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Abstract

This work focuses on the inference of evolu-
tionary relationships in protein superfamilies,
and the uses of these relationships to iden-
tify key positions in the structure, to infer at-
tributes on the basis of evolutionary distance,
and to identify potential errors in sequence an-
notations. Relative entropy, a distance met-
ric from information theory, is used in com-
bination with Dirichlet mixture priors to esti-
mate a phylogenetic tree for a set of proteins.
This method infers key structural or func-
tional positions in the molecule, and guides the
tree topology to preserve these important po-
sitions within subtrees. Minimum-description-
length principles are used to determine a cut
of the tree into subtrees, to identify the sub-
families in the data. This method is demon-
strated on SH2-domain containing proteins,
resulting in a new subfamily assignment for
Src2_drome and a suggested evolutionary rela-
tionship between Nck_human and Drk_drome,
Sem5_caeel, Grb2_human and Grb2_chick.

Introduction
Gene duplication events have played a major role in the
evolution of the human genome (Miklos and Rubin 1996).
Genes related in this way are called paralogous; groups
of these paralogs form superfamilies of related genes.
Each duplication event allows a freeing of functional con-
straints on one copy, so that over time and large evolu-
tionary distances, a plethora of functions and structures
can evolve from a single ancestor gene.

To the protein sequence analyst, these superfamilies
contain a wealth of hidden information, and pose a mul-
titude of questions. How did this family evolve? What
was the ancestor protein like? What was its original func-
tion? Within this large superfamily are there subgroups
defined by common functions or other attributes? If the
proteins interact with other molecules, can we identify
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the residues involved in the binding pockets, and pin-
point those residues contributing to the substrate speci-
ficity of subfamilies in the data? Can we extrapolate
from attributes that are known for only some members
of a group to predict the attributes of other members for
which less is known?

In this paper, I give an overview of a new method for
phylogenetic reconstruction described in detail elsewhere
(SjSlander 1998; 1997). Bayesian Evolutionary Tree
Estimation (B~te) employs Bayesian and information-
theoretic measures to construct a phylogenetic tree and
identify subfamilies. Once we have a decomposition
of a protein superfamily into subfamilies, we can use
this decomposition to predict residues involved in the
subfamily-specificity of protein function or structure, to
infer attributes on the basis of evolutionary relationships
and flag potential errors in sequence annotation.

Proofs of statistical consistency only exist for a limited
range of models of evolution, and most assume that the
sites evolve under identical processes (Erdos et al. 1997).
On the other hand, performance under non-identical
evolutionary processes (i.e., allowing rates across sites
to vary) can still be quite good for some methods un-
der some experimental conditions (Tateno et al. 1994;
Felsenstein 1996; Hasegawa et al. 1991; Yang 1994;
Kuhner and Felsenstein 1994). Although external biolog-
ical information concerning site variability, when avail-
able, can be given as input to a phylogenetic reconstruc-
tion program, such information is often incomplete or not
available, and it is clearly helpful to the methods’ per-
formance to determine rate variability from the primary
sequence alone. The method presented here addresses
this, and also a somewhat more general question: how
to identify sites which are strongly conserved within sub-
families, even if they vary between different subfamilies.

This method has three underyling assumptions: (1)
evolution conserves function and structure; (2) not all
positions in a molecule are created equal, and some are
more important than others in maintaining a protein’s
structure or function; (3) a tree that groups proteins to-
gether which are similar in key functional or structural
positions is more likely to correspond to both the histor-
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ical evolutionary processes underlying the data and to
the inherent functional and structural hierarchy in the
data.

Some sites in a protein, such as the catalytic triad
of serine proteases, show perfect conservation over very
large evolutionary distances. While such perfectly con-
served positions are obviously essential for maintain-
ing the protein function or structure, they are not
particularly informative in differentiating among alter-
native tree topologies. By contrast, other binding-
pocket residues may show a subfamily-specific conserva-
tion pattern: essentially conserved within each subfam-
ily, but differing across subfamilies (Casari et al. 1995;
Lichtarge et al. 1996).

The method described here has been developed specif-
ically for protein superfamily analysis, to identify these
positions from the primary sequence alone, and to weight
these positions as more important when producing a tree
topology for a family.

