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Abstract

Crystallographic studies 1)lay a major role ill cur-
rent efforts towards protein structure determina-
tion. Despite recent advances in computational
tools for molecular modeling and graphics, the
construction of a three-dimeltsional protein back-
bone model from crystallographic data remains
complex and time-consuming. This paper de-
scribes a unique contribution to an automated ap-
proach to protein model construction and evalua-
tion, where a model is rcpresented as all annotated
trace (or partial trace) of a structure. Candidate
models are derived through a topological analy-
sis of the electron density map of a protein. Us-
ing sequence alignment techniques, x~ determine
an optimal threading of the known sequence onto
the candidate protein structure models. In this
tltreading, connected nodes on the model are asso-
ciated with adjacent amino acids in the sequence
anti a fit.ne~s score is assigned based on features ex-
tracted from the electron density map for the pro-
tein. Experimental results demonstrate that crys-
tallographic threading provides an effective means
for evaluating the "goodness" of experimentally
derived protein models.

Introduction

A fundamental goal of research in molecular biology
is to understand the tertiary structure of protein
molecules. Protein crystallography is currently at
the forefront of methods for determining the three-
dimensional conformation of a proteim yet it re-
mains labor intensive in the construction, evalu-
ation and refinement of candidate models for the
structure. A protein model represents a hypothesis
about the backbone structure of a protein; a good
model is one which makes sense, in terms of our
knowledge of the chemistry, biology and physics of
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the molecule, and is consistent with the experimen-
tal data and the known protein sequence. Building
a protein inodel is currently a trial-and-error pro-
cess, in which a crystMlographer is assisted by the
use of computer graphics tools that trace polypep-
tide chains and model side chains~ and allow them
to view and improve the resulting model (,l()nes et
al. 1991). Errors in the initial arid subsequent
models may l)e corrected with a refinement pro-
tess that modifies a model to nfinimize the (lit:
ference between tlle experimentally observed (la.ta
and the data calculated using at hyl)ot.hetical (:rys-
tal containing the model. It. has been proposed that
tile process of protein model building could l)e im-
proved through the developlnent of eotnputationa[
tools (Brazlden & Jones 1990).

This t)aper describes a novel computational ap-
proach, called crystallographic threading, that ~Lq-
sociat.es a primary sequence with cmldidate struc-
ture models of the protein backbone. The mod-
els are derived through a topological analysis of an
electron densit.y map and are represented as three-
dimensional traces through a graph consist.ing of
nodes, corresponding to amino acid fragments, and
edges, corresponding to polypeptide and side-chain
bonds. The threading algorithm assigns a likeli-
hood or score to a given sequence/model aligmnent,
allowing us to determine whether a model is in fact
a "good" candidate st, ructure for t.he proteilL Such
inodels can be used in an refinement process to re-
cover import~mt phase information.

Previous and current research on threading has
focused on the problem of protein structure i)redic-

tion and generally rely on the aussumpt.ion that there
is a a one-to-one mapping between the sequen(:(~ and
structure elements. We describe’ a gapped approach
to threading that incorporat~:s techniques fl’om se-
quence alignment to deternline the optimal a.sso-
elation between an experimentally derived protein
model and the amino acid sequence it is purported
to represent..
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Model Derivation
The primary task of an image analysis system in ar-
tificial intelligence is to derive an underlying scene
model from given image data. The research de-
scribed in this paper contributes to a computational
approach to molecular scene analysis (Fortier et al.
1993; Glasgow, Fortier, & Allen 1993), which refers
to the processes associated with the reconstruction,
classification and understanding of complex molec-
ular structures. A key process of a molecular scene
analysis is the automated determination of poten-
tial scene models for a protein structure. The input
for this process is an electron density map (the pro-
tein image) and a primary sequence of amino acid
residues (the image components). The interpreta-
tion of the electron density map involves finding the
three-dimensional polypeptide chain, associating it
with the given amino acid sequence and configur-
ing the respective side-chains. These processes are
complicated by noise-based errors a~d by the lack
of accurate phase information.1 The quality of the
electron density map also depends on the resolution
of the diffraction data, which is influenced by how
well-ordered the crystal is. Fl’om tile analysis of a
map at low resolution (> 5 ~), one can retrieve gen-
eral shape information and possibly identify regions
of secondary structure. At medium resolution (--~
3J~), it is generally possible to trace the backbone
of the protein and derive properties of individual
residues along the backbone. Only at high resolu-
tion (< 1 ]k) are the individual atoms in the protein
observable. Experiments described in this paper in-
corporated electron density maps at medium reso-
lution, where components of the protein backbone
are potentially identifiable.

