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Abstract 
The Optical Plume Anomaly Detection (OPAD) pro- 
gram at the NASA Marshall Space Flight Center is UB- 
ing plume spectroscopy for the diagnosis of the Space 
Shuttle Main Engines. A challenging part of this pro- 
gram is matching high resolution spectral data with 
a physicist’s model of spectroscopy to produce esti- 
mates of metallic erosion through the plume. This 
paper describes the discovery process used in doing 
this. The physicist’s model had to be debugged in 
order to discover the various instrument characteris- 
tics, discover critical elements of the data, and in gen- 
eral perform exploratory analysis to understand the 
instrument and the data it produces. This model gives 
us strong prior knowledge, however, this needs to be 
incorporated with care. We had to use a range of 
statistical techniques in our analysis, including one- 
dimensional super-resolution to determine the instru- 
ment response function. The paper concludes with a 
discussion of the role of discovery in building intelli- 
gent instruments that turn real-time data into useful 
information. 

Introduction 
Roth Mission Control at Johnson Space Center for the 
Space Shuttle, and the Propulsion Laboratory operat- 
ing the Technology Test Bed (TTB) stand at Marshall 
Ispace Flight Center (MSFC) currently have various 
instruments and sensors whose output is under the 
watchful eye of many operators. The TTB stand at 
MSFC has an experimental main engine for the Space 
Shuttle (SSME) used to test different configurations 
of the engine. The interpretation of these instruments 
may be as simple as “if the pressure goes below 25 p.s.i. 
then the feeder is failing so abort the test.” Modern 
instruments such as vibration sensors, and the high res- 
olution spectrometer considered in this paper are such 
that interpretation needs more than just care. Instead 
they require sophisticated post-processing of the data. 

Intelligent instruments are an important facility in 
modern engineering and health management practice. 
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This paper looks at the development of one intel- 
ligent instrument, the RAS spectrometer in use at 
the TTB stand at the Marshall Space Flight Center 
(Buntine et al. 1993) as part of the OPAD (Optical 
Plume Anomaly Detection) program. This develop- 
ment has been educational for the instrument design- 
ers, the physicists, and the data analysts (ourselves) as 
we discover the inherent interaction required between 
our disciplines in order to get the instrument and its 
software working. At the heart of the development, 
from the data analyst’s perspective, is a discovery pro- 
cess: discovering what parts of the instrument were 
not performing to exact specification, discovering how 
the physicist’s model and the data interpretation inter- 
act, and discovering how to make use of the physicist’s 
model efficiently during analysis. Of course, what we 
are trying to determine is what kind of information can 
be got from the instrument, and how is that informa- 
tion to be extracted from the data. However, in order 
to do that, we have a discovery process to perform. 

Most knowledge discovery to date has looked at 
large commercial data bases (transactions, expenses, 
finances, employee information), scientific data, soci- 
ological or medical data. This paper presents a new 
application of knowledge discovery concerned with the 
analysis of complex instruments. Here, a large part of 
the discovery process is concerned with understanding 
the way the instrument operates, and understanding 
how to interpret, use, and debug the physicist’s model 
of the instrument. 

This paper first introduces the RAS instrument, a 
spectrometer, and describes the context of plume spec- 
troscopy in which it is used. Second, the specific tasks 
required of our analysis are discussed. Our immediate 
goal of the research is not to produce a real-time diag- 
nostic system, but rather to understand how to process 
data from the instrument. An appropriate real-time 
diagnostic system can then be designed once we know 
what information the instrument is capable of produc- 
ing. The remainder of the paper gives an account of 
our discovery experiences on this application. The pa- 
per concludes with a general discussion of intelligent 
instruments and their analysis. 
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Plume spectroscopy 
Figure l(Left) shows the engine firing during a test. 
The Mach disk is defined by the shock wave and seen 
as a bright thin layer at the very bottom. A high reso- 
lution spectrometer is positioned to have this disk in its 
field of view, although this is not known for sure. Un- 
fortunately, the spectrometer also keeps the horizon in 
the field of view so atmospheric charges interfere with 
observations. However, correction for this is attempted 
by subtracting an average of a few scans prior to any 
test firing. A spectrum is generated every 0.5 seconds 
during a test which may last up to 250 seconds. The 
clock is possibly the only aspect of the instrument that 
is precisely calibrated. The RAS instrument is config- 
ured as 2x2048 pixels covering near UV to visible part 
of the spectrum (285Ow to 788081) on a grid approxi- 
mately l.lA per pixel (1 A = 1 Angstrom = O.lnm). 
The exact measurement at each pixel is a convolution 

