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Abstract 
Exception directed acyclic graphs (EDAGs) are 
knowledge structures that subsume trees and rules but 
can be substantially more compact. Manually 
constructed and induced EDAGs are compared by 
reconstructing Shapiro’s “structured induction” of a 
chess end game. It is shown that the induced EDAG is 
very similar to that produced through consultation 
with exnerts and that both are small. comorehensible ---- - .-= -- .-; -.--- _---- .__, - ----=------------ 
solutions to a problem that is complex for people. 

Introduction 
A problem for knowledge discovery is that the trees or 
rules induced are not meaningful as “knowledge” (Quinlan 
1991). Variant structures have been proposed that offer the 
possibility of more comprehensible models. Gaines’ (1989) 
Induct induces rule graphs that cover common cases by 
default rules and infrequent cases through exception rules. 
Compton and Jansen’s (1990) ripple-down &es generalize 
binary decision trees by allowing a node to contain a 
compound premise, and interior nodes to contain 
conclusions. Gaines (1991) shows that ripple-down rules 
are a particular case of rules with exceptions that can 
encode some knowledge structures more compactly. Oliver 
(1993) and Kohavi (1994) have shown how various forms 
of decision graphs may be induced and provide a more 
compact alternative than decision trees. Gaines (1995) 
generalizes these representations into exception directed 
acyclic graphs (EDAGs) that support exceptions within a 
general decision graph, and subsumes trees and rules. 

However, none of the studies cited shows that the 
renresentation defined wales un to wnnort the inductive --=---- _____ -__ _- ______ L---- -= _- ‘-rr-‘- ____ ___--___. - 
modeling of large complex datasets in terms of a 
comprehensible knowledge structure. A problem in doing 
this is the lack of substantial datasets with well-defined 
expert models that allow inductive modeling to be humanly 
evaluated. Shapiro’s (1987) study of a pawn versus rook 
end-game provides a complex dataset which has been 
modeled by a combination of human knowledge elicitation 
and inductive modeling. The main section of this article 
compares the model obtained direct induction of an EDAG 
for this problem with that obtained from human chess 
experts. The following introductory section illustrates the 
induction of EDAGs for a simple chess problem. 
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Modeling a Simple Chess Dataset 
._ ̂ -^. Quinian (1Y7Y) gives ID3 modeis of 7 rook versus knight 

end game situations of increasing difficulty. The third 
problem involves 647 cases with 4 3-valued attributes, 3 2- 
valued attributes, and a 2-valued outcome. Figure 1 shows 
the decision tree induced by ID3 that solves this problem 
graphed as an EDAG in Induct. Figure 2 shows the C4.5 
rules derived from this tree graphed as an EDAG. 

Both EDAGs are used for decision making through the 
same procedure. The graph is traced from its root nodes. 
On any path, if the premise (if any) is true then the 
conclusion (if any) is noted for that path, replacing any 
previous conclusion noted for the path. A path is traced 
until a premise fails to hold, or a leaf node is reached. 
When a path has been traced, any conclusion noted is 
asserted. 

This Drocedure is trividiv aDDlicable to decision trees r--~ -~~~ 6 --rr~ ~---~~ 
and rules. It also armlies to general graphs of rules with 
exceptions. Figure 3lshows the rules of Figure 2 with the 
conclusion “game = safe” taken as a default and common 
clauses in the premises factored by Induct. The numbers 
indicate that 613 cases are covered by the default, and 34 
are exceptions. 

induced by Induct. The numbers indicate that the 
exceptions may themselves be represented as a default 
covering 30 cases, an exception to that covering 10 cases, 
and an exception to that covering 4 cases. 

The EDAGs of Figures 3 and 4 are logically equivalent 
to those of Figures 1 and 2. However, it would be tedious 
to explain the decision tree or rules in words whereas the 
small EDAG in Figure 3 may be explicated as: “the game 
:.. ,.-AL ..-I,..- &La Ll,,1. IA.., -.,l. -,A 1.~:A., ̂ -a :, ,:..a 15 SialG LlIUFiSS “IL: “lL%GlL lull& ‘““IL al.LIU nrll~;llr zllc 111 Il‘lG, 
the rook bears on the king, the rook bears on the knight, 
and either the king to knight distance is 3, or the knight to 
white king distance is 1, and either the king to rook 
distance is 2 or 3, or the rook to white king distance is 1.” 

The graphic representation in the EDAGs seems more 
perspicuous than the text. EDAGs retain the flow of 
decision making that makes decision trees attractive. In 
addition, the reduced restrictions of the directed acyclic 
graph structure enables them to avoid some of the 
unnecessarily complex structures generated by redundant 
replication of nodes in a decision tree representing a 
disjunctive structure. 

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



-> aeme = safe 

Figure 1 ID3 decision tree solving a rook versus knight chess end game problem 

line=t 
r>zk = t 
rx-n = t 
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n-wk = 1 

-> game = lost 

-> game = lost 
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I line = t 
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rx-n = t 
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-> cwne = lost 

line = t 
r>>k = t 
r>>n = t I I k-r = 3 
k-n = 3 

-z aame = lost 

Figure 2 C4.5 rules derived from the decision tree of Figure 1 

->game = safe 613 

Figure 3 Induct factorization of C4.5 rules Figure 4 Induct rules with exceptions 
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Comparing Elicited and Induced Structures 
How do the results of the previous section scale up to a 
more complex situation? Shapiro (1987) studied a situation 
in the rook versus pawn (KPa7KR) end-game situation 
which he notes is poorly documented in the chess literature. 
The white pawn is at a7, able to queen, and the black rook 
and the two kings are in any of the 209,718 legal 
configurations of which 129,825 are classified won-for- 
white and 79,893 are classified not-won-for-white. 

In the chess situations studied by Quinlan and Shapiro 
the board positions of the pieces are well-defined but the 
attributes that a chess expert uses in assessing those 
positions are not. Hence, human experts were interviewed 
to elicit those characteristics of the situations that they saw 
as significant to making a decision about whether the game 
was won or not. Quinlan’s studies elicited these attributes, 
applied them to a set of situations where the outcome was 
known, and then used ID3 to develop a decision tree which 
would be totally correct if the attributes adequately 
characterized the problem. 

Shapiro’s study addressed the problem noted in the 
introduction, that the resultant decision trees, although 
correct, could not be regarded as demonstrating 
“lrnn~wld~~” nf ehmnn UP harl c-baa. z.=vnm+z nnrtitinn thkp R.&V” nAagu “I V.I”Y.7. 11” LlUU lll”UU vILyY..u pu&ILI”~. U.” 

problem situation and define small sub-problems, each of 
which defined a new decision variable. He defined “small” 
to mean that the sub-problem could be solved using fewer 
than 7 attributes, each of which could be derived from a 
board position with less than a “screenfull of C code.” For 
each sub-problem, he classified the database of cases in 
terms of the small set of attributes and the decision 
variable, and then used ID3 to develop a decision tree. 

Ibkxwpj ICZar 1 

Shapiro termed this technique “structured induction” and 
used it to develop a complete solution of the KPa7KR end- 
game in terms of 9 sub-problems introducing 8 additional 
decision variables. The total number of attributes defined is 
35 binary and 1 ternary, and the total number of different 
attribute vectors involved is 3,196. This dataset is available 
through the University of Irvine archive (Murphy and Aha 
1994), and has been used in other studies (Muggleton 1987; 
Holte, Acker and Porter 1989). 

Structured Induction using Decision Trees 
Figure 5 is reproduced from Shapiro’s book and shows the 
structure of his solution in terms of the attributes used to 
develop the 9 sub-trees. Each circle represents a decision 
tree with between 4 and 7 attributes, and the complete 
structure has 122 nodes. 

Figure 6 shows the top-level decision tree, pa7 in Figure 
5. It involves the introduction of intermediate decision 
variables, such as ds (good delayed skewer threat) and dq 
(simple delay to queening), which are computed through 
other decision trees. 

--> game = won 

Figure 6 Top-level tree pa7 (Shapiro 1987) 

Figure 5 Structured induction of solution to a chess end game (Shapiro 1987) 
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Structured Induction using EDAGs 
Shapiro’s use of decision trees reflects the representational 
nnl.amn ,..,:1,l.1,. .r. I.:- :.. A., . . ..“I.. 1nor-L TLA n ^..L 
Dc.‘IsxlIa ca”QLIcl”IG I.” 111111 111 lllci Gsuly 170”s. lIlC 7 Ml”- 

problem trees are themselves fairly difficult to understand, 
and are incomprehensible when combined into a single 
knowledge structure. As a first experiment ID3 was 
replaced with Induct and an EDAG induced for each sub- 
problem as shown in Figure 7. Enclosures have been added 
to show the sub-problems and their relationships. A nested 
EDAG computes an intermediate decision variable used by 
the EDAG at the level of nesting above. 

It can be seen at the bottom right that the game is won 
unless the black rook cannot be captured safely (rimmx = f) 
and either there is a simple delay to queening (dq = t) or 
one or more black pieces controls the queening square 
(bxqsq = t), or the white king is in stalemate (stlmt = t), or 
there is a good delayed skewer threat (ds = t). It can be seen 
at the bottom left that there is a good delayed skewer threat 
(ds = t) if there is a special opposition pattern (spcop = t), 
or a combination of 5 other attributes have the values 
specified. Each of the 8 intermediate decision variables is 
determined by a relatively simple and comprehensible 
EDAG. Those for wka8d (white king on promotion square) 
and wkchk (white king in check) are interesting because 
Induct has generated two-level exceptions for them. m-L..- AL- ____ --r---r:-- -I? c-31 .-.. 1..-*- ~...~-lr. .~~ I- ~~ F IIIUS, LIIE: recunsuucuun 01 maplro s results in terms or 
EDAG’s confirms more clearly than did the original ID3 

trees that the problem has been structured into simple sub- 
problems. The sub-problems are also meaningful because 
they correspond to situations defined by the expert in terms 
comprehensible to a chess player. 