Rather than attempt a detailed comparison of this
method with other methods over a large number of fami-
lies (a task normally accomplished with simulated data),
this paper focuses on a single family of proteins for which
much is known of the structure and function of individual
members: SH2 domains. As anyone who has compared
different phylogenetic reconstruction methods is aware,
tree topology reconstruction is sensitive to small errors in
the multiple sequence alignment, to the inclusion of false
homologs, and other complications of actual biological
data. Apply three different methods to identical data,
and you are likely to obtain thrcc or more!-different tree
topologies. This is especially true with protein families
having any significant degree of primary sequence diver-
sity. Nevertheless, phylogenetic reconstruction can be a
powerful tool in protein superfamily analysis.

Based on the limited nature of this comparison, no
claims can be made for the superiority of this method
over others. Differences in tree topologies across the
methods are made primarily to illustrate (1) the high de-
gree of uncertainty in phylogenetic reconstruction in pro-
tein superfarnily analysis, and (2) the importance of rec-
ognizing sites involved in the subfamily specificity of pro-
tein function and structure in constraining tree topolo-
gies.

Method
The algorithm employed in this work to identify the func-
tional subfamilies in a set of protein sequences can be
decomposed into two subtasks: constructing an evolu-
tionary tree, and cutting the tree into subtrees to infer
the subfamilies.

Bayesian evolutionary tree estimation
(B~te)
The method described here to construct the tree falls
within a hierarchical clustering paradigm known as ag-
glomerative clustering using nearest neighbor heuristics.

Initially, each sequence is in its own class, and forms a
leaf of the tree. At each iteration of the algorithm, the
two closest classes are merged, until at termination all
sequences are in a single class, forming the root of the
tree. Two aspects of the method differentiate it from
standard neighbor-joining tree algorithms: the represen-
tation of each class at each iteration of the algorithm,
and the distance measure between classes used to choose
which two classes to join.

Classes are represented by profiles, employing Dirich-
let mixture priors (SjSlander et al. 1996) to compute the
amino acid distributions at each position. Dirichlet mix-
ture priors have been found to be highly effective at in-
creasing the sensitivity and specificity of remote homolog
identification (Karplus et al. 1997; Tatusov et al. 1994;
Bailey and Elkan 1995; Brown et al. 1993). This makes
them appealing for forming statistical models of groups
of sequences during the agglomeration algorithm. In con-
trast to substitution matrices, which generalize all distri-
butions to allow for substitutions of similar amino acids,
Dirichlet mixture priors (and Bayesian methods in gen-
eral) allow substitutions when few observations are avail-
able, but converge on the frequencies in the data as the
number of observations increase. Because of this, dur-
ing the agglomeration process, as increasingly divergent
sequences are added to the classes being formed, con-
served positions start to become evident in the profiles
being formed.

The distance measure between profiles employed in
this method is a symmetrized form of relative entropy
(Cover and Thomas 1991), summed over all the columns
in the multiple alignment. This metric, the Total Rela-
tive Entropy (TP~), is defined to 

TRE=~D(i¢l]jc)+D(jcllic) (1)
C

where ic and j~ are the probability distributions at
position c in the profile for the i th and jt~ classes respec-
tively, and the relative entropy between two distributions
p and q is defined to be

D(p,,q) = Vp(x)log~. (2)

As Table I shows, Dirichlet mixture priors and rela-
tive entropy function together as an implicit weighting
scheme on the columns in the multiple alignment to fa-
vor joining two classes if they are similar (or identical)
at positions showing high conservation (low tolerance for
mutation), and favor keeping two classes separate if they
are dissimilar at such positions. These conserved po-
sitions have a large impact on the TRE between two
profiles; positions showing higher tolerance for mutation
(the more mixed distributions) have less impact on the
TRE between two profiles. This helps constrain the tree
topologies produced to maintain conserved distributions
within subtrees corresponding to functional subfamilies,
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and construct tree topologies that reflect the functional
hierarchy in the data.

The algorithm The input to the program is a multiple
sequence alignment. Obviously, the better the alignment, the
more accurate the resulting tree topology. In the section that
follows, the term "sequence" refers to a row in the multiple
sequence alignment, and may be only a fragment of an entire
protein sequence.

1. Initially, let each sequence form a separate equivalence
class, and a leaf in the evolutionary tree. Create a profile
for each row in the alignment. This is accomplished
using our standard method: obtain a posterior estimate
over the amino acids at each position by combining the
observed counts with a Dirichlet mixture prior.

2. While the number of classes in the partition is greater
than 1, do:

(a) Compute the total relative entropy (TRE) (Equation
1) between every pair of profiles.