Figure 1: A view of the test engine showing the Mach 
disk. 

of the instrument response function with the “true” 
light intensity in that region of the spectrum. The in- 
strument response function is approximately a Gaus- 
sian with width at half its height of about 4 A. For the 
specified optical elements, the wavelength grid is fixed 
from test to test, yet the actual grid is an unknown. 
So the pixels have their relative location fixed in the 
grid, but a single location parameter for the grid as 
a whole needs to be determined empirically for each 
test. A suitable location parameter is the exact center 
for the first bin, referred to as the absolute registra- 
tion. Since measurements are made at approximately 
1.1 A intervals and the response function is wider, there 
is some overlap between measurements at neighboring 
bins. We return to these issues later. 

Figure 2 shows how the physicist on our team, Tim 
Wallace, sees the problem of interpreting the data. 
Figure 2(a) shows a measured spectrum, referred to 
as a single scan. This is taken from TTB test number 
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Figure 2: The four stages of an” idei ana;ysisP 

55, at 144.5 seconds, at which a significant metallic ero- 
sion event occurred. A single spectrum consists of an 
OH and its contribution to the continuum component, 
and it may include a metallic component due to some 
form of erosion in the motor. A first order approxima- 
tion is that these two components, OH and metallic, 
add. The SSME is a hydrogen burning motor, and 
any level of metal in the spectrum indicates erosion of 
the motor, so most spectra are hoped to be metal free. 
Figure 2(b) h s ows the OH and continuum component 
of this spectrum, estimated by a process we describe 
later. The physics describing the OH and continuum 
spectrum is too complex for it to be modeled theoreti- 
cally, instead it is up to us to determine it empirically. 
This OH component has, during equilibrium, approxi- 
mately three degrees of freedom due to effects such as 
temperature, pressure, and fuel mixture, so it is not 
constant. Figure 2(c) shows a spectrum after the es- 
timated OH and continuum component is subtracted. 
Notice, this estimated metallic component needs to be 
worked afresh for each scan. 

Figure 2(d) h s ows a near match from the physicist’s 
model. A new, advanced model of spectroscopy includ- 
ing line broadening, can be used to predict what metal- 
lic component should be expected, for given metallic 
inputs in parts per million. This model is implemented 
by our physicist Wallace as a program, SPECTRAG, 
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in a commercial matrix language called IDL from Re- 
search Systems, Incorporated (a relative of PV-Wave, 
with some similarities to Matlab). As well as metal- 
lic inputs, SPECTRA6 requires temperature which is 
only known approximately, so must be estimated as 
well. These are shown below: 
Chromium: 

number density = O.i3e+O9, 
broadening = 0.1 

Nickel : 
number density = 0.4Oetl0, 
broadening = 0.1 

Temperature = 2855 degrees Kelvin 
The physicist’s model takes a few minutes to run. By 
varying the metallic inputs and the temperature, we 
hope to create a spectrum that will be a good match 
with the measured metallic component from the RAS 
data. However, to find a good match can take upwards 
of an hour as the program iterates. It is desirable to 
run this matching process within the time frame of the 
data collection, once every half second. 

Tasks for interpreting plume 
spectroscopy data 

We can now summarize the tasks we must complete for 
plume spectroscopy to provide useful quantitative in- 
formation about the metallic erosion rate in the plume. 
Bear in mind this is all in hindsight. Some of these 
pieces only came out as we d&covered problems in try- 
ing to match the theoretical spectrum with the real 
data. 
1. First, we wish to understand how to use the spec- 

tral model embodied in SPECTRA6 to turn spectral 
data into information about metallic erosion rates. 

(a) The fixed spectrometer characteristics need to be 
determined. These include the instrument re- 
sponse function and the relative registration (the 
grid). We only discovered these were a problem 
recently. Also, for each test, the absolute registra- 
tion will be different. 

(b) The OH and continuum component of each spec- 
trum needs to be estimated. This can only be 
done empirically. 

(c) The various inputs to the spectral program SPEC- 
TRA6 needs to be found that would provide a 
close match with the measured metallic compo- 
nent of the spectrum. Error bars on these esti- 
mated inputs also need to be computed. 

2. Second, we need an approximate anomaly detector 
that, instead of returning estimated metallic erosion 
rates, would indicate that an anomalous level of a 
metal existed. Ideally, such levels need to be sensi- 
tive to the recognized engine stages such as startup 
and shutdown. 

