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Abstract
We present a system of programs designed to facilitate
sequence analysis projects involving large amounts of data.
SEALS (System for Easy Analysis of Lots of Sequences) is
a logically organized set of flexible, easily modifiable
research tools, designed to run on open systems.
Functionality is divided into approximately 50 commands
which follow consistent syntax and semantics; wrappers are
also provided for commonly used sequence analysis
software to effect similar syntax for these programs.
SEALS includes software for retrieving sequence
information, scripting database search tools such as BLAST
and MoST, viewing and analyzing search outputs, searching
in and processing nucleotide and protein sequences using
regular expressions, and constructing rational predictions of
protein features.  The system is designed to provide modular
elements which can be combined, modified, and integrated
with other methods in order to quickly design and execute
computer experiments for sequence analysis projects at the
scale of whole genomes.

Introduction

The exponential accumulation of genomic sequences,
including those of complete genomes of prokaryotes and
unicellular eukaryotes (Koonin et al., 1996a; Ouzounis et
al., 1996), places extraordinary demands on researchers
who seek to systematically analyze genetic information.
Computer environments allowing researchers to handle this
information efficiently are critical for the continuing
success of the science of genome analysis.  Several systems
designed to automate different stages of genome analysis
have been described (Scharf et al., 1994; Medigue et al.,
1995; Ouzounis et al., 1996; Gaasterland and Sensen,
1996). However, after formulating the project of a
comprehensive analysis of the complete set of protein
sequences of the yeast Saccharomyces cerevisiae,

including the comparison of the yeast proteome to those of
bacteria and archaea, we found no set of unified sequence
analysis tools which met our need to pursue this project
with optimum accuracy and speed.  A prototype of such a
system, SEALS (System for Easy Analysis of Lots of
Sequences), was developed and is described here.

Highly structured data representations such as Abstract
Syntax Notation One (ASN.1) are appropriate for many
computing tasks.  For some research projects, however,
especially those involving large amounts of data which
must be processed by both human and machine, it is more
convenient and practical to represent biological sequence
information in such forms as FASTA libraries or lists of gi
(NCBI global id) numbers — in other words, as simple text
files.

A command-line shell such as tcsh, ksh, or bash
provides the most appealing context for efficiently
manipulating large numbers of text files.  A modern shell
provides many useful conventions such as a standard input
and standard output, file globbing, and command
completion, the power of which are underutilized by many
research tools.  SEALS consists of a set of programs which
take full advantage of the command-line environment to
implement straightforward text-file manipulations which
effect many essential functions for large-scale sequence
analysis.  SEALS provides a large number of commands
and routines each of which encapsulates the minimum
logical function, creating a system in which it is
straightforward for non-programmers to write macros and
shell scripts consisting of a series of familiar commands.
Because the data structures are standard and simple, the
tools in SEALS can be quickly and easily combined among
themselves and with standard or novel tools for exploratory
investigations.  We find this to be the most practical model
for computer tools used in new and evolving research
projects.
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It has been estimated that annotating genomic sequence
by hand requires as much as one year per megabase
(Gaasterland and Sensen, 1996).  While it is true that
creating accurate sequence annotations is labor-intensive,
this slow rate can be improved by orders of magnitude with
the application of tools such as those included in SEALS,
which aim to maximize the value of judgments made by
the researcher and minimize the time spent on repetitive
tasks.  Automatic predictions are a useful springboard and
indeed a necessary starting point, but manual adjudication
and validation by a biologist yields a dataset which is more
dependable and ultimately more useful.

SEALS is composed of 5 packages:

UniPred, a system for rational prediction of protein
features

BLASTMORE, an interactive system for viewing and
analyzing BLAST output files

GREF, a system for performing sophisticated pattern-
matching and processing in fasta libraries

RWidgets, a set of basic command-line tools for
manipulating fasta libraries, GenBank flatfiles, lists of
gi numbers, and BLAST outputs

SPLAT, a set of tools for scripting BLAST and MoST
searches and processing the results

Materials and Methods

SEALS was developed on a Silicon Graphics Challenge
XL running IRIX 6.2, with 20 R10000 processors and
2560 megabytes of memory.  The majority of SEALS
programs were written in Perl.  We used the following
packages to develop the current implementation:

NCBI Software Development Toolkit 5.0
ncurses 1.9.9 e
Tcl 7.6 patchlevel 2
tcsh 6.04.00
Tk 4.2 patchlevel 2
Perl 5.004 beta 2
Perl modules not included with the standard Perl
distribution:

Storable 0.4
Sys::AlarmCall 1.1
Term::Curses 1.01
Term::Readkey 2.07
Tk 400.202

SEALS also interacts with or uses information from the
following packages or programs:

BLAST (Altschul, et al, 1990)
Clustal W 1.6  (Thompson, et al., 1994)
Coils2 (Lupas, 1996)
Hmmer 1.8 (Eddy, et al., 1995)
MACAW 2.0.4 (Schuler, et al., 1991)

MoST (Tatusov, et al., 1994)
NCBI taxonomy database
Netscape 3.0
PHD (Rost, 1996)
PROSITE (Bairoch, et al. 1996)
seg (Wootton, et al., 1996)
SignalP 1.1 (Nielsen, et al., 1997)
Washington University BLAST 2.0a7 (Altschul, et al.,

1996)

Please refer to the SEALS web page for information on
how to obtain the packages listed above
(http://www.ncbi.nlm.nih.gov/Walker/SEALS/index.html).
Most of these packages have been or can be ported to any
standard Unix platform.  Portions of SEALS have also
been implemented on an Intel platform under Windows 95
and Windows NT.

Description of SEALS packages

UniPred
The UniPred (Unified Predictor) system seeks to

describe a protein or group of proteins according to the
following characteristics:

predicted signal peptides
predicted transmembrane domains
predicted coiled-coil domains
predicted large non-globular domains
regions matching known motifs
regions matching other known sequences at a high

degree of similarity.

UniPred consists of a series of scripts for running the
programs SignalP, PHD, coils2, seg, GREF, and BLAST.
Output from these programs is parsed and combined in a
rational manner.  For instance, signal peptides are
disallowed from consideration as proper transmembrane
domains, and globular domains of negligible length are
merged into adjacent structural domains.  Only large
globular domains are submitted for BLAST searches, and
only the best nonidentical statistically significant match is
reported for any such search.  Summaries of the analysis
are generated in the following forms:

tables of each predicted feature type
unified tables for each analyzed sequence
text summary and visual representation for features of

each sequence
HTML summary and visual representation for features

of each sequence
overview of predicted features in complete input set.

UniPred is intended to be used for genome-scale
examination of features as well as single-protein
prediction.  For large-scale predictions, the opportunity to
hand-validate results is provided at each step through



editing of the tables of predicted features, which present
each predicted feature in the context of adjacent sequence.

BLASTMORE
Blastmore is a fast, customizable, text-based viewer for

BLAST output files and a launcher for other programs
which can use data derived from BLAST outputs.  It was
designed specifically to aid in the semi-automatic
processing of large numbers of BLAST outputs.  Blastmore
renders a BLAST output file as a navigable menu under
any standard terminal screen, allowing the user to select
which portions of the output to view and/or act upon.  The
HSPs (High-scoring Segment Pairs) associated with each
hit can be viewed interactively by selecting the appropriate
sequence, and sets of hits may be selected for further
operations.  A selection set may be created manually, or
may be created based on criteria such as the p-value or
score for each search hit, the text contained in the sequence
deflines (definition lines), a pattern match against the
subsequences corresponding to each HSP, or the
taxonomic information associated with the subject
sequences.  Furthermore, arbitrarily complex logical
operations may be performed on selection sets.

Once a sequence or set of sequences has been selected in
blastmore, the user can, for instance, direct that the
relevant SWISS-PROT or GenBank web page be displayed
by Netscape, extract any associated abstracts from
Medline, create a fasta library corresponding to the
selected sequences, or create a fasta library corresponding
to the portions of the selected sequences which are
bounded by HSPs in the search output.