An approach to molecular scene analysis has
previously been applied to generate scene models
through a topological analysis of the electron den-
sity map (Fortier et al. 1993; Glasgow, Fortier,
& Allen 1993). Such an analysis consists of two
stages. The first stage involves determining a set
of critical points (points where the gradient of the
electron density function is zero). Of particular
interest to this paper are the peak critical points,
which correspond to local maxima of electron den-
sity, and pass critical points, which correspond to
saddle points in the map. Experimental results at
medium resolution (Leherte ct al. 1994) suggest
that peaks are useful in identifying the location of
aanino acids and side chains in tile unit cell for the
protein crystal; passes generally correspond to pep-
tide or side-chain bonds. The second stage of the
topological analysis constructs a graph that links
the peak critical points. This work can be related
to BONES (Jones et al. 1991), a graphical method

1This is referred to as the classic phase problem
(Karle 1986) of crystallography.

which has been developed and applied to the in-
terpretation of medium- to high-resolution protein
maps. This method incorporates a thinning algo-
rithm and postprocessing analysis for electron den-
sity maps. An important difference is that BONES
does not segment a graptl into individual parts that
can be related to amino acid residues, and thus does
not lend itself to crystallographic threading.

A protein model is constructed as a linear trace of
the critical point graph corresponding to a possible
backbone (or connected portion of the backbone)
structure for the protein. This graph, in general,
is an imperfect representation of the protein. Ex-
perimental results show that some critical points
result from noise in tile data, series termination or
side-chain density. In addition, large residues may
be represented ms two or three critical points in the
graph (Leherte et al. 1997). As discussed in the fol-
lowing section, these errors increase the complexity
of threading the known sequence onto candidate
models for the protein.

The electron density map and the critical point
graph contain other valuable sources of information
useful in associating peaks in a trace with individ-
ual amino acids. We characterize the properties
of a critical point in a trace in terms of a criti-
cal point environment. Attributes that have been
considered for a~l environment include: maximum
peak height, distance to solvent, participation in
secondary structure, size of associated side chain,
volume, and mass. Thus, a protein model is defined
to be a linear trace of the critical point graph where
individual nodes (critical points) in the model are
annotated with feature characteristics defined by
their critical point environment.

Protein Threading
Protein threading is generally associated with tile
problem of inverse protein folding, which asks the
question: given a protein structure, what sequences
would adopt this structure? Inverse folding re-
search typically involves two main steps performed
in a biochemical laboratory or in a computer simu-
lation. First, an ensemble of anfino acid sequences
is generated from a template representing certain
structural or statistical patterns. Second, each of
the generated sequences is tested for its propensity
to assume a given three-dimensional conformation.
In this threading procedure, a protein structure is
taken as a starting point, and the sequence is ar-
ranged in three-dimensional space by aligning it to
the structure template or model. In a gapped align-
ment approach to threading (Bryant & Lawrence
1993; Lathrop & Smith 1996; White, Muchnik, &
Smith 1994), loops axe removed, resulting in a core
model of relatively inflexible secondary structure
segments. Structural environments, connectivity,
and spatial adjacency are all recorded on the core
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model. Threading then seeks to align the amino
acids in tile sequence with the amino acid locations
in the Inodel, while maintaining legal loop sizes and
not breaking the chain or violating excluded atomic
volumes. An objective function evaluates each pos-
sible sequence/structure alignment in terms of the
extent to which the mnino acids from tile sequence
are located in preferred environments. Thus, it can
be considered as a score, that reflects the "good-
ness of fit" of a particular sequence in a particular
alignment to a particular structure. The main conl-
putational work of a threading procedure is there-
fore the constrained search for a sequence/structure
alignment that optimizes tile objective function.

We define cr~jstallogr’aphic threading as the pro-
tess of aligning amino acid sequences with structure
models derived fronl the analysis of all electron den-
sity map of a protein. Models that have a strong
sequence/model alignment are serious candidates
for being part of the correct protein structure. A
goal of our research is to demonstrate that the local
characteristics of peaks in the critical point graph,
i.e., tile critical point environments, contain infor-
mation that allow us to define an effective objec-
tive function for threading. More specifically, the
local properties of a peak, resulting from tile types
and locations of atoms contributing to the peak’s
electron density, should give an indication of what
atoms are near the peak and thus what amino acids
are most likely to be associated with tile peak.