How would these information be used? When testing 
an engine, this kind of information, if generated in real 

time, can be used to provide warnings of serious metal 
erosion in the motor, for instance, indicating the test 
should be shut down. This information can also be 
analysed after a test to determine if a particular al- 
loy was eroding in the motor, and therefore whether 
the engine needs to be stripped down. Such main- 
tenance is expensive so reliable indication of erosion 
is required. Finally, this kind of health monitoring 
could be performed during flight. However, this would 
require a special purpose instrument be built. How 
sensitive should this instrument be? How should anal- 
ysis be done ? What kinds of erosion estimate could 
be obtained? Only by understanding the current RAS 
instrument and its processing, from data to metal ero- 
sion rates, can we hope to answer these questions. Our 
task then is to understand how to interpret the RAS 
data both so that more sophisticated health monitor- 
ing can be performed, and so that future plume spec- 
trometers can be designed for different tasks such as 
in-flight health monitoring. 

Our approach 
It is tempting in this paper to follow the time-honored 
academic practice of reporting the “cleansed” version 
of our progress, as viewed post hoc. Unfortunately, 
progress comes in fits, starts, and occasional reversals, 
as one or another unexpected problem arose. We will 
try to present some of these in our discussion, because, 
from hindsight, they might have been avoided by a 
team with more experience. We extract the essential 
points in the conclusion. 

There are two possible avenues for using SPECTRA6 
in the analysis of the data. 

Full theory: Develop a clear model of the OH and 
continuum component, and then perform the analy- 
sis described in Figure 2 directly. Since SPECTRA6 
takes many minutes to run once, this kind of match- 
ing process could take at least one hour per spec- 
trum. 

FC ?ature design: Develop a number of noise and er- 
ror resilient features from the data, that can operate 
without precise quantification of the OH and contin- 
uum component, Use these features to predict metal 
erosion rates. The prediction is done by training, for 
instance with non-linear regression, from the gener- 
ated SPECTRA6 data for which the features can be 
computed and the metal erosion rates are known. 
This approach could work in real time. 

The first approach can be regarded as the theoretically 
clean approach-validate the theoretical model, and 
then invert the theoretical model to match the data. 
Another approach that is popular in the physics and 
image processing literature is deconvolution. While 
this would be possible, in our case it is not clear that it 
would produce useful information (apart from cleaning 
up the spectra). The spectra we have are complex, and 
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we wish to estimate the parameters such as tempera- 
ture and metal number density, not the deconvolved 
spectra. 

We began by attempting the full theory approach- 
better to validate the physicist’s model first. Due to 
lack of space, this paper considers just this aspect of 
our study in detail. Our parallel progress on the fea- 
ture design approach was an interesting study in expert 
interaction, so some comments are included in a later 
section. 

Discovering the OH component of a 
spectrum 
Each spectrum has 4000 points, and the OH compo- 
nent from physical chemistry, is expected to have a 
dimension of about 3 or 4. So we need to do a re- 
duction of the spectral data down to some basic OH 
components. We used a variation of principle compo- 
nents (a standard unsupervised approach from pattern 
recognition (Rao 1965)) to perform this task. Unfor- 
tunately, this is not the right way to go. First, across 
different tests, the absolute registration is different, so 
that spectra from different tests do not have the same 
grid. Second, spectra vary dramatically in size and are 
always positive. In the first few seconds at start up, 
the magnitude is very small. So the Gaussian assump- 
tions implicitly in the principle components methods 
are violated. Third, we do not not exactly which spec- 
tra are metal free, we had to eyeball the data to choose 
metal free spectra. We therefore need to apply a more 
sophisticated technique, which we are developing. 

One typical decomposition is demonstrated in Fig- 
ure 3, taken from (Srivastava & Buntine 1995). This 
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Figure 3: Three extracted components for the OH and 
cant inuum. 

decomposition has been used separately as a basis for 
predicting the engine rated power level from the spec- 
trum in real-time. Notice in the second component 
there is some activity up around 4000 A, to the right 

of the plot. This is actually metal, indicating we chose 
spectra with some residue metal component. In the 
data the metal component was very small, but its con- 
tribution to the second component is large. 

This data could not be used to “extract” OH and 
continuum components because the presence of the 
metal residue corrupted the match. We therefore at- 
tempted to discover some metal components as well. In 
this case, we generated a lot of metal spectrum using 
SPECTRA6 and generated components for the metal 
spectrum, a few for iron, a few for nickel, and so forth. 
We would then fit the OH and continuum component 
while concurrently extracting the metallic components, 
using an approach similar to (Hinton, Revow, & Dayan 
1994) found to be successful in a simpler domain, digit 
recognition. While this approach showed promise, it 
turned out that the matches were out badly in some 
cases. After considerable work, we discovered that the 
theoretical instrument response function we were us- 
ing for SPECTRA6 was a very poor fit to the “true” 
response function indicated by the data, and thus the 
fitting process would be badly skewed on some cases. 

