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Abstract 
This paper describes the facilities available for knowledge 
discovery in databases using the TETRAD II program. While 
a year or two shy of state of the most advanced research on 
discovery, we believe this program provides the most 
flexible and reliable suite of procedures so far availabIe 
commercially for discovering causal structure, semi- 
automatically constructing Bayes networks, estimating 
~nmmntnrr in c.w.k n‘akmrb. nnrl ,*nAa+;nn l-h,. ntrrnrsm lrnn ~SuauIIWLY YL U”“,. ,...C”“APIY, YXLU “yvU~“qj. ..I” ya”~‘cu” YUll 
also be used to red&e the number of variables needed for 
classification or prediction, for example as a neural net pre- 
proceesor. The theoretical principles on which the program 
is based are described in detail in Spirtes, Glymour and 
Scheines (1993). Under assumptions described there, each of 
the search and discovery procedures we will describe have 
been proved to give correct information when statistical 
decisions are made correctly.’ 

1. What Does TETRAD Do? This paper describes 
the facilities available for howledge discovery in 
databases using the TETRAD II program. While a year or 
two shy of state of the most advanced research on 
discovery, we believe this program provides the most 
flexible and reliable suite of procedures so far available 
commercially for discovering causal structure, semi- 
automatically constructing Bayes networks, estimating 
parameters in such networks, and updating. The 
theoretical principles on which the program is based are 
described in detail in Spirtes, Glymour and Scheines 
(1993). Under assumptions described there, each of the 
search and discovery procedures we will describe have 
been proved to give correct information when statistical 
decisions about independence and conditional independence 
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have correct outcomes correct in the population 
distribution. Each of the procedures has also been 
extensively tested on simulated data samples of realistic 
sizes .The program includes: 
l A module (BUILD) that combine the user’s lolowledge 
about the system under study with principles for 
extracting causal structure from statistical patterns for data 
sets with continuous variables, or for data sets with 
disaete variables. The procedure contains a switch that 
permits the user to assume, or not, that no latent 
variables are present. 

l Functions that indicate when two or more measuced 
variables may all be influenced by an unmeasured 
common cause. 

l A module (ESTIMATE) that gives maximum 
likelihood estimates for parameters in statistical models 
describing influences between measured discrete variables. 
With discrete data and a little help from the user, BUILD 
and ESTIMATE will construct a fully parameterized 
Bayes network for a domain. 

l A module (UPDATE) that updates a fully 
parameterized Bayes network to make predictions about 
any of the properties of a new unit or example from 
information about some of the properties in that unit. 

l A module (PURIFY) that takes a raw data or a 
covariance matrix for normally distributed variables the 
user assumes to have at least one unmeasured common 
cause and finds a subset of variables that have exactly one 
unmeasured common cause and no other causal relations 
with one another. 

l A Module (MlMbuild) that determines structural 
dependencies among latent variables given correlational 
d&& a.tl_ nwified meanm3ment mnMn. ~---- ___----_ __-_-_ __-----. 

l A module that prepares input files for other estimation 
and testing packages (EQS, LISREL, CALIS) for linear 
models. 
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l A module (MONTE) that allows the user to generate 
simulated data for a wide variety of causal models. 
The TETRAD II program does not do routine data cleanup 
task--checks for outliers, variable transformations to 
approximate normal distributions, etc. Neither does it do 
model diagnostics of the kind performed by many readily 
available statistical packages such as M INITAB, S AS, 
BMDP or SYSTAT. We recommend that where possible 
checks and adjustments of the data be carried out frst by 
one of these systems prior to a TETRAD II analysis. The 
Tl7l-D An TT r \mnmm r-7-c nr\+ pir+kmtc. thm v.nmmn~nrc nf ILjLl- 11 ~‘“~‘cu” U-D ll”L WU‘l‘cLCcr LI1U pcuaJtww.u “1 

linear “structural equation models” or provide tests of 
significance for such models, since these procedures are 
carried out by a number of commercial packages such as 
CALIS, LISREL and EQS. 