(b) Find the pair having the lowest TRE.

(c) Replace these two classes with a single class that com-
bines the counts at each position. Form an internal
node to represent this new class, adding edges to the
nodes (or leaves) representing the classes joined. This
reduces the number of classes in the partition by 1.

(d) Estimate the number of independent observations in
the new class, and weight the sequences accordingly. 1

(e) Create a profile of the expected amino acids at each
position for the new class using the weighted counts,
in combination with a Dirichlet mixture prior.

Identifying subfamilies in the data

As in classification problems in general, we want to par-
tition the sequences into classes such that the sequences
within each class have a high degree of similarity to each
other, but not so high as to have a trivial partition with
each class containing a single protein. Accordingly, we
want to find a partition that minimizes the number of
classes while maximizing the similarity among sequences
within each class.

At this juncture, two points axe relevant: (1) Even
when a phylogenetic tree accurately reflects the func-
tional hierarchy in the data, no single cut of the tree into
subtrees may be necessarily more correct than another.
Each cut may simply reflect a different, and potentially
equally correct, decomposition of the sequences into sub-
fmnilies. (2) The number of ways to cut a tree with 
leaves grows rapidly in n, making an examination of all
possible cuts infeasible for protein superfamilies where n
can be in the hundreds.

1This estimation of the number of independent observa-
tions in the data is critical in Bayesian methods, as the for-
mula used to compute the posterior estimate of the expected
amino acid distribution at a position will converge on the
frequencies in the observed amino acids as the observations
increase.

[ Relative entropy between distributions ]
Sim. AA Types Diff. AA Types

Conserved Dist. Low (or zero) Large
Mixed Dist. Low (or zero) Moderate

Table I. Interaction between relative entropy and amino
acid distributions in profiles in B~te tree estimation. This ta-
ble shows the relative entropy between two distributions for
four types of cases: conserved distributions preferring similar
amino acid types, conserved distributions preferring differ-
ent amino acid types, mixed distributions preferring similar
amino acid types, and mixed distributions preferring different
amino acid types. The symmetrized relative entropy (Equa-
tion 1, fixed for a single column c, instead of summing over all
columns) is largest when two distributions are conserved for
different amino acids, especially when the amino acids are of
different types. This value is smallest when the distributions
are conserved for the same amino acid. In the case where the
two distributions are mixed (not showing a strong preference
for a particular amino acid) there are two possibilities. If
both mixed distributions prefer similar types of amino acids
(polar, for example), the relative entropy is small, but if the
mixed distributions are of different types (e.g., one prefers
polar amino acids, while the other prefers non-polar amino
acids), the relative entropy will be larger, but still of moderate
size. Because the Dirichlet mixture densities tend to general-
ize the posterior estimates toward the background distribu-
tion in the case where mixed amino acids are observed, the
relative entropy between two different mixed distributions is
larger than when the mixed distributions prefer similar amino
acids, but is still not very large. When a conserved distribu-
tion disagrees with a mixed distribution, the relative entropy
is larger than when two mixed distributions disagree, but not
as large as when two conserved distributions disagree.

To simplify this search for an optimal cut of the tree
into subtrees, we only examine a subset of all possible
cuts: those obtained during the agglomeration used to
construct the tree. Since each iteration of the agglom-
eration algorithm induces a new set of multiple align-
ments, one for each class, we can compute the encoding
cost of each multiple alignment using Dirichlet mixture
densities. In addition, we will measure the model com-
plexity as the cost to encode the subfamily labels for the
sequences in the family.

We define an encoding cost (in bits) for every stage 
the agglomeration for a multiple sequence alignment of
N sequences and S subfamilies, under a Dirichlet density
with parameters O, to be

Nlog2S- ~log2Prob (~c,1...~c,S O)
C

(3)

where gc,i is a vector summarizing the observed amino
acids in subfamily i at column c in the multiple align-
ment. N log2 S is the maximum cost (in bits) to specify

Sj61ander 167



the subfamily assignments of the sequences in the align-
ment. The second half of the cost, encoding the multiple
alignments induced by the partition, is minimized when
the columns in each subfamily alignment have high prob-
ability under the Dirichlet mixture prior with parameters
O. At termination, that partition of the sequences which
gives the minimum encoding cost defines the cut of the
tree into subtrees, and the corresponding partition of the
proteins into subfamilies.

The two costs to encode the data balance each other:
the first seeks to minimize the number of subfamilies,
while the second seeks to obtain a decomposition into
subfamilies (and corresponding alignments) that maxi-
mizes the number of columns containing pure, or very
similar, amino acid distributions.

Analysis of SH2 Domains

SH2 domains are particularly interesting to biologists be-
cause of their involvement in a variety of intracellular sig-
nal transduction pathways. First identified as an impor-
tant functional motif on the basis of a sequence homology
between Src and Fps, currently more than 100 SH2 do-
mains in a variety of organisms ranging from sponge to
human have been identified. Mutations of these proteins
are implicated in certain diseases and disorders, includ-
ing diabetes, malignant melanoma and asthma. Because
of this, there exists a large body of experimental work
on these proteins to determine both the substrate speci-
ficity of individual members of the family and identify
key binding pocket positions (Waksman et al. 1993;
Songyang et al. 1993). A solved crystal structure
(1SPSA) is available for this family, as well as careful
analysis of both the complexed and uncomplexed con-
formations (Waksman et al. 1993)2.

SH2 domains contain three binding pockets: gluta-
mate binding, hydrophobic binding, and phosphotyro-
sine binding (Waksman et al. 1993; Songyang et al.
1993). Table III shows the amino acids aligned at each
of the binding pocket positions in the molecule for each
of the subfamilies in the alignment.

The alignment employed as the basis for this phyloge-
netic analysis3 shows a moderately high level of primary
sequence diversity. Only four of the 103 columns are per-
fectly conserved, and the average and minimum pairwise
residue identities are as low as 39% and 19%, respec-
tively. This level of evolutionary divergence, in combi-

2An introduction to the essentials of structure and func-
tion for this diverse family can be found on the World
Wide Web, at http://expasy.hcuge.ch/cgi-bin/get-prodoc-
entry?PDOC50001.

3The alignment used in these experiments was obtained
by reestimating HSSP alignment lsps.hssp (Chain A) for se-
quence homologs to Src_xsvsr, using HMM methods. The
alignment, reordered to reflect the proximity of sequences
in the phylogenetic tree, and the tree produced by B@te,
are available by anonymous ftp from ftp.cse.ucsc.edu, at
pub/protein/phylogeny.

nation with the large number of taxa, is known to be
challenging to phylogenetic inference methods (Erdos el
al. 1997). The substantial experimental biological data
available for this family makes it attractive for compar-
ing the relative merits of different tree topologies.

Experiment 1:SH2 domain subfamily
identification and analysis

In the first experiment, I constructed phylogenetic trees
on all 99 taxa in the alignment, using Bayesian Evolu-
tionary Tree Estimation (B@te), Neighbor-joining from
the PHYLIP package (Felsenstein 1997), and Star De-
composition from the MOLPHY suite (Hasegawa and
Adachi 1997). Whereas much of the fine-branching tree
topologies (tree structure for closely related sequences)
were consistent across the different methods, there were
disagreements on the coarse-branching order relating
whole subtrees, particularly between Star Decomposition
and B@te. These differences are explored further in the
second experiment later in this paper.

The B@te subfamily decomposition produced 15 sub-
families (see Table II), of which three were singletons
(Shc_human, Srk3_spola, and Vav_human). All three sin-
gletons have features that differentiate them from the
other proteins in the data. Shc_human has a five-residue
deletion at positions 58-62, at the convergence of the
three binding pockets, and has been noted to have sig-
nificant differences in structure from other SH2 domains
(Mikol et al. 1995). Srk3_spola is a fragment (deleting
the first 60 residues), and comes from freshwater sponge-
a very primitive metazoan. Vav_human deletes positions
91-97 centered around the hydrophobic binding pocket,
and has a distinctly different amino acid signature at the
remaining binding pocket positions.

Only two sequences received novel classifications that
were not confirmable by either SwissProt references or
by literature search: Src2_drome (placed with the Btk
subfamily), and Nck_htunan (placed with Sem5, Drk, and
Grb2). These two cases are discussed below.

Assignment of Src2_drome to Btk subfamily At
the time of the original B~te analysis (spring, 1997),
Src2_drome was noted in SwissProt as belonging to the
Src subfamily; Src2_drome’s placement in the Btk sub-
family by the method necessitated additional verifica-
tion.

An examination of the alignment of the SH2 domain
of this protein to both the Src subfamily members and
the Btk subfamily members showed it to be much more
similar to the Btk subfamily (between 44-53% pairwise
residue identity) than to the Src subfamily (between 27-
36% residue identity). Based on these observations, the
subfamily assignment of Src2_drome has been changed
in SwissProt from the Src to the Btk subfamily (Amos
Bairoch, personal communication).
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Subfamilies identified in ~H2 domains ]

Members
Nck/Drk[Semb/Orb2
Src

Abl/Albi/Abl2
Tec/Btk/Itk/Txk
Src2-drome

ZAT0/SYK
PTNB/PTN6/CSW
PIP4/PIP5

i Crk/Crkl/Gagc-avlsc i

CSK/CTK

OTPA
Fer
P85A/P85B
Vav_hum~n

SrkS-spola

Shchuman

Notes
See caption
Tyrosine protein kin~tses (EC 2.7.1.112)
Src/Srcl/Src2-xenla/Srcn/Fgr/Fyn/Yrk/Yes/Frk/Stk/Blk/byn/Hck/Lck/Srkl/Srk2/Srk4
All except Srk noted to be members of Src subfamliy in SwlssProt

Tyroslne-protein klnase Dash/Ab[ {EC 2.7.1.112) T
Btk Subfamily Tyroslne-protein klnase (I~C 2.7.1.112) in SwissProt (except Src2-drome) 9
Tyrosine-protein klnase Src28c (l~C 2.7.1.112)
Tec: hematopoietlc cell lines including myelold, B-, and T-Cell lineages.
Btk: (B Cell progenitor klnase)
Itk: (T-Cell-speclflc klnase)
Txk: (Ftestln~; l~,mphocyte klnase)
ZAT0/SYK subfamlly noted in SwissProt Tyroslne-proteln klnase (l~C 2.7.1.112) 4

PTNBi ProtelnTtyroslne phosphatase (EC 3.1,3,48) 5
1-Phosphatldyllnositol-4,5-bisphosphate phosphodlesterase Oamma 1 and 2 (EC 3.1.4.11) 5
Crk and Crk-like (CRKL) with avian virus OAOC_AVISC 4
Crk: Prot( ,gene C-CRK (P38)
Crkh Crk-like protein
Oagc-aviac: P47(GAG-CRK) Protein. Avian virus
Tyroslne-protein kiuase (EC 2,7.1.112) 7
SwissProt note: belong to Csk subfamily
Gtpase-activatln~ protein (GAP) (RAS P21 Activation) 2
Proto-onco~ene, non-receptor tyrosine kinase (EC 2.7.1.112) 1
Phosphatidyllnositol 3-kinaae regulatory alpha and beta subunlt 4
SwissProt notes: Functlon: probable exchange factor for a small I
RAS-llke OTP-blnding protein. Tissue specificity: widely expressed in
hematopoletlc cells but not in other cell types.
Tyrosine-proteln klnase (EC 2.7.1.112) I
(Fragment) - ~Freshwater sponge)
SHC transforming proteins 1

Site
5
43

Table II. SH2 domain subfamilies identified by B~te. See
section Assignment of Nck_human
to Drk/Sem5/Grb2 subfamily for additional information on
the Nck/Drk/Sem5/Grb2 subfamily.

Active site positions in SH2 domains
Bind. Pocket
Polition
Nck
Drk/Sem/Grb
Src
Abl
Btk
ZA70/SYK
PTNB/PTN6
P[P4/PIP5
CRK
CSK/CTK
GTPA
FEI~
P85
Vav-human
Srk3.apola
She-human

P P P P P P O G OH
II 31 33 34 35 36 56 57 58
R R S E S S K H F
R R c E S SA (:~ H F
R R S ED TSH ¢ KR H Y
R R S E ST S YF H Y
R R S SR " KR H Y
R R R KD EN YL H Y
G I~ S LQ S QKH T H IV
R R S E T F Q H C
R R S SO TS CSI S H Y
R(] R S TA NR HY El H Y
R R S D R R N H F
R R S H (9 K R H F
R R S S K - K H C
R R R V K D K H V

R R S T T T K H

GP P PH H H H H
59 61 70 71 86 92 93
K L I G Y
K L L W H -
KR RK IVL TSA Y O L
R NS VI TS H (3 L
HVQ KC ILV ATS H G L
LR SD 1 P LY O L
KM MR V G FY -
R HR L T Y E F
I N I G Y W- D-
R IML I D Y GA LI
R I I (3 Y
I Q R F Y
V YN F A Y AS L
K M I T Y

R M A Y 0 b
R T H P I

Table III. Residues in binding pockets of SH2 do-
mains for subfamilies identified using Bayesian Evolu-
tionary Tree Estimation. G--glutamate-binding pocket,
P----phosphotyrosine-binding pocket, and H=hydrophobic
binding pocket. Positions 58 (/~D5, in the standardized no-
tation of Songyang (Songyang et al. 1993) and others), 
and 93 (in boldface) are noted in the literature as being
the most crucial for determining phosphopeptide specificity
(Songyang et al. 1993). Note that column 58 is virtually per-
fectly conserved within each subfamily (the exception being
subfamily Ptnb/Ptn6, which has a conservative I-V substi-
tution), illustrating the potential use of this method to flag
possible binding pocket positions for experimental verifica-
tion. Starred (*) columns show several residues aligned 
the subfamily in question.
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Assignment of Nek_human to
Drk/SemS/Grb2 subfamily

Drk, Grb2 and Sem5 are noted to be functional homologs
with identical SH2/SH3 architectures (Stern et al. 1993).
Nck has not previously been included in this subfamily,
apparently due to different orderings of their SH2 and
SH3 domains: Nck is composed of three SH3 domains
followed by one SH2 domain, whereas Grb2, Drk and
Sem5 are all composed of a single SH2 domain sand-
wiched between two SH3 domains. In the alignment em-
ployed for the analysis, the SH2 domain of Nck_human
has moderate pairwise residue identities to other SH2
domains - varying from a low of 24% to members of the
Btk subfamily, to a high of 43.9% to Drk_drome. Second
highest in pairwise residue identity, at 40.5%, to Nck is
Srkl_spola, placed in the Src subfamily in this analysis.
Sem5_caeel and Grb2_human follow immediately, with
39.8 and 38.6% pairwise identities respectively.

Interestingly, although the pairwise residue identities
between Nck and Drk, and between Nck and Srkl_spola
are similar overall (43.9% and 40.5% respectively), the
difference in pairwise residue identities at the more con-
served binding pocket positions is dramatic. Nck and
Drk are identical at 12 out of 16 binding-pocket positions
(two of which involved deletions), while Nck and Srkl
are identical at only 6 out of 16 of the positions. Signif-
icantly, for the thri~e positions noted in the literature as

being the most important for determining phosphopep-
tide specificity (columns 58, 92 and 93 in the alignment
(Songyang et al. 1993; Waksman et al. 1993)) Nck 
identical to Drk, Sem5 and Grb2, while Srkl disagrees
at each position (see Table IV).

Two hydrophobic binding-pocket positions (alignment
columns 71 and 86) show non-agreement between Nck
and Drk, Sem5 and Grb2, which at first glance might
make one question the assignment of Nck to this sub-
family. However, the bulky tryptophan aligned at po-
sition 71 by all except Nck in this subfamily appears
to close up the binding pocket, presumably rendering
this pocket less important for phosphopeptide specificity
among Drk, Sem5 and Grb2 (Waksman et al. 1993;
Songyang et al. 1993).

In addition to similarities at these binding pockets,
there are functional similarities among these proteins.
Grb2, Nck and Drk are all noted as being adaptor pro-
teins; all bind to growth factor receptors, and are in-
volved in RAS activation (Lu et al. 1997).

Examination of the multiple of alignment of Nck with
other members of this subfamily revealed two regions
where minor hand-editing would improve the pairwise
residue identities at non-binding pocket positions (see
Figure 1). This increased the pairwise residue identity
between Nck and Drk to 48%.

Alignment

NCK_HUMAN
DRK_DROME
GRB2 CHICK
GRB 2__HI/MAN
SEM5_CAEEL

NCK_HUMAN
DRK DROME
GRB2_CHICK
GRB2 HUMAN
SEM5_CAEEL

of Group 1 sequences (Nck, Drk, Sem5 and Grb2) prior to editing

1 : ----]: s3

54 -~-LKETV~C~GQR-~~P .......... ~FT- 10454 ....

