.

II Length H 41 51 6 [ 7 II
Correct 5 10 6
1 Duplicate 4 4
1 Jump 1 2 2 3
2. Duplicates 2

(a) results for 2rn2

II  ngt II 3,1 4[ 5 [ 6 I fv-II
Correct 2 14 10 7
1 Duplicate

.
4 5 9 8

1 Jump 3 2
2 Duplicates 1 1 4 1
1 Dup/1 Jump 1 5 6

i 2 Dup/1 jump 2 1 3

(b) results for f389

the population selected at the end of each run. Table 2
illustrates the results of these runs. For 2rn2, 21 out of
the 40 runs produced correct traces that spanned a por-
tion of the protein backbone. The remaining 19 runs
produced traces that either omitted a single residue
from the backbone or contained a repeat of a residue.
That is, traces of the form < 12_13_14_15_17_18 >
(residue 16 was skipped) or < 12_13_13_14_15_16 
(residue 13 was represented as two distinct critical
points) were generated. The results for protein f389
were not quite as positive: 36 out of 100 of the traces
were totally correct. Runs for this protein also pro-
duced several traces (8 in total) that contained disul-
fide bridge connections. Errors also occurred when a
trace reaches the end of the backbone, but continues
to add edges.

On the whole, the results for island 1 were promis-
ing. All traces with infeasible inter-residue distances
or angles were eliminated from consideration. The in-
correct traces that remained in the population were
ones that could not be discarded based on local cri-
teria alone (e.g., connectivity through critical points
corresponding to side chains). The important result
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is that for both proteins we produced multiple good
traces of length 7 that could be exported to the second
island.

Island 2: The fitness function for traces of length
7 to 20 is based on a Bayesian model of the distribu-
tions of simple angles, torsion angles and inter-residue
distances in known secondary structure classes across
a set of diverse protein backbone structures.

First, a finite mixture model of Ganssians (for dis-
tance data) and Von Mises circular distributions (for
angle data) was learned using a modified version of
the SNOB minimal message length (MML) classifier
(Wallace & Dowe 1994). The training data consisted
of over 10,000 examples of traces of lengths 4 and 7
calculated directly from Protein Data Bank structure
files, from generated electron density maps with noise
added, and from experimental maps preprocessed us-
ing Orcrit. Currently, the trained secondary structure
recognition module is used only to estimate the like-
lihood that a trace is indeed characteristic of a valid
protein backbone. Ongoing research involves consid-
ering a set of modules trained for recognition of helix,
sheet, turn, and coil classes, so that higher-order in-
formation patterns (e.g., "runs" of helix or sheet) can
be rewarded or penalized as appropriate. As in island
1, the current fitness function for island 2 is a sum, in
this case over the segments s of length 4 of a trace:

fitness(T) = E RPF2(s),
sET

where RPF2(s) is a nonlinear reward/penalty function
that imposes a heavy penalty on segments showing low
likelihood of fitting a real protein backbone structure
and produces graduated rewards for segments showing
higher likelihood values.

The fitness function for island 2 was tested on pro-
teins f389 and 2rn2. The results generated were
mixed. 30 runs were performed, each resulting in a
trace of length 8 - 20. The shorter traces (length
8-10) were found to be totally correct. Although
longer traces contained correct subtraces, they often
had jumps (incorrect bonds) between correct models
of the backbone. One reason for this is that although
the angles for the incorrect portions made chemical
sense, the distances deviated from the norm. This sug-
gests that a greater emphasis should be placed on dis-
tance criteria. Also note, that although island 2 intro-
duced occasional errors, it often managed to improve
on traces that were passed on by island 1.

The evolutionary approach to model construction al-
lows us to derive potential traces of a protein backbone
using both local and global evaluation criteria. Our
models also contain other valuable information, in the

form of environments, which can be used to associate
critical points with individual residues in the sequence
(Baxter et al. 1996).

Currently, our fitness functions for model generation
only consider a model in terms of its trace. Future re-
search will involve investigating the use of environment
information in the fitness criteria. As well, we plan to
incorporate additional islands, and corresponding fit-
ness functions, to take into consideration further global
constraints (such as super-secondary structure prefer-
ences) in the evolutionary system. Our ultimate goal is
to integrate the model construction module with other
processes (image generation, model evaluation and im-
age refnement) that are being developed for molecular
scene analysis.
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