2. Graphical Models. Many statistical models that 
are given by equations and distribution assumptions can 
be described more vividly but equally precisely by simple 
directed graphs. A directed edge X -> Y indicates both that 
X influences Y and that Y is a function of at least X. For 
example, suppose we consider a regression model for Y 
with regressors Xl,...,X4. The model m ight be given by 
an equation 

and a distribution claim : all variables are jointly normally 
distributed, each variable in the set {Xl ,..., X4, E} is 
independent of the other variables in the set and E has 
mean zero. The statistical model has a number of firee 
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include the numerical values of the coefficients, al, q, 
etc., the variance of E and the means and variances of 
Xl,...,X4. We could equally describe the model by saying 
that the variables are jointly normal and giving the 
picture: 

Figure 1 

The equations can be easily recovered from  the picture by 
writing each variable as a linear function of the variables 
with edges directed into it. In this case Y is the only 
variable with any edge into it. The picture is always 
understood to imply the hypothesis of statistical 

independence for any pair of variables, such as Xl d 
X2, or X3 and E, that are not connected by a sequence of 
directed edges from  one to the other, or by two sequences 
of directed edges from  some third variable that is a 
common cause of both. The numerical values of linear 
coefficients such as al are not specified in the diagram, 
just as they are not specified in the equation. For brevity 
“error terms” such as E are often omitted in the diagram, 
but they are meant to be added if the diagram is translated 
into a set of equations. The pictorial representation can be 
exm& ‘@  hclude -wuT,m& conpiion (%aus(aas Iii ih& 
case we adopt the common convention of writing the 
measured variables inside rectangles and unmeasured 
variables (except error terms) inside ovals. 

Diagrams can also represent causal and statistical 
hypotheses among discrete variables. Suppose, for 
example, that in figure 1 the variables are discrete. Then 
the statistical hypothesis represented by the diagram is 
that the joint probability distribution is equal to the 
conditional distribution of Y on the other six variables, 
multiplied by the marginal distributions of each of those 
six. That is: 

P(Y,Xl, x2, x3, X4,X5,&) = 
P(YIXl,X2,X3,X4,X5, E) X 
P(X~)P(X~)P(X~)P(X~)P(X~)P(E) 

In the computer science literature graphical models that 
represent a factorization of the probabilities for discrete 
variables are usually called “Bayes networks.” 

3. Applications. 

Selection of Causal Regressors. Many empirical 
investigations attempt to judge how much one or more 
variables influence an outcome of interest, for example, 
how much advertising influences recruitment or 
influences purchases of a product. Multiple linear and 
non-linear regression are the methods most commonly 
used to make these decisions. The results of a regression 
can, however, be m isleading if some of the regressors are 
not causes of the outcome variable. A number of 
techniques are available in commercial packages for 
selecting a set of regressors from  a larger set of variables. 
Unfortunately, unless the investigator knows beforehand a 
great deal about the causal relations among the potential 
regressors, these techniques a~ unreliable means to 
determ ine which variables are actually direct causes of the 
outcome variable, and regression itself is unreliable in 
determ ining the importance of causal influence, no matter 
how large or representative the sample. TETRAD II can 
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be used to help select direct causes of an outcome variable 
more reliably. 

In data on naval air traffic controller training we analyzed 
for the Navy Personnel Research and Development 
Center, trainees were given a battery of tests, and scores 
on several of these batteries were combined into an 
“AFQT” score. We obtained data that included the AFQT 
scores and a battery of test scores, including three test 
scores--arithmetic reasoning (AR), numerical operations 
(NO), and word knowledge @‘X)--that are components of 
the AFQT score and four others that are not--electronics 
information (EI), general science (GS), mechanical 
comprehension (MC) and mathematical knowledge (MK). 
ACAT hnc. r\ehor e.w..w....mA r~nmv.nnontr that ..,~,.a nnt ruyc ,,a3 “LIIkA IIIclaJLubu b”,r#y”rw,rw CIIctC VVCIIC, ll”C 

included in our data set. A true (but incomplete) account 
of the dependencies in this data is then: 

AR NO WK 

In fact, there is good reason to think there am also 
unrecorded common causes at work relating these 
variables with others included in AFQT. For the actual 
sample data, an ordimuy linear regression of AFQT 
against all of the variables gave significant values for all 
but two of the coefficients. Given the prior information 
that the other variables cannot be effects of AFQT, the 
TETRAD II procedures (BUILD with the exact latent 
variables switch) determine correctly that among the 
seven tests, only AR, NO and WK are components of the 
AFQT. When we fust conducted this analysis we had 
been misinformed that all seven variables are components 
of AFQT, and the correct answer was thus found without 
prior knