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Abstract 

This is a problem in financial prediction with a 
small number of data points and high 
dimensionality in which classical economic 
forecasting techniques do not work. Many 
commercial institutions including banks, 
department stores, and credit companies charge 
their customers one interest rate (termed the 
lending rate) while they can borrow at a lower 
rate, termed the borrowing rate. The spread 
(difference) between these two rates can be a 
major profit center. If a commercial institution 
forecasts that the spread (and hence profit) will 
decrease, they can “hedge” by buying insurance 
against that decrease thereby locking in a 
profit. We used a variety of techniques that 
trade off training error against model 
complexity using the concept of capacity 
control for dimensionality reduction. We 
minimized the mean squared error of prediction 
and confirmed statistical validity using 
bootstrap techniques to predict that the spread 
will increase and hence one should not hedge. 
We briefly discuss the classical economic 
forecasting techniques which are not correct 
because the data is not independent, stationary, 
or normally distributed. Our predictions of the 
spread are consistent with the actual spread 
subsequent to the original analysis. 

Introduction 

The opportunity for hedging interest rates is in the 
billions of dollars for many of the larger commercial 
institutions. As long as the spread is going to either 
decrease slowly or increase, the commercial institution 
will not hedge. We used a time series of explanatory 
variables both in quarterly and monthly formats for 
assessing the appropriateness of hedging. An interesting 
aspect of this problem is that the spread is predicted as a 
two step procedure: first we predict the values of certain 
economic explanatory variables (others are taken from 
public or private figures generated by econometric 
firms). Then we predict the spread based on the 
prediction on the explanatory variables. 

Although there is a long time history of the spread 
between the borrowing and lending interest rates, only 
the past approximately ten years can serve as valid data. 

We believe that certain “structural” changes in the 
market (for example, financial deregulation and financial 
innovations) makes the far past intrinsically unreliable 
in predicting the future. For the quarterly data, we use 
approximately 45 data points and twenty-one possible 
explanatory variables. For the monthly data, we have 
approximately two hundred data points and thirty 
possible explanatory variables. However, because of 
the high correlation between adjacent time samples, 
there may not be that much more “information” in the 
monthly data. 

In summary, we have to predict the spread based on a 
potentially large number of explanatory variables where 
the low ratio of number of samples to number of 
explanatory variables could lead to overlitting of the 
samples. Furthermore, the success in predicting the 
spread depends on being able to predict the values of the 
explanatory variables. 

Application of Learning Theory 

Standard econometric textbooks, e.g., Johnston (1984) 
concentrate on “explaining” some set of data points 
using a linear regression model. There is nothing 
necessary incorrect about using a linear model (we will 
do so ourselves) - the danger is in the over-emphasis on 
explaining the past at the expense of predicting the 
future. It is not the past we must explain, but the 
future that we must predict. 

Here is one of the major points of learning theory. We 
want to be able to predict the future (unknown) and 
therefore we should use as much of the past (knowns) as 
possible. However, if we use all the data to construct 
the model, we cannot assess how confidently we can 
predict the future. It is possible we can perfectly model 
the past and yet have an unreliable estimate of the 
future. To assess how well we can predict the future, we 
can divide the known past into a training set and 
validation set. We use the training set to generate a 
model and use the validation independent variables to 
predict the future values of the dependent variable. We 
then use some function of the difference between the 
predicted and true values of the validation set (typically 
mean squared error) as a measure of the prediction error. 

Standard ordinary least squares regression (Johnston, 
1984) minimizes the Residual Sum of Squares (RSS), 
Consider the following two equations where (xi,yi) and 
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and (X*j,Y*j) are training and validation points 
respectively: 

RSS = i ( Yj - g(xj))2 
j=l 

MSEP = - S(X*jl)2 

We find g(x) to minimize RSS where g(Xj) is the 
machines’ output on training point Xi, (Xi may be 
multidimensional) and yj is the observed value of y. 
Similarly g(x*j) is the machine output on validation 
point x*ja The second equation is the vahkztion error 
or the mean square error of prediction (MSEP). 
Superficially the summations in the two equations look 
similar but we emphasize that the (X*j,y*j) in the 
second equation are validation points and not used in 
constructing g(x). 