Although a single environment is not sufficient to
uniquely determine what amino acid is associated
with a given peak, we can formulate a probabilistic
mapping from a peak to a subset of possit)le mnino
acids. Once wc have even a short sequence of such
mappings we greatly restrict the number of possible
aligmnents between the structure and the sequence.
Models that do not correspond to a correct subtrace
of the protein backbone should be unalignable, i.e.,
the fitness function should return a low value for
tile alignment of the mo(tcl with all possible subse-
quences of the primary structure. The probabilities
for the mapping are estimated using a conditional
classifier applied to a database containing peaks,
their environments and their previously identified
amino acid class. Given these derived probabili-
ties, i.t is then straightforward to express crystallo-
graphic threading aa a local scq.aence alignment ex-
ercise using a standard pair-wise scoring function.

Figure 1 illustrates a simple exalnple of a condi-
tional classification of peaks in a model, as well as
tile most likely assignment of the model to a given
sequence. The alignment of the amino acid classes
BCA with the three peaks returns the highest prob-
ability for any subsequence ill the given sequence
(the probability of BAA is higher but is not a valid
subsequence).

As stated earlier, a goal of our research to

Model
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Figure 1: Example of an optimal model/sequence
alignment.

demonstrate that crystallographic threading can
be treated using classic sequence alignment tech-
niques. Most local alignments are scored based on
a log-odds score function comparing the alignment
probabilities in optimal alignments to a random
alignment model(Altschul 1991):

1~i, j = -- ~lo(J . (1)
\PiPj 

We can model the probability densities of peak
c}laracteristics to build a hmction that plays ex-
act,ly the same role as tile probability qij in the
Mignnlent score function for residues. The proba-
bilities Pi and pj represent the natural probabilities
of occurrence of a given peak and anlino acid, re-
spectively. Tile probability of a given alnino acid
is deternlined by a frequentist approach; tile prob-
ability of a given peak is approximated from the
distribution of all peak cllaracteristics. The net re-
sult is that we are able to construct a probabilistic
scoring flmction for the alignment of a giwm amino
acid to a given peak in the model. We then de-
t.ernline how well a model matches a given subse-
quence of amino acids by applying a local align-
nlent algorithnl. All int.eresting difference between
our approach and standard alignlnent alg(~rithms
is that we do not require a substitution matrix set-
ting scores for the mapping between amino acids;
instead we use a more general probability model.

Due to errors in the critical point graph, result-
ing from noisy and incomplete data, the alignment
of peaks to amino acids may not be one-to-one. Ex-
perimental results indicate that a single peak nlay
correspond to two amino acids (missing peak), 
that two peaks may relate to a single elenlent of the
sequence (extra peak) (Leherte et al. 1997). Figure
2 illustrates some possible aligmnents based on no
gaps, gaps in the primary sequence (one peak/two
anlino acids) or gaps in the model (two peaks/one
amino acid). Fortunately, allowing gaps in the se-
quence or model requires a simple modification of
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the alignment dynamic program if there is a fixed
penalty for a gap (Waterman 1995).

Another difficulty in crystallographic threading
is that critical point environment information along
the backbone may not be sufficient for characteriz-
ing individual peaks in the model. Since the back-
bone atoms are the most homogeneous groupings
of atoms in a protein, their peak characteristics
are also homogeneous and thus different amino acid
peaks may appear with similar environments in the
model. Although this is a problem with individ-
ual amino acid/peak alignments, our studies show
that as the model grows the nulnber of possible
sequence/model alignments diminishes. This issue
is also addressed by considering tile critical points
(and their environments) that may correspond 
side chains for the model. Since side chains may dif-
fer significantly in their chemical constituents, their
environments are generally more discerning that
those of the backbone critical points. Each peak
in a model generally has at most one or two neigh-
boring peaks that could correspond to a side chain,
thus considering side-chain environments does not
add greatly to the complexity of our algorithm.

Methodology and Results

The hypothesis of our research is that crystal-
lographic threading can be applied to determine
whether a given model is a likely candidate struc-
ture for the protein. To test our hypothesis we im-
plemented a common technique for local sequence
alignment, where the objective function (score) for
an alignment is calculated as the sum of scores for
matching each pair of aligned residues (Waterman
1995). An optimal alignment is found by searching
over the space of all possible alignments, allowing
for single gaps in both the sequence and the model.
This section describes scoring and fitness functions
for crystallographic threading and reports on the
results of applying an implementation of these to
the threading of protein sequences onto computer
generated models.