Many other built-in functions are provided, and a
flexible interpolated shell-command function allows the
user to issue any command which can operate on datasets
generated by blastmore.  For instance, blastmore can create
a new BLAST output which contains only those hits which
are currently selected.  This pseudo-blast output can be
read by any analysis program which accepts BLAST data
files.  If the following shell command is issued from within
blastmore:

cap &pseudo_blast

blastmore will create a temporary file containing a blast
output constructed from the currently selected sequences,
open a new terminal window, and issue the shell command
in that window, interpolating the name of the temporary
file in place of the key "&pseudo_blast".

Another useful example command is

cat &fasta | tsplatn est - -more

which directs that each of the currently selected nucleic-
acid sequences be searched against the database of
expressed sequence tags.

Blastmore is keystroke- rather than menu-driven, for
efficiency and speed.  The user may bind any of the
hundreds of available functions to any key using a simple
configuration file, and may also associate any interpolated
shell commands to keystrokes.  It is also possible for
simple macros to be associated with any key.  For example,
the following configuration file entry:

Z select_by_taxnode("Saccharomyces cerevisiae"); \
select_invert;    \
select_by_p_value(.001);   \
set_and;     \
goto_number(1);    \
item_next_selected;    \
item_set_view

binds a macro to the key "Z" which causes blastmore to
select all hits of reasonably significant p-value which are
not derived from yeast, and to view the best hit among this
set, if any.

Blastmore parses and manipulates gapped alignments
correctly, and has been tested with the NCBI and
Washington University BLAST programs.

RWidgets
A summary of selected RWidgets commands follows in

tabular form :

and find the logical intersection of the lines in two sets of files, maintaining input order
bert replaces the Unix 'cat' command
blast2bounded given a BLAST output file, return a fasta library containing only those portions of the sequences of

search hits which are bounded by high-scoring segment pairs
blast2filename report the names of BLAST output files which match the given criteria
blast2gi extract the gi numbers associated with search hits in a BLAST output file, optionally filtering the

results
blast2header remove HSP data from BLAST outputs
clust2fasta convert Clustal W alignment outputs into aligned fasta libraries
clustalify wrapper for Clustal W alignment software
coilify wrapper for coils2 coiled-coil prediction software
columnize format fasta libraries
daffy remove small sequences from fasta libraries
defkeys show defline keys used by SEALS programs such as fasort and shatter
defline2gi extract gi numbers from standard NCBI-format deflines



dupes find duplicate lines in an unsorted file
entrezping test whether Entrez dispatcher is functioning
fafilt extract only DNA or amino-acid sequences from fasta libraries
famask mask fasta files according to criteria such as predicted transmembrane domains, coiled-coil

domains, or non-globular domains
fashuffle shuffle sequences in fasta libraries
fasort sort fasta libraries according to sequence data or keys extracted from the defline
fasta2gi extract gi numbers from standard NCBI-format fasta libraries
fatweak interactively truncate sequences in a fasta library
fauniq remove duplicate entries from a sorted fasta library
feature2fasta extract features from GenBank flatfiles as fasta entries
gap_cds insert appropriate gaps into a nucleic acid sequence based on a gapped amino acid alignment
genbank2gi extract gi numbers from GenBank flatfiles
gi2abstract retrieve Medline abstracts for the given gi numbers
gi2asn1 retrieve ASN.1-format GenBank records for the given gi numbers
gi2defline retrieve fasta deflines for the given gi numbers
gi2fasta retrieve fasta records for the given gi numbers
gi2genbank retrieve GenBank flatfile records for the given gi numbers
gi2genbank_html retrieve html-ified GenBank flatfile records for the given gi numbers
gi2sibling find the gi number for the amino acid sequence corresponding to the given nucleic acid sequence gi,

for or the nucleic acid sequence corresponding to the given amino acid sequence gi
hmm2gi extract gi numbers from a search results generated with the HMMER package
hmm_align wrapper for the HMMER alignment programs
hmm_search wrapper for the HMMER search programs
prettymask convert lower-case-masked fasta entries into other representations
macaw2fasta convert MACAW alignment outputs into aligned fasta libraries
mask_split split masked fasta entries into multiple entries
most2gi extract gi numbers from the results of a MoST search, optionally filtering the results
not find the logical difference between the lines in two sets of files, maintaining input order
or find the logical union between the lines in two sets of files, maintaining input order
pipescape place the given file or the standard input into an open Netscape window
prosite2perl convert a PROSITE-style regular expression into a perl-style regular expression
segify wrapper for seg low-complexity detection program
shatter save each fasta entry under a new filename based on words extracted from the defline
shatterblast save each BLAST result under a new filename based on words extracted from the query information
sieve remove large sequences from fasta libraries
signalpify wrapper for SignalP
sortby sort lines in a set of files according to the order of a reference set
spitscape place the text from a Netscape window into the standard output
tax_break show a breakdown of the taxonomic information known for organisms associated with the given gi

numbers
tax_filt filter gi numbers based on any taxonomic criterion
tax_guess return the canonical name for a node in the NCBI taxonomy
tax_hunt find gi numbers which match taxonomy criteria
uniquniq remove duplicated lines from an unsorted list, maintaining input order
wubwub find duplications within sequences using gapped BLAST
xor find the logical symmetric difference between the lines in two sets of files, maintaining input order



GREF
Gref harnesses the powerful perl regular expression

language to the task of searching in and manipulating
sequence information.  The pattern syntax is native perl
(plus specific extensions for biological sequences), which
allows sophisticated operations, such as matching regions
of indeterminate length using greedy and non-greedy
repetition operators.

The use of a score matrix permits weighting of
characteristics of patterns.  Gref supports traditional single-
residue additive matrices, as well as an advanced syntax in
which scores can be assigned to residues singly or in
groups of any size.  Scores may be simple values or
arbitrarily complex expressions and can also include calls
to external programs (such as seg), which allows the user
to search for patterns such as "chromo domain followed by
nuclear localization signal", or "zinc finger followed by
large non-globular region."

Furthermore, gref can format sequences according to
regular-expression rules.  For example, it can force the
alignment of determinate residues in a motif, mask
portions of a sequence according to a pattern, or replace
portions of sequences with their respective number of
residues.  Gref also has the ability to produce output which
is compatible with motif-searching programs such as
HMMER and MoST.

Gref uses a mnemonic shorthand to represent common
groupings of amino acids.  This contributes considerably to
the readability of gref patterns.  For instance, hydrophobic
residues can be represented by the shorthand symbol
"&oil".  We also include a program, guess, which derives
simple patterns from alignments using common amino-acid
groupings.

Gref score matrices are particularly powerful.  Each
grouping which is to be subjected to scoring is defined
arbitrarily by the use of parentheses in the search
expression.  The score matrix assigns scores based on a
perl expression which may use the grouping or
surrounding sequence as operands.

Consider the trivial pattern

C.{2,6}C

which indicates two cysteines separated by 2 to 6 amino
acid residues.  To add a scoring system to this pattern, a
section of the pattern is enclosed in parentheses

C(.{2,6})C

whereupon it is "exposed" to scoring.  The score matrix
could have an entry such as

1 V 5

which would add 5 to the score for that sequence if a valine
occurred between the two cysteines.  One may also use an
expression such as

1 + $length

which adds to the score the number equal to the length of
the grouping.

A more practical example is found in the following
pattern:

(.{5})[GA].{2}G.GK[ST]

and matrix entry:

1 + (&howmany("[&lard]")>=3)

which constitute a description of the p-loop motif, which is
typical of a wide variety of NTP-utilizing enzymes
(Walker et al., 1982; Gorbalenya & Koonin, 1989; Saraste
et al., 1990).  A score of 1 is provided for any sequence
which matches the pattern and has 3 bulky hydrophobic
residues (V, I, L, F, Y, M, or W) among the 5 residues in
grouping one.  The ability to specify a criterion such as "3
of these 5 amino acids should be large and hydrophobic"
has not previously been available in publicly available
pattern-matching software.

