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Abstract 

Random errors and insufficiencies in databases 
limit the performance of any classifier trained 
from and applied to the database. In this pa- 
per we propose a method to estimate the lim- 
iting performance of classifiers imposed by the 
database. We demonstrate this technique on the 
task of predicting failure in telecommunication 
paths. 

Introduction 
Data collection for a classification or regression task is 
prone to random errors, e.g. inaccuracies in the mea- 
surements of the input or mis-labeling of the output. 
Missing or insufficient data are other sources that may 
complicate a learning task and hinder accurate perfor- 
mance of the trained machine. These insufficiencies of 
the data limit the performance of any learning machine 
or other statistical tool constructed from and applied 
to the data collection - no matter how complex the 
machine or how much data is used to train it. 

In this paper we propose a method for estimating 
the limiting performance of learning machines imposed 
by the quality of the database used for the task. The 
method involves a series of learning experiments with 
finite size training set. The extracted result is, how- 
ever, independent of the choice of learning machine 
used for these experiments since the estimated limit- 
ing performance expresses a characteristic of the data. 
The only requirements on the learning machines are 
that their capacity (VC-dimension) can be varied and 
can be made large, and that the learning machines with 
increasing capacity become capable of implementing 
any function. 

Another technique for estimating the limiting perfor- 
mance, or the Bayes error rate (Duda & Hart 1973), 
based on learning experiments with finite size train- 
ing set has been proposed by F’ukunaga and Hummel 
(F’ukunaga & Hummels 1987). Their method is mainly 
heuristic, and it will in general give weaker bounds 
than ours. 

We have applied our technique to data collected for 
the purpose of predicting failures in telecommunica- 

tion channels of the AT&T network. We extracted 
information from one of AT&T’s large databases that 
continuously logs performance parameters of the net- 
work. The character and amount of data comes to 
more material than humans can survey. The process- 
ing of the extracted information is therefore automated 
by learning machines. The currently best learning rn* 
chine for this task, a decision tree constructed with 
the C4.5 package (Quinlan 1993), achieves 71% cor- 
rect predictions. 

We conjecture that the quality of the data imposes a 
limiting error rate on any learning machine of N 25%, 
so that even with an unlimited amount of data, and an 
arbitrarily complex learning machine, the performance 
for this task will not exceed N 75% correct. This con- 
jecture is supported by experiments. 

The relatively high noise-level of the data, which car- 
ries over to a poor performance of the trained classifier, 
is typical for many applications: the data collection 
was not designed for the task at hand and proved in- 
adequate for constructing high performance classifiers. 

Constructing classifiers of higher accuracy requires 
more information about the task at hand, or cleaner 
data. The given classification problem was hence re- 
peated with more homogeneous data, and the accuracy 
improved to 82% correct. 

Both a learning machine constructed from the orig- 
inal data and a system constructed from the more ho- 
mogeneous data are implemented in the AT&T main- 
tenance system and daily used to predict upcoming 
failures. 

Basic Concepts of Machine Learning 
We can picture a learning machine as a device that 
takes an unknown input vector and produces an out- 
put value. More formally, it performs some mapping 
from an input space to an output space. The particular 
mapping it implements depends of the setting of the 
internal parameters of the learning machine. These pi 
rameters are adjusted during a learning phase so that 
the labels produced on the training set match, as well 
as possible, the labels provided. The number of pat- 
terns that the machine can match is loosely called the 
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“capacity” of the machine. Generally, the capacity of a 
machine increases with the number of free parameters. 
After training is complete, the generalization ability of 
of the machine is estimated by its performance on a 
test set which the machine has never seen before. 

The test and training error depend on both the the 
number of training examples I, the capacity h of the 
machine, and, of course, how well suited the machine 
is to implement the task at hand. Let us first dis- 
cuss the typical behavior of the test and training error 
for a noise corrupted task as we vary h but keep the 
amount 1 of training data fixed. This scenario can, 
e.g., be obtained by increasing the number of hidden 
units in a neural network or increasing the number of 
codebook vectors in a Learning Vector Quantization 
algorithm (Kohonen, Barna, & Chrisley 1988). Figure 
la) shows typical training and test error as a func- 
tion of the capacity of the learning machine for a noise 
corrupted task. For h < I we have many fewer free 
parameters than training examples and the machine is 
over constrained. It does not have enough complexity 
to model the regularities of the training data, so both 
the training and test error are large (underfitting). As 
we increase h the machine can begin to fit the general 
trends in the data which carries over to the test set, so 
both error measures decline. Because the performance 
of the machine is optimized on only part of the full 
pattern space the test error will always be larger than 
the training error. As we continue to increase the ca- 
pacity of the learning machine the error on the training 
set continues to decline, and eventually it reaches zero 
as we get enough free parameters to completely model 
the training set. The behavior of the error on the test 
set is different. Initially it decreases, but at some cs 
pacity, h*, it starts to rise. The rise occurs because 
the now ample resources of the training machine are 
applied to learning vagaries of the training set, which 
are not reproduced in the test set (overfitting). Notice 
how in Figure la) the optimal test error is achieved 
at a capacity h* that is smaller than the capacity for 
which zero error is achieved on the training set. The 
learning machine with capacity h* will typically com- 
mit errors on misclassified or outlying patterns of the 
training set. The test and training errors achieved at 
h* are in (Fukunaga & Hummels 1987) suggested as 
upper and lower bounds for the limiting performance 
for any learning machine applied to the given task. Be- 
low we propose a tighter estimate. 

We can alternatively discuss the error on the test 
and training set as a function of the training set size 
I for fixed capacity h of the learning machine. Typi- 
cal behavior is sketched in Figure lb). For small 1 we 
have enough free parameters to completely model the 
training set, so the training error is zero. Excess ca- 
pacity is used by the learning machine to model details 
in the training set, leading to a large test error. As we 
increase the training set size 1 we train on more and 
more patterns so the test error declines. For some crit- 

ical size of the training set, I,, and a noise corrupted 
task, the machine can no longer model all the training 
patterns and the training error starts to rise. As we 
further increase I the irregularities of the individual 
training patterns smooth out and the parameters of 
the learning machine is more and more used to model 
the true underlying function. The test error declines, 
and asymptotically the training and test error reach 
the same error value J?&. This error value is the lim- 
iting performance of the given learning machine to the 
task. In practice we never have the infinite amount 
of training data needed to achieve Eoo. However, re- 
cent theoretical calculations (Seung, Sompolinsky, & 
Tishby 1992; Biis, Kinzel, & Opper 1993; Cortes 1993; 
Murata, Yoshizawa, & Amari 1992; Fine 1993) and 
experimental results (Cortes et al. 1994) have shown 
that we can estimate Eoo by averaging the training and 
test errors for I > I,. This means we can predict the 
optimal performance of a given machine. 

For a given type of learning machine the value of 
the asymptotic error E&, of the machine depends on 
the quality of the data and the set of functions it can 
implement. The set of available functions increases 
with the capacity of the machine: low capacity ma- 
chines will typically exhibit a high asymptotic error 
due to a big difference between the true noise-free func- 
tion of the patterns and the function implemented by 
the learning machine, but as we increase h this differ- 
ence decreases. If the learning machine with increas- 
ing h becomes a universalmachine capable of modeling 
any function the difference eventually reaches zero, so 
the asymptotic error Em only measures the intrinsic 
noise level of the data. Once a capacity of the machine 
has been reached that matches the complexity of the 
true function no further improvement in Em can be 
achieved. This is illustrated in Figure lc). The intrin- 
sic noise level of the data or the limiting performance 
of any learning machine may hence be estimated as the 
asymptotic value of Em as obtained for asymptotically 
universal learning machines with increasing capacity 
applied to the task. This technique will be illustrated 
in the following section. 

Experimental Results 
In this section we estimate the limiting performance 
imposed by the data of any learning machine applied 
to the particular prediction task. 

Task Description 
To ensure the highest possible quality of service, the 
performance parameters of the AT&T network are con- 
stantly monitored. Due to the high complexity of the 
network this performance surveillance is mainly correc- 
tive: when certain measures exceed preset thresholds 
action is taken to maintain reliable, high quality ser- 
vice. These reorganizations can lead to short, minor 
impairments of the quality of the communication path. 
In contrast, the work reported here is preventive: our 
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Figure 1: Errors as function of capacity and training set size. Figure la) shows characteristic plots of training 
and test error as a function of the learning machine capacity for fixed training set size. The test error reaches 
a minimum at h = h* while the training error decreases as h increases. Figure lb) shows the training and test 
errors at fixed h for varying 1. The dotted line marks the asymptotic error Em for infinite 1. Figure lc) shows the 
asymptotic error as a function of h. This error is limited from below by the intrinsic noise in the data. - 

objective is to make use of the performance parameters 
to form predictions that are sufficiently accurate that 
preemptive repairs of the channels can be made during 
periods of low traffic. 