Scoring Function

Our fitness function incorporates a log-odds scoring
function Q (Altschul 1991). This standard scor-
ing formula normally involves comparing two sim-
ilar objects, amino acid or nucleic acid types. For
the problem of crystallographic threading, however,
function Q determines a score for associating a peak
critical point i with an amino azid class C:

P(~,c) _ , P(eTIc)
Q(i,C) = logp(~7~)p(c ) ,og ~ ,

where ~7 is a vector that denotes the critical point
environment characteristics for peak i. P(x-7, C) 
the probability that an amino acid class C occurs

with characteristics ~-7. Thus, the function applica-
tion Q(i, C) computes the log of the relative prob-
ability that the characteristics ~-7 for peak i are a
result of peak i being a member of class C.

Three peak ctmracteristics are used to define crit-
ical point environments, ~, in the scoring function:
the peak density, the difference between the peak
density alld its highest pass density, and the log
of the volume associated with the peak. These at-
tributes were chosen based on their ease of compu-
tat, ion and on their ability to discern among amino
acids (Sunderji 1996). To model the probability
distribution of the peak environments, we need a
continuous probability density model. We chose to
model the distribution of peak characteristics using
kernel functions (Silverman 1986) because of their
general robustness. The probability functions were
built based on a database of known peaks and their
environments. A kernel smoothing paranmter was
determined separately for each class by minimizing
a least-squares error approximation. The peaks in
the critical point graph were broken into 41 possible
classes based on the amino acids they represented:
20 backbone classes (Bi denotes the backbone class
for residue j), 20 side-chain classes (Sj denotes the
side-chain class for residue j), and a non-protein
(denoted NP) class.

We improved our scoring function by considering
side-chain critical points in the critical point graph.
Figure 3 presents a simple critical point graph and
a model derived as a linear trace (through the se-
quence of peaks 1, 3, 5, 8) of the graph. Since
there are no potential side-chain peals connected
to peak 1, the aliglmmnt score for peak 1 and an
amino acid j is calculated as before as: Q(1, Bj).
There are two side-chain peaks (peak 2 and peak
4) that could be associated with the backbone peak
3. Under a maximal support philosophy, the score
for the alignment of peak 3 with amino acid j is
calculated as:

MAX [Q(3, B~-), Q(2, Sj), Q(4, 

Informally, this states that peak 3 should be a given
a high alignment score if can be associated with
amino acid j as a backbone peak, or if either peak
2 or 4 can be associated with j as a side-chain peak.
In general, we define the score function for a residue
j and a peak i in the model as:

score(i,j) = MAX [Q(i, Bi), Q(k, Sj)]

where k ranges over all possible side-chain peaks
connected to peak i."2

2A pcak k is considcred a potential side-chain peak
for backbone peak i in the model if and only if there is
an edge connecting i and k in the critical point graph,
but not in the model. The dotted lines in Figure 3
illustrate the possible connections to side-chain pcaks.
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Figure 2: A variety of sequence-to-peak threadings/alignnmnts

To determine tile scoring for an alignment be-
tween a model and the protein sequence we use the
scoring function described al)ove along with a st.an-
dard local alignment dynamic program (Waterman
1995). To allow for irregularities in the mapping
of peaks to the sequence, we permit single inser-
tions/deletions in the dynamic program and penal-
ize those with a small negative score. Thus, we
define an objective function, F, for an alignment
of a model m and a sequence s, as t.he sum of the
pairwise peak/amino acid aliguments:

F(m, s) = E scorc(i,j) gap_penalty,
i #gaps

such that a peak i is aligned with amino acid j for
all i in model m not skipped with gaps. Given a
primary structure P, we say that a subsequence si
of P is an optimal alignment for a model m if:

F(si, m) >_ f(sj, 

for all subsequences s# of P.

Results
An experiment was designed and carried out to test:

¯ whether tim optimal threading of a correct model
is the correct threading;

¯ whether the optimal threading score for correct
models is higher than the optimal threading for
incorrect (or partially correct) models; aid

¯ whether the accuracy of crystallographic thread-
ing is greater for longer nmdels.

70 non-homologous proteins (50 as a training set
and 20 as a test set) were used in the experiment.
Ideal critical point graphs for all proteins were gen-
erated from data deposited in the Protein Data
Bank (Abola et al. 1997). Using Bayes’ rule for
conditional probability and the given training set,
probability density functions for the scoring flmc-
tion were generated. The sequence of peaks that
make up the true backbone (i.e., the correct model)
w,ms determined for each critical point graph. Given
this backbone structure. 5,000 correct models were
randomly generated at varying lengths. For com-
parison: 5,000 partially correct models were gener-
ated using a heuristic based on peak connectivity.