Figure 8 shows the EDAGs of Figure 7 converted to a 
single EDAG by elimination of the intermediate decision 
variables. This is simple if the EDAG computing the 
variable has a single exception which is the truth value 
specified when the variable is used. There is one sub- 
problem, ok&r, where the exception is single but the 
exception is the opposite to that required. The variable is 
eliminated by treating okskr = f as an exception in the 
EDAG for dblat. This involves adding two additional 
clauses (mulch = f, bkxcr = f) which correspond to 
alternative paths to nowin that the simpie exception does 
not take into account. Similarly, the elimination of the 
wkna8 and wknck variables computed through multi-level 
exceptions requires the introduction of the additional 
variables marked by bullets. 
Figure 8 is an EDAG developed through structured 
induction that solves the KRa7KR problem. The numbers 
on the graph show the numbers of cases out of the total of 
3196 that are covered by each part of the ED&G. It can be 
seen that the top level default accounts for 1616 cases, the 
path through scpop = t for 1 case, and so on. The numbers 
decided throueh all paths total more than 3196 hecawe a y -, ~~ -_---L- 
single case may flow through more than one path. 

IIIII \ \oksu = tJIII wkcti = t 111 

-> wkadd = f 

wkchk 

thrsk=f 

I’ I 

Figure 7 EDAGs induced for each of Shapiro’s 9 sub-problems 
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862 -> game = nowin 

II I I/ / / I II 1-f katri = n 11 I I ’ I DMG” - L I . _ i 

Figure 8 EDAG obtained from Figure 7 by eliminating the interm lediate variables 

I I skek = t I I / // I II 

1616 

Ilfbksw = f 1 

53 

Figure 9 EDAG induced directly by Induct 
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Comparing a Directly Induced Solution with 
that of Structured Induction 

The EDAG of Figure 8 is a relatively simple exposition of 
the solution to a difficult chess end- game situation, and it 
exemplifies the induction of “knowledge” as “a correct and 
effectively computable descriptions that can be assimilated 
and used by a human being” (Quinlan 1991). However, it 
was developed with a mixture of sub-problem structuring 
by human experts and inductive modeling. It is interesting 
to investigate whether a similar solution can be developed 
through inductive modeling without human structuring. 

Figure 9 shows the solution induced by Induct directly 
from the dataset of 3,196 cases. One difference from the 
EDAG of Figure 8 is that three of the attributes, bkxwp, 
rkxwp and stlmt, have not been used. Of these only stlmt 
plays a major role in Figure 8 accounting for 47 cases. 
However, if this path is removed only 2 errors occur as 45 F *l 
01 me cases are aiso covered by other paths. Tnese 2 cases 
are covered by the rule wkna8 = t -> nowin in Figure 9. 

Apart from the path through sthnt = t, it can be seen the 
top level structure above the exceptions in Figure 9 largely 
reproduces that of Figure 8. One difference is that some 
structures such as hdchk and dblat are under rimmx = fin 
Figure 8 and not in Figure 9. It turns out that it makes no 
difference to insert rimmx = fin these paths in Figure 9. It 
is a redundant clause that Induct eliminates. Another 
difference is that the additional clause, wknck = f, has been 
introduced into the compound clause in ds. This 
corresponds to considering the delaved skewer threat onlv ---.., -- ---- ..__ ------ ----, 
when the white king is not in check which is reasonable. It 
seems likely that the chess experts would have intended 
this when defining the skewer situation, but it was not 
taken into account when generating the cases for ID3. 

The 53 exceptions to the top level structure are not 
generated through the same structures in Figures 8 and 9. 
The original ok&r exception in dblat is reproduced exactly, 
but the exceptions relating to wkna8 and wknck are only 
loosely related in the two EDAGs. However, these fairly 
rare and complex exception situations were simplified 
artificially in the Shapiro study using the $7 attributes and 
li screen of C criteria. They do not correspond to basic 
chess concepts as do the upper level attributes. 

Conclusions 
Research on producing inductive models that correspond to 
those of human experts is made difficult by the lack of test 
case data where expert models are available. Shapiro’s 
work provides an excellent opportunity to investigate the 
induction of comprehensible knowledge structures. The 
similarity of the solutions induced directly from the dataset 
and generated from experts shows the roie of the expert in 
construing a problem. Even though the expert was absent in 
the development of the model of Figure 9, his or her 
knowledge was still present in the attributes used. The 
“background knowledge” of how to perceive a game was 
adequate for Induct to learn to solve the problem. 

In conclusion, this study indicates that the EDAG 
knowledge structure that has previously been shown to 
subsume trees and decision rules while allowing more 
concise representations does scale up to a significant larger 
problem. It also shows that the knowledge structure 
produced by automatic induction of an EDAG can be very 
similar to that elicited directly from an expert. Many 
similar studies are necessary to substantiate these 
conclusions, but the lack of datasets with expert associated 
expert models will make such studies slow to occur. 
Meanwhile EDAGs are of interest as attractive alternatives 
to decision trees and rules. 
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