Alignment

NCK_HUMAN
DRK_DROME
GRB2_CHICK
GRB2 HUMAN
SEM5 CAEEL

NCK_HUMA!q
DRK_DROME
GRB2 CHICK
GRB 2 _HUMAN
SEM5_CAEEL

Fig. 1. SH2 Domains: Alignment of Nck and subfamily
members, before (above) and after hand-editing regions
23-25 and 62-64 to increase sequence similarity (below).
The alignment used to infer the evolutionary tree was
the unedited version.
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Bindin~ Pocket P P P P P P G G GH GP P PH H H H H
Po|. 11 31 33 34 35 36 56 57 58 59 61 70 71 86 93 93
Group I
Drk/Sem5/Grb2 R R C,S E S S, A q H F K L L W H
Nck R R S E S S K H F K L ] G Y
Group 2z
Src lubfamil~ R R S E T T K H Y K R ] T Y G L
Group 3:
Fgr/Fyn/Yrk/Yee R R S E W T K H Y K R I W Y G L
Group 4:
Lyn R R S E T L K H Y K R I S Y G L
Hck R R S E T T K H Y K R I S Y G L
Lck R R S E S,T S,T K H Y K R I S Y G L
Blk R R S E S N K H Y K R I S Y G L
Group 5:
Srk R R s D,E T T R H Y R R,K V T Y G L
Stk R R S E T T K H Y R R I T Y G L
Frk R R S E S K H Y R K L T Y G L
Group 6:

9
Src 1-drome R R S E H N K H Y R K I A Y G L

Table IV. Residues in binding pockets for subgroups
found in either the B~te or Star Decomposition trees
for selected SH2 domains. G=glutamate-binding pocket,
P=phosphotyrosine-binding pocket, and H=hydrophobic
binding pocket. Positions 58, 92 and 93 are noted in the
literature as being the most crucial for determining phospho-
peptide specificity. Dashes indicate deletions in the align-
ment. Analysis of binding pocket positions for these groups
shows a hierarchy of similarity among the groups: Groups 2,
3, and 4 are highly similar in these positions. Groups 2 and 3
are perfectly identical at all positions, while Group 4 agrees
at 13 out of 16 positions with Groups 2 and 3. Group 5 is
somewhat more variable (in particular, at position 59, where
Group 5 sequences substitute R for the otherwise conserved
K). These groups also cluster separately with respect to tissue
expression. Group 3 proteins (Fgr, Fyn, Yrk and Yes) are ex-
pressed primarily in neural tissues, whereas Group 4 proteins
(Lyn, Hck, Lck, and Blk) are expressed primarily in B and 
lymphoid cells. Groups 1 and 6 have distinguishing features
which set them apart from the other groups. Group 1 aligns F
intend of consensus Y at position 58, which has been identified
experimentally as being the most important position for de-
termining phosphopeptide specificity, and also aligns L at 61,
instead of the consensus positively charged residue all other
groups align. Sequences in this group also delete positions
92 and 93, the other two crucial positions for determining
substrate specificity, which shows a conserved GL motif for
all other groups. Group 6 consists only of Srcl_drome. This
protein aligns H at 35, where all other groups align T or S,
R at 59 (disagreeing with all except group 5), and A at 71,
which has T or S in all groups save Group 1.

Experiment 2: Tree topology comparisons
on sequences in Src and
Nck/Drk/Sem5/Grb2 subfamilies

For a more in-depth analysis, I selected two subfami-
lies identified in the first experiment which were found
in adjacent subtrees in the tree estimated by B~te: 47
sequences from the Src and Nck/Drk/Semh/Grb2 sub-
families. The multiple alignment of these proteins was
extracted from the larger alignment, and used as the ba-
sis for estimating trees using Star Decomposition and
Maximum Likelihood from the MOLPHY software suite
(Hasegawa and Adachi 1997), Neighbor Joining and Par-
simony from the PHYLIP software suite (Felsenstein
1997), and BSte. Because Maximum Likelihood exam-
ines all tree topologies (a quantity that grows exponen-
tially in the number of sequences), a subset of only 11
sequences were used in the ML analysis. For comparison
purposes, the same subset was used in the Parsimony
analysis. The tree produced by Neighbor Joining was
quite similar to that produced by B~te; for space consid-
erations, only the BSte tree is shown of the two.

From the two trees inferred using Star Decomposition
and B~te from the alignment of 47 proteins, several sub-
groups were identified, and similarities at binding pocket
positions analyzed (see Table IV). Groups 1, 2 and 
were separated into distinct subtrees by both methods;
proteins in groups 3 and 5 are gathered into a subtree
by one but not both methods. Group 6, consisting of
Srcl_drome, is a singleton in both trees.

The similarities between groups at binding pocket po-
sitions as shown in Table IV, are reflected in the tree
topologies produced by BSte (Figure 3), and Neighbor-
Joining (data not shown) but not by Star Decomposition
(Figure 2).

For example, Star Decomposition places groups 2 (Src)
and 3 (Fgr/Fyn/Yrk/Yes), which are indistinguishable 
the binding sites, at opposite ends of the tree, while BSte
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links them most closely, placing them in a subtree. Star
Decomposition also links groups 1 (Nck et al) and 2 (the
Src subfamily) most closely, while these two groups are
maximally separated in the B~te tree. Although the Star
Decomposition tree is unrooted, allowing us to pick the
root to resolve ambiguities, it is not possible in this case
to pick the root so that groups 2 and 3 are in the same
subtree.

Fig. 2. Star Decomposition tree for SH2 domains used in
Experiment 2. This tree contains taxa from six groups whose
binding-pocket positions and functional roles are discussed in
Table IV. Groups 2 (Src, at top) and 3 (Fgr/Fyn/Yrk/Yes,
at bottom) are identical in the binding pocket positions, and
ought to be placed adjacent in a tree. 1SPS is the PDB
identifier for the SwissProt sequence Src_rsvsr. Star Decom-
position software was obtained from the MOLPHY software
suite (Hasegawa and Adachi 1997)

Conclusions
A novel method for estimating phylogenetic trees
on protein superfamilies, incorporating Bayesian and
information-theoretic methods, has been presented. This
method identifies, from the primary sequence alone,
residues that are conserved within subfamilies for func-
tional or structural reasons, and drives the tree topology

S~._~.A

tSP8

I --I c--’~<.-~

-- / I----- LYN_HUMA~
LYN MOUSE

I r--- Le~,..e,,H~

-- SE~_C,~IN.

Fig. 3. B~te tree for SH2 domains used in Experiment
2. The distances between the taxa in this tree are propor-
tional to the differences in their residues aligned in bind-
ing pocket positions, as shown in Table IV. Groups 2
(Src) and 3 (Fgr/Fyn/Yrk/Yes) are identical in the bind-
ing pocket positions, and placed adjacent in this tree. The
next closest subtree to these two contain~ Group 4 pro-
teins (Lyn/Hck/Lck/Blk), which are identical at 13 out 
16 binding pocket positions. The last group to be joined
(before the fragment Srk3_spola) contains Group 1 sequences
(Nck/Drk/Sem5/Grb2), which show significant differences 
binding pocket positions from others in the alignment used as
input. 1SPS is the PDB identifier for the SwissProt sequence
Src_rsvsr. Edge lengths drawn are all unit length, and do not
correspond to the distance measurement computed to infer
the tree.

estimation to conserve these residues within subtrees.
The information-theoretic method for obtaining a cut
of the tree into subtrees produces a classification of the
sequences into subfamilies that reflect the functional sim-
ilarity among the proteins.

Applied to SH2 domains in this paper, this method is
shown to produce a tree topology that clusters together
into subtrees proteins which are similar at the binding-
pocket positions. The cut of the tree into subtrees, and
thus subfamilies, reveals subfamily-specific conservation
at these positions, suggesting the applicability of this
method as a predictive tool for further experimental val-
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Fig. 4. Maximum Likelihood tree for subset of SH2 ,
domains used in Experiment 2. This tree contains taxa !
from six groups whose binding-pocket positions and func- !
tional roles are discussed in Table IV. Fgr and Yes are in !
Group 3, which are identical in binding pocket residues,
and so ought to be adjacent in the tree. In this tree, how-
ever, Srcl_drome (from Group 6) is interspersed between !
Fgr and Yes, making it impossible to choose a root to ob- !
tain a monophyletic Group 3. It is hard to know why the
ML tree chose this topology; the pairwise residue identity
between Fgr_human and Yes_avisy is 75%, and 65% be-
tween Fgr_human and 1SPS, a significant increase over
the identity between Srcl_drome to either Fgr_human
(50%) or Yes_avisy (53%). For computational reasons,
only 11 sequences were used to estimate this tree topol-
ogy. The program used came from the MOLPHY suite
(Hasegawa and Adachi 1997).

idation. This method resulted in a change in the Swis-
sProt annotation for Src2_drome, and suggests a new
subfamily classification for Nck_human.
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