We learned two lessons from this: 
Carefully validate all aspects of your theoreti- 
cal/computational model, even those aspects the 
physicist believes are correct. The truth ultimately 
lies with the data. 
Off the shelf data analysis methods (like principle 
components) never quite fit the task you have. 

Rather than developing this more sophisticated OH 
and continuum model, we resorted (for now) to a sim- 
pler model based on interpolating from known metal 
free points. This simple model performs poorly in ac- 
tive regions of the OH and continuum spectrum, so is 
no good for metals like copper or silver which occur in 
the same region. 

Matching the expert’s SPECTRA6 model 
to the data 
Our next task was to restore our confidence in the 
physicist’s model by estimating the response function 
and the grid. Following our problems described above, 
we extracted some simple spectra and attempted to fit 
them. It was clear that the response function was lob- 
sided and non Gaussian, and that the grid given to us 
by the instrument designers was wrong. Looking care- 
fully at the data, and consultation with the physicist, 
made us believe that the instrument designer’s specifi- 
cation for grid disagreed with the data by as much as 5 
A (0.5nm). We had previously discounted the anoma- 
lous peaks (which were out by 5 A) as being water 
artifacts. This shows the importance of checking all 
anomalous results for an instrument carefully with all 
people concerned. 

We extracted a set of 150 empirical peaks from the 
different spectra. This had to be done with care, be- 
cause in many places peaks interact. In order to esti- 
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mate the response function one needs to look for clean, 
isolated metal lines, distinct metal lines as opposed to 
compound metal lines. We used super-resolution to 
estimate the response function. Again, there was no 
available data analysis software for this task. Each 
single peak, part of a spectrum, we extracted form the 
data, are measurements to indicate the shape of the 
response function. Each peak will be shifted in both 
the X and Y axis from (O,O), and will be scaled dif- 
ferently. If we know the scaling and location precisely, 
then the peak data corresponds to samples taken from 
the response function directly, so standard curve fit- 
ting can be used. Therefore, we implemented a pro- 
gram that repeatedly re-estimated the scaling and lo- 
cation for each peak given an estimate for the response 
function, and then re-estimated the response function 
(using curve fitting with 20-degree Legendre polynomi- 
als) using the estimated scaling and location for all the 
peaks. This algorithm is rather like the EM algorithm. 
The results for the RAS instrument is given in Fig- 
ure 4. The data (indicated by dots) in Figure 4 gives 
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Figure 4: The empirical response function for RAS. 

good support for our response fit. We also validated 
our process by running it for two other high resolu- 
tion spectrometers in use at the TTB and showing the 
results to the physicist. 

Discovering useful metal lines 
How might we determine whether a metal is indicated 
by the spectrum ? The physicists usually look for a 
few characteristic lines that are known to be indicative 
of the metal. Physicists tell us that when multiple 
metals appear in a spectra, the combined effect will be 
local. It is rare for two metals to emit at precisely the 
same place, however, if they emit nearby, for instance 
within one A, then the peaks will be blended together 
by the instrument response function. Our first task 
is to discover those characteristic lines that indicate 
metals are present. The operator, Anita Cooper at 

MSFC does this task routinely herself. 
We talked with Cooper to discover the principles she 

uses. We then developed a visual discovery tool to per- 
form this task automatically ourselves. We generated 
thousands of typical metal spectra using SPECTRAG. 
We then built a map indexed by wavelength to work 
out which metal lines appeared where. For several met- 
als, different lines appear at different concentrations 
and temperatures, so the absence of a line does not 
necessarily indicate absence of the metal. We built a 
relative-minimum map from the data, which showed 
for each metal, what is the minimum relative size of a 
peak at each wavelength. i.e., every time a particular 
metal occurs, then at the given wavelength the peak 
must be at least this value, relative to the maximum 
peak for this metal. Likewise we built a relative maxi- 
mum map. These maps are displayed as a complex plot 
with 3 axes, metal, wavelength, and relative size (in the 
range [O,l]) with the ability to zoom in on different re- 
gions. We then overlaid these to display “other” plots, 
which show, for instance for cobalt, the maximum size 
of the relative maximum map for all other metals ex- 
cept cobalt. A selected map for nickel and cobalt only 
is shown in Figure 5. First, the spectra for nickel are 
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Figure 5: Relative metallic spectra for a selected range. 