The first stop in our evaluation of cryst.allo-
graphic threading was to determine whether cor-
rect models threaded better than incorrect mod-
els. Figure 4 presents the relationship between the
the optimal scores of correct and partially correct
models a.s the length of the model varies lmtw(,en
5 and 50 critical points. As antMpated: the scores
of the correct models improved more rapidly with
model length than those of partially correct models.
When the models have reached a length of 30-35
peaks, the.re is almost a total separation between
the scores of correct models and partially correct
models. These results indicam that for long mod-
els, threading scores are capable of separating cor-
rect from incorrect models. Even at, shorter lengths,
the scores of correct alignments are generally higher
than those of incorrect models, showing that the
quality of short, automatically generated models
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A B
Figure 3: A) a two-dimensional projection of a three-dimensional critical point graph, with peak numbers indicated.
B) a model (indicated by the dark lines) traced through the graph, with potential side-chain peaks connected to 
model indicated by the dashed lines.

can be roughly evaluated and compared using crys-
tallographic threading.

Our experiment "also measured whether the opti-
mal threading score for correct models corresponds
to the alignment with the correct subsequence. Fig-
ure 5 shows the percentage of correct models for
which the optimal threading corresponded to the
true structure. Again, we see an increase in ac-
curacy as the model length increases. At length
50 the accuracy is approximately 80~. We might
expect this value to be even higher since the num-
ber of possible amino acid subsequences of length
50 in a given protein is quite small and the chance
that two subsequences matching a single model ap-
pears correspondingly tiny. On observing the pair-
wise scores that lead to these incorrect threadings,
most of the large contributions to the overall score
were made by side-chain peaks. This is perhaps an
indication that the approach of treating any peak
neighbouring the model as a side-chain peak might
be too liberal. A possible improvement to our scor-
ing function might be to weigh side-chain scores less
than those for backbone peaks.

Discussion
Current approaches to protein model construction
and evaluation rely heavily on an expert’s ability
to build and judge the quality of a potential struc-
ture. This process is greatly aided by sophisticated
graphics programs, which allow the user to display,
rotate and compare potential models, and by soft-
ware designed to assist in the computation of indi-
vidual criteria (e.g., R factors) (Jones et al. 1991).
Our research is unique in that it takes as input a
computer generated model and deternfines how well
tile structure can be associated with a subsequence
of the primary sequence of amino acids. This repre-
sents a fundamental step towards a fully automated
approach to protein structure determination from
experimental data. Crystallographic threading re-

sults can be applied at intermediate steps of pro-
tein structure determination to determine the "best
candidate models", which can then be used to re-
cover phase information and subsequently refine the
electron density map. In the final stages of interpre-
tation, crystallographic threading can be applied to
determine a full mapping of the sequence onto the
structure as an initial step towards determining an
atomic-level model for the protein.

The reported experimental results demonstrate
the effectiveness of a gapped sequence alignment
approach to crystallographic threading. Gapped
alignment threading algorithms have previously
been proposed and developed for the inverse fold-
ing problem (Lathrop et al. 1998). Such algo-
rithms are able to find the global minimum three-
dimensional threading between a protein sequence
and a core motif. A flmdamental difference between
these classic approaches to threading for structure
prediction and our work is that we are not using
known structures, but rather models derived from
experimental data. Although previous threading
algorithms have considered gaps in alignment, these
are generally large gaps corresponding to non-core
regions of the known structure, rather than small
gaps resulting from experimental error.

An approach to threading experimentally derived
models was previously described in (Baxter et al.
1996). In this work, a gapped threading algo-
rithm (Lathrop & Smith 1996) was customized 
the problem of threading a hypothesized structural
model where the scoring function relates to infor-
mation available from the interpretation of an elec-
tron density map. Similar to our work, this re-
search attempted to associate peaks in a critical
point graph with amino acids in a sequence. How-
ever, it only considered alignment over the entire
sequence and full structure, and assumed that the
relationship between backbone and side-chain criti-
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Figure 4: Optimal threading scorcs for correct and partially correct, models. The error bars cover 90% of the scores
for each (’l,~ss of models.

cal points was known,a As well, peaks were charac-
terized by a single attribute (density) and the given
fitness function did not allow for error-induced gaps
in the sequence or the model. The implications of
these differences is that our (:urrent approach pro-
vides for a more accurate, flexible and robust sys-
tem for threading and evaluating protein structure
models.

Future research in crystallographic threading
includes an investigation of thread synchroniza-
tion. Using techniques from constraint satisfaction:
thread synchronization involves searching through
the set of possible sequelmc/model alignnmnts to
deternfine a maximally consistent threading for the
entire protein structure..
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