Let us discuss the behavior of the training and validation 
error as we vary the complexity of our machine (Figure 
1). If we choose too simple a machine, the machine 
does not have enough free parameters to model the 
irregularities of the training set, so both the training and 
validation errors are large (under-fitting). As we increase 
the complexity of the model the learning machine can 
begin to fit the general trends in the data which carries 
over to the validation set, so both error measures 
decline. As we continue to increase the complexity of 
the model the error on the training set continues to 
decline, and eventually reaches zero as we get enough 
free parameters to completely model the training set. 
The behavior of the error on the validation set is 
different. Initially it decreases, but at some complexity it 
starts to rise. The rise occurs because the now ample 
resources of the training machine are applied to learning 
vagaries of the training set, which are not reproduced in 
the validation set (termed overfitting). The process of 
locating the optimal model complexity for a given 
training set is called Structural Risk Minimization 
(Vapnik, 1982; and Guyon, 1992) and otherwise termed 
capacity control. If the “capacity” of the machine is too 
large, the training error is small but the prediction error 
is large while if the capacity is too small, the prediction 
error and the training error will be large. 

We can increase the complexity of our machine in 
several ways. For many machine learning tasks the 
number of input variables is fixed in which case we can 
increase the complexity by moving from a linear model 
to higher order polynomial models. Alternately, as in 
this study, we can fix the order of the polynomial and 
increase the number of explanatory variables. In general, 
as one increases the complexity of the model, more data 
points are needed to fit the model. 

To locate this optimal number of input variables for our 
linear model, we divide the data into two parts. We use 
a training set to determine the coefficients of the model 
and then use a validation set to determine our prediction 
error. The problem is that more training data implies 
that we can better fit our model but then our estimate of 
the prediction error is poor (large variance) because the 
number of validation points is small. On the other hand 
we can improve our estimate of the prediction error if 
we increase the number of validation points, but we 
expect the prediction error to be larger because we have 
less training points to fit the model. 

The Moving Control Indicator 

Leave-one-out cross-validation is a validation procedure 
(Miller, 1990; Efron and Tibshirani,l993; Efron and 
Gong, 1983) that can be used if one has extremely 
small amounts of data. In the leave-one-out procedure 
we start with all the N data points. We remove one 
point and do a fi on the N-l data points. The prediction 
error for that left out point is just the difference between 
the observed value and the predicted value. We then 
iterate over the total N points, leaving each one out in 
turn, obtaining N residuals. The mean square sum of 
these residuals is our mean square error of prediction. 
We used leave-one-out procedures on both the quarterly 
and monthly data, but for the monthly data we kept a 
separate test set. Leave-one-out makes efficient use of 
the data but can be very computationally expensive 
since we must make N fits to the data. However, for the 
case of linear regression, it turns out that we can do one 
linear regression on all the N points, and then adjust the 
residuals to give exactly the same result as if we had 
used a leave-one-out procedure. Vapnik (1982, pages 
238) terms this a “moving control” indicator (see also 
Efron and Tibshirani, 1993, page 255). 

Commonly Used Indirect Methods 

We have discussed direct methods to estimate the 
prediction error, i.e., we train on part of the data and test 
or validate on another set of the data. Indirect methods 
are characterized by a lack of validation or testing set 
and the optimum choice of parameters and estimate of 
error are obtained by examining the residual sum of 
squares to find the optimum value of p. One method is 
to calculate RSSI(N-p) where N is the number of 
samples and p is the number of variables used to fit all N 
training points. The training error (RSS) tends to 
decrease as p increases while the denominator in this 
case also decreases for increasing p. However, they 
decrease at different rates. At some value of p, there is a 
minimum of the ratio. The problem with this approach 
is that RSSI(N-p) is actually a measure of the noise 
variance, not the prediction error (Miller, 1990) and 
therefore should not be used. Another technique 
proceeds as follows: We find the RSS, corresponding to 
a set of p parameters. We then add another parameter 
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and ask if the RSS,+l is significantly different (in a 
statistical sense). If not, stop. The test statistic is the 
ratio of a function of the two RSS’s. Standard 
assumptions about the residuals are normality, zero 
mean, independence, and stationarity-conditions that are 
not necessarily met in practice. Furthermore, the test 
statistic is only F distributed (Miller, 1990) if the 
additional parameter is chosen at random and not if the 
parameter is picked to minimize RSS, +I. Therefore, 
using the F distribution to examine significance in the 
latter case is not correct. 