all normalized between 0 and 1. The spectra are then 
overlaid and the maximum value at each wavelength 
determined. This is the top curve plotted for nickel, 
a relative maximum curve. Second, the same curves 
are computed for all other metals except nickel. The 
maximum of this other curve is then plotted in black 
on top of where the nickel curve is. Notice for cobalt 
the two clear peaks at about 4120A. The absense of 
black here shows that no other metals have peaks in 
this region that are over 0.05 of the metal’s maximum 
peak. These two peaks are therefore useful indicators 
for cobalt. Likewise, nickel has a good clear peak at 
about 3670, but its peaks around 3500 interfere with 
other metals. 
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All these complex queries and plots, taken from the 
generated data, summarize which metallic lines are dis- 
tinct and un-blended, and when they are blended, what 
the worst case interference would be. The interesting 
thing to note is that our approach for discovering in- 
dicative metal lines is more rigorous than that used by 
the physicist and the operator. We took their princi- 
ples and embodied them in a program. 

We then spent a day reviewing the results of our dis- 
covery features with the operator, Cooper. Our intent 
here is to make sure she had confidence in what we 
did. The data visualization tools where critical here. 
The modifications we made were at places where we 
had rushed through some of the earlier parts. Cooper 
suggest,ed some lines of her own use, but if these were 
not indicated for use by our system, they were later 
dropped as they were found unreliable. This is not to 
criticize her set of lines, but rather she sometimes takes 
other information into account that was not considered 
by our automatic feature algorithm. Our algorithm 
follow a restricted but more rigorous approach than 
Cooper, and therefore the lines our algorithm uses are 
different. 

Conclusion 
Our current developments to date are as follows. We 
have installed the metal indicator, described above, 
and are currently testing it with Cooper during her 
post-test analysis. Other parts of the feature design 
approach are currently under development. We have 
validated the physicist’s model reasonably well, and are 
currently linking it up to a robust optimization pack- 
age that handles linear constraints, so the matching 
with the spectral data can be done automatically (we 
currently optimize “by hand”). We have also worked 
through some estimates of metallic erosion and got 
reasonable results. So we have hand-worked a ba- 
sic demonstration that the software for the RAS in- 
telligent instrument can be completed as desired us- 
ing the full-theory approach. Also, with the spectral 
model generating validated metal spectrum, we can 
now restart the program described to better estimate 
the OH and continuum component. 

More generally, we learned a number of important 
lessons from this work. 

l Instruments can have errors in their manufacture 
that distort the analysis, and often times the 
physicists and instrument design teams will under- 
estimate the magnitude of the problem. Their 
knowledge more often lies with the theoretical 
model, whereas, the true answer lies with the data. 

l Uncovering these errors is a discovery process, re- 
quiring the interaction of targeted visualization and 
detailed, hand-worked analyses with the expert. 

l Ideally, the instrument should be designed with this 
discovery process in mind-experiments should be 

devised in conjunction with the data analysts to ex- 
plore the different error modes of the instrument and 
measure the empirical characteristics. 

o On our task, the physicist was repeatedly surprised 
by the power of statistical and discovery methods. 
So involvement of the data analyst needs to be 
planned at the instrument design stage. 

l Most instruments have physical models underlying 
their interpretation-strong prior knowledge-and it 
is important to both understand the limitations of 
these physical models, as well as incorporate them 
carefully into the analysis. 

l In many cases, off the shelf discovery or data analysis 
packages did not address the problems we had. We 
had to design and code several new algorithms from 
scratch. This seems to be a common problem in 
the analysis of data from complex instruments (see, 
for instance, any of several papers in (Heidbreder 
1994)). 
It should be clear from this study that exact nature 

of the processing required for an instrument, and the 
potential sensitivity of an instrument are not always 
obvious beforehand. Increasingly complex instruments 
are coming out of the laboratories at an alarming rate: 
electrospray mass spectrometers, electron microscopes 
for medical imaging, high 0200) band spectrometers 
mounted on satellites, and so forth. The Maximum 
Entropy conferences (Heidbreder 1994) are attended 
largely by physicists whose concern is the analysis of 
data from these complex instruments. It is not un- 
common for the physicists to report an order of mag- 
nitude improvement in resolution when sophisticated 
post processing is done on data from radar, nuclear 
magnetic resonance (NMR) spectrometers, or one of 
the newer instruments above. Knowledge discovery 
can be used here to aid the development of software 
for these intelligent instruments. 
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