In our study we have examined the characteristics of 
long-distance, 45 Mbits/s communication paths in the 
domestic AT&T network. The paths are specified from 
one city to another and may include different kinds of 
physical links to complete the paths. A path from New 
York City to Los Angeles might include both optical 
fiber and coaxial cable. To maintain high-quality ser- 
vice, particular links in a path may be switched out 
and replaced by other, redundant links. 

There are two primary ways in which performance 
degradation is manifested in the path. First is the 
simple bit-error rate, the fraction of transmitted bits 
that are not correctly received at the termination of the 
path. Barring catastrophic failure (like a cable being 
cut), this error rate can be measured by examining the 
error-checking bits that are transmitted along with the 
data. The second instance of degradation, “framing 
error” , is the failure of synchronization between the 
transmitter and receiver in a path. A framing error 
implies a high count of errored bits. 

In order to better characterize the distribution of bit 
errors, several measures are historically used to quan- 
tify the path performance in a 15 minutes interval. 
These measures are: 
Low-Rate The number of seconds with exactly 1 er- 

ror. 
Medium-Rate The number of seconds with more 

than one but less than 45 errors. 
High-Rate The number of seconds with 45 or more 

errors, corresponding to a bit error rate of at least 
10-c. 

Frame-Error The number of seconds with a framing 
error. A second with a frame-error is always accom- 
panied by a second of High-Rate error. 

Although the number of seconds with the errors de- 
scribed above in principle could be as high as 900, any 
value greater than 255 is automatically clipped back 
to 255 so that each error measure value can be stored 
in 8 bits. 

Daily data that include these measures are con- 
tinuously logged in an AT&T database that we call 
Perf(ormance)Mon(itor). Since a channel is error free 
most of the time, an entry in the database is only made 
if its error measures for a 15 minute period exceed fixed 
low thresholds, e.g. 4 Low-Rate seconds, 1 Medium- or 
High-Rate second, or 1 Frame-Error. In our research 
we “mined” PerfMon to formulate a prediction strat- 
egy. We extracted examples of path histories 28 days 
long where the path at day 21 had at least 1 entry in 
the PerfMon database. We labeled the examples ac- 
cording to the error-measures over the next 7 days. If 
the channel exhibited a 15-minute period with at least 
5 High-Rate seconds we labeled it as belonging to the 
class “Trouble”. Otherwise we labeled it as member of 
“No-Trouble”. 

The length of the history- and future-windows are 
set somewhat arbitrarily. The history has to be long 
enough to capture the state of the path but short 
enough that our learning machine will run in a reason- 
able time. Also the longer the history the more likely 
the physical implementation of the path was modified 
so the error measures correspond to different media. 
Such error histories could in principle be eliminated 
from the extracted examples using the record of the 
repairs and changes of the network. The complexity of 
this database, however, hinders this filtering of exam- 
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Figure 2: Errors as function of time. The 3 top patterns are members of the “No-Trouble” class. The 3 bottom 
ones are members of the “Trouble” class. Errors are here plotted as mean values over hours. 

ples. The future-window of 7 days was set as a design 
criterion by the network system engineers. 

Examples of histories drawn from PerfMon are 
shown in Figure 2. Each group of traces in the fig- 
ure includes plots of the 4 error measures previously 
described. The 3 groups at the top are examples that 
resulted in No-Trouble while the examples at the bot- 
tom resulted in Trouble. Notice how bursty and irreg- 
ular the errors are, and how the overall level of Frame- 
and High-Rate errors for the Trouble class seems only 
slightly higher than for the No-Trouble class, indi- 
cating the difficulty of the classification task as de- 
fined from the database PerfMon. PerfMon consti- 
tutes, however, the only stored information about the 
state of a given channel in its entirety and thus all the 
knowledge on which one can base channel end-t&end 
predictions: it is impossible to install extra monitor- 
ing equipment to provide other than the 4 mentioned 
end-t&end error measures. 

The above criteria for constructing examples and la- 
bels for 3 month of PerfMon data resulted in 16325 
examples from about 900 different paths with 33.2% of 
the examples in the class Trouble. This means, that al- 
ways guessing the label of the largest class, No-Trouble, 
would produce an error rate of about 33%. 

Estimating Limiting Performance 

The 16325 path examples were randomly divided into 
a training set of 14512 examples and a test set of 1813 
examples. Care was taken to ensure that a path only 
contributes to one of the sets so the two sets were inde- 
pendent, and that the two sets had similar statistical 
properties. 
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Our input data has a time-resolution of 15 minutes. 
For the results reported here the 4 error measures of 
the patterns were subsampled to mean values over days 
yielding an input dimensionality of 4 x 21. 