Exhaustive and Sequential Search 

Our objective is to find the best set of p explanatory 
variables that predicts the spread. One could add a 
variable at a time to the linear model until the mean 
square error of prediction goes through the minimum of 
Figure 1. The main problem with this approach is that 
the best set of p variables is not necessarily a subset of 
the best set of (p + 1) variables. To find the minimum 
validation error, one must exhaustively search C{ 
combinations for each p (with total number of variables 
k), and with a total of 2k - 1 combinations over all p. 
The cost of hedging is substantial (millions of dollars) 
and therefore even if the search takes days (as it does for 
21 variables), the benefits are worth the use of CPU 
time. For the quarterly data, we did an exhaustive 
search but for the monthly data we did a sequential 
search. 

We used quarterly data from 1983 to the end of 1993 
with twenty-one possible explanatory variables and 
linear regression. Exhaustive search as described 
previously was used to find the p variables that 
minimize the MSEP. However, there is one caveat, Just 
finding a minimal MSEP does not guarantee that this 
choice of p variables is better than some naive 
prediction procedure. For a naive prediction procedure, 
we will make the average spread (in the past) as the best 
prediction of the future. The variance of the spread, 
E(y - F)2, is then just the mean square error using the 
average ( y) as a best prediction of the future. We can’t 
find the expectation so we will use as an approximation 
the summation below and define a normalized mean 
square error of prediction (NMSEP) as 

NMYEP = MSEP 

If the NMSEP is greater than 1, our prediction strategy 
is worse than a naive strategy. From now on we will 
plot NMSEP versus p. The use of a normalized mean 
square error is common in the time series literature. In 
addition to plotting NMSEP versus p for the 21 
variables, we also have two other additional lists of 
explanatory variables (all subsets of the 21 variables). 
that we feel most comfortable about predicting. 

Figure 2 shows a plot of NMSEP versus p for these 
three cases. The top curve is far inferior and thus we 
will use the other two curves. We show all the values 
for the eleven variable case but not all the results for the 
twenty-one variable case since we have already reached 
a minimum at p = 11. As can be seen in the twenty-one 
variable case, the curve has a broad minimum which 
starts to flatten out at about five or six variables and 
reaches a true minimum at p = 11. With a broad 
minimum, is preferable to use as few variables as 
possible since this decreases our confidence interval 
(Vapnik, 1982) and so for the two lower curves we use 
six variables. 

The monthly data differs from the quarterly data in that 
the time series go further back in time (March 1977) for 
a total of 200 data points, and they came with 30 
explanatory variables. Having the richness of 200 data 
points we divided the data into a training set of 150 
points and a test set of 50 points, the test set being the 
most recent values. The test set was not used for 
estimating the free parameters of the model or selection 
of model complexity. These issues were determined 
from the training set alone. The test set was only used 
once to determine a final mean square error of 
prediction. An estimate of the prediction error used for 
model selection was determined from a validation set 
using the leave-one-out method discussed above. With 
150 data points and 30 explanatory variables we 
determined that exhaustive search for the best variables 
would be computationally expensive so we used 
sequential search techniques. 

Our first sequential selection scheme formalizes and 
systematizes in a simple way the intuitive notion of 
desiring explanatory variables with high correlation to 
the spread, but small correlations to each other. The first 
variable is chosen as the variable with highest 
correlation to the spread. A linear model with only this 
variable is formed on the basis of the full training set, 
and residuals are obtained. These residuals are to be 
explained by the remaining variables. Another variable 
is chosen as the one with the highest correlation to the 
residuals. A model with two variables is formed and the 
residuals recalculated. The process is continued until all 
variables (or a sufficiently large number of variables) 
have been ranked. The training and validation error as a 
function of number of explanatory variables ranked 
according to this scheme is shown in Figure 3. 

Principal Components 

The above sequential ranking scheme is slightly 
awkward because, for each extra chosen variable, we 
have to redo the modeling and estimate new residuals. 
This is a necessity because the explanatory variables are 
not independent. We can attempt to remove some of this 
dependency by decorrelating the explanatory variables 
first. When the explanatory variables are correlated the 
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cross-correlation matrix X’X will have non-zero 
elements off the diagonal. If we can diagonalize this 
cross-correlation matrix our new variables will be un- 
correlated. Fortunately, we are guaranteed that the 
crosscorrelation matrix can be diagonal&d because it 
is symmetric. The decorrelation can therefore be 
obtained by finding the eigenvectors of the cross- 
correlation matrix and mapping our data to the space 
spanned by these eigenvectors. This process is often 
referred to as principal component analysis (Joliffe, 
1986). Our new explanatory variables are ranked in 
descending order or their correlation to the spread. The 
variables are then added one at a time to the model until 
the validation error reaches a minimum. 

This approach is not as computational demanding, but it 
has a drawback: our new explanatory variables are linear 
combinations of the original variables, so their meaning 
is somewhat lost. This approach is therefore only 
justifiable if it produces significantly better results than 
methods making use of the original explanatory 
variables which it does not here. 

Choosing a Model 

Figure 3 exhibits the expected behavior: as the number 
of model parameters increase the training error 
decreases, while the validation error goes through a 
minimum for five explanatory variables. This model has 
small bias and passes both run tests. 

One should however keep in mind the previous remarks 
that the fewer free parameters the better our confidence 
in the result. For the monthly data we do have a 
separate test set and the performance on this test set 
confirms that for both search techniques we see a 
minimum on the test set at about five free model 
parameters. Both sequential techniques give similar 
performance but potential users (in the finance 
community) must feel comfortable using the model 
chosen. There is something less intuitive about using 
the principal component approach which generates new 
variables from a linear combination of other variables. 
For these reasons, we use the “best correlation to the 
desired value” approach in predicting the future. 

An independent test may be run using bootstrap 
techniques (chapters 9 and 17 of Efron and Tibshirani, 
1993). This is a resampling technique that is very 
computationally expensive and may be applied with 
caution when there is a possibility that the time samples 
are correlated. In our case, the spreads are highly 
correlated (even over a three month time span) but the 
residuals have very low correlation. Therefore, we 
performed what is termed ‘bootstrapping residuals” to 
obtain numbers very close (within 1%) to those obtained 
using the leave-one-out procedures. 
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Conclusions 
In predicting the future using quarterly data, we used the 
best six of eleven variables and the best six of twenty- 
one variables (Figure 4). Both predictions show a slight 
decline in the spread followed by an increase. For the 
monthly data, recall that we used 150 training points to 
train our model and concluded that five variables were 
best for the prediction of the test data. Since we are now 
to predict the future, we want to use all the data (200 
points) as a training set. Using a leave-one-out 
procedure on these 200 points, we arrived at a minimum 
of the NMSEP at six variables and get a similar curve 
(Figure 4) to that of the quarterly data. Therefore, all 
these techniques lead to the conclusion that we should 
not hedge. Subsequent to the completion of this study, 
the spread for the first three quarters of 1994 were made 
available. The spread has indeed decreased the first two 
quarters and increased in the third quarter, consistent 
with our predictions. 

References 
Efron, Bradley, and Gong, Gail (1983), “A Leisurely 
Look at the Bootstrap, the Jackknife, and Cross- 
Validation”, The American Statistician, vol 37, no. 1, 
pp. 36-48. 

Efron, Bradley and Tibshirani, Robert J, (1993), An 
Introduction to the Bootstrap, Chapman and Hall. 

Guyon, I. and Vapnik, V. N. and Boser, B. E. and 
Bottou, L. and Solla, S. A. (1992), Structural Risk 
Minimization for Character Recognition, “Advances in 
Neural Information Processing Systems”, Morgan 
Kaufman. 

Johnston, J. (1984), Econometric Methods, McGraw- 
Hill. 

Joliffe, I.T. (1986), Principal Component Analysis, 
Springer-Verlag. 

Miller, Ah J. (1990), Subset Selection in Regression, 
Chapman and Hall. 

Sprent, P. (1993), Applied Nonparametric Statistical 
Methods, Chapman and Hall. 

Vapnik, Vladimir (1982), Estimation of Dependences 
Based on Empirical Data, Springer-Verlag. 



Error 

Validation error 

Training error 

Optimal complexity Complexity 

Figure 1 n Training and validation error versus complexity. 
Complexity increase can be either an increase in the order of 
the approximating function or an increase in the number of 
explanatory variables. 
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Figure 2. Normalized mean square error of prediction versus 
number of variables for quarterly data. 
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Figure 3. Plot of NMSEP versus number of variables 
using best correlation to spread. 
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Figure 4. Predictions of the future. The future 
starts at 1994, Quarter 1. 
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