SPLAT
Splat is a BLAST scripter which includes the facility to

perform iterative searches.  Splat is integrated with
blastmore and offers usability features such as crash
recovery, progress indicators, and filtering of query
sequences and resulting blast outputs.  Pre-filtering the
query through splat is more flexible than the built-in
BLAST filtering, allowing the query sequence to be saved
in a separate file before searching, permitting low-
complexity masking through seg using non-default
parameters, as well as allowing masking of transmembrane
domains and coiled-coil domains through PHD and coils2.

The iterative search facility is implemented as a "filter"
between search iterations.  The user will generally specify
a filter based on a p-value for search hits.  Each new hit
which qualifies to pass the filter is submitted in the next
iteration of BLAST searches until the iterative searches
cease to match novel sequences.  Splat also offers the
simple but powerful feature of limiting the iterative search
query sequences to the subsequences bounded by HSPs in
the previous iteration.

We also include the programs crumple and grouper,
which are intended to work with splat.  Crumple removes
very closely related sequences from a set based on user-
defined criteria for BLAST searches within the set.
Grouper makes a simple calculation of the clusters of
related sequences within the set.

The maxmost program, a derivative of splat, can be used
to script motif searches with MoST.

Discussion

The motivating philosophy behind SEALS is to provide
a critical mass of practical, robust command-line tools that
make it possible for the sequence analysis researcher to
contemplate reaping economies of scale, rather than be



cowed by the prospect of pasting a bit of text into a
browser 6000 times in succession.

SEALS is an outgrowth of our previous efforts towards
generating coherent schemes for genome analysis by
combining multiple computer tools with expert evaluation
of the results (Koonin et al., 1996b).  Because it embraces
only simple, basic conventions, SEALS has great potential
for further evolution, since new tools can be incorporated
(or can incorporate SEALS programs) as needed.
Portability of the system is ensured by implementing the
software (wherever possible) through portable elements,
such as Perl and ncurses, which have already been
implemented on dozens of platforms.

In spite of the simplicity of its design, SEALS has
allowed us to more easily address "intelligent" queries.
Consider, for instance, the following single command line:

gref nr "C.{2,4}C.{3}[LIVMFYWC].{8}H.{3,5}H" |
fasta2gi | tax_filt -node=Metazoa | gi2fasta | splatp nr
- -iter_filt="blast2gi -pcut=10e-5 -iter_limit=5 |
tax_filt -node=Metazoa"

which extracts all proteins from Metazoans matching the
canonical C2H2 zinc-finger PROSITE pattern, and
performs an iterative BLAST search, ultimately finding a
large set of Metazoan proteins with significant similarity to
the zinc-finger proteins.  We are currently using this type
of approach to delineate the evolution of gene families in
various clades.

In the last few years, it has become evident that close
analysis of genomic sequences can greatly enrich the
original annotation with a number of new functional
predictions as well as additional observations on families
of paralogs, conservation of genome organization and
other important features.  The original and subsequent
analyses of the first complete genome sequence of a
cellular life form (that of Haemophilus influenzae) amply
illustrate this point (Fleischmann et al., 1995; Caesari et al.,
1995; Brenner et al., 1995; Robison et al., 1996; Brosius et
al., 1996; Tatusov et al., 1996).  In most cases, no new
methods were required to reveal important additional
information;  it was sufficient to combine well-known
methods and carefully interpret the results.  Perhaps the
greatest need in computational analysis of genomes at the
moment is to intelligently and efficiently apply known
methods rather than develop entirely new ones.  For
example, iterative database searching is not a standard part
of genome analysis, though it has been shown that it
frequently results in new functional predictions in cases
where the original search output only contains hits to
hypothetical proteins (e.g. Koonin and Tatusov, 1994;
Mushegian and Koonin, 1996). It also has been shown that
alternating cycles of BLAST searches and motif analysis
result in significant enhancement of search sensitivity and
allows the semi-automatic delineation of protein
superfamilies (Koonin and Tatusov, 1994).  These
approaches, which have not previously been automated,
are simplified by the splat tool, and should become routine
procedure in genome analysis.

SEALS is still a rough prototype of the systems for
genome analysis which will be required in coming years.
However, it is already sufficient in its current form to
greatly facilitate and accelerate the work of a
computational biologist.
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