We performed two sets of independent experiments. 
In one experiment we used fully connected neural net- 
works with one layer of hidden units. In the other we 
used LVQ learning machines with an increasing num- 
ber of codebook vectors. Both choices of machine have 
two advantages: the capacity of the machine can eas- 
ily be increased by adding more hidden units, and by 
increasing the number of hidden units or number of 
codebook vectors we can eventually model any map- 
ping (Cybenko et al. 1989). We first discuss the results 
with neural networks. 

Baseline performance was obtained from a threshold 
classifier by averaging all the input signals and thresh- 
olding the result. The training data was used to adjust 
the single threshold parameter. With this classifier we 
obtained 32% error on the training set and 33% er- 
ror on the test set. The small difference between the 
two error measures indicate statistically induced differ- 
ences in the difficulty of the training and test sets. An 
analysis of the errors committed revealed that the per- 
formance of this classifier is almost identical to always 
guessing the label of the largest class “No-Trouble”: 
close to 100% of the errors are false negative. 

A linear classifier with about 200 weights (the net- 
work has two output units) obtained 28% error on the 
training set and 32% error on the test set. 

Further experiments exploited neural nets with one 
layer of respectively 3, 5, 7, 10, 15, 20, 30, and 40 hid- 
den units. All our results are summarized in Figure 

From: Proc. of the 1st Int'l . Conference on Knowledge Discovery and Data Mining. Copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



dassifiition error, % 

10 

w&t* (logj o) 
4- -- 

dassification error, % 

tfamng 

Figure 3: a) Measured classification errors for neural networks with increasing number of weights (capacity). The 
mean value between the test and training error estimates the performance of the given classifier trained with 
unlimited data. b) Measured classificationerrors for LVQ classifiers with increasing number of codebook vectors. 

3a). This figure illustrates several points mentioned 
in the text above. As the complexity of the network 
increases, the training error decreases because the net- 
works get more free parameters to memorize the data. 
Compare to Figure la). The test error also decreases at 
first, going through a minimum of 29% at the network 
with 5 hidden units. This network apparently has a 
capacity that best matches the amount and character 
of the available training data. For higher capacity the 
networks overfit the data at the expense of increased 
error on the test set. 

Figure 38) should also be compared to Figure lc). In 
Figure 3a) we plotted approximate values of Em for the 
various networks - the minimal error of the network 
to the given task. The values of Em are estimated as 
the mean of the training and test errors. The value of 
Em appears to flatten out around the network with 30 
units, asymptotically reaching a value of 24% error. 

An asymptotic Em- value of 25% was obtained from 
LVQ-experiments with increasing number of codebook 
vectors. These results are summarized in Figure 3b). 
We therefore conjecture that the intrinsic noise level of 
the task is about 25%, and this number is the limiting 
error rate imposed by the quality of the data on any 
learning machine applied to the task. 

Constructing classifiers with higher accuracy re- 
quires more information about the problem at hand, 
or cleaner data. The classification task was hence re- 
peated for links of T3 paths of only one technology 
(high bandwidth fiber optics). With these data an 
accuracy of 82% correct classifications was obtained 
with decision trees as implemented in the C4.5 soft- 
ware package. 

Both a system for predicting failures in end-to-end 
paths and a system for predicting failures in fiber op- 
tics links are implemented in the AT&T maintenance 

platform and daily used to guide technicians to upcom- 
ing failures. 

Conclusion 
In this paper we have proposed a method for estimating 
the limits on performance imposed by the quality of the 
database on which a task is defined. The method in- 
volves a series of learning experiments. The extracted 
result is, however, independent of the choice of learn- 
ing machine used for these experiments since the esti- 
mated limiting performance expresses a characteristic 
of the data. The only requirements on the learning 
machines are that their capacity can be varied and be 
made large, and that the machines with increasing cs 
pacity becomes capable of implementing any function. 
In this paper we have demonstrated the robustness of 
our method to the choice of classifiers: the result ob- 
tained with neural networks is in statistical agreement 
with the result obtained for LVQ classifiers. 

Using the proposed method we have investigated 
how well prediction of upcoming trouble in a telecom- 
munication path can be performed based on informa- 
tion extracted from a given database. The analysis 
has revealed a very high intrinsic noise level of the ex- 
tracted information and demonstrated the inadequacy 
of the data to construct high performance classifiers. 
This study is typical for many applications where the 
data collection was not necessarily designed for the 
problem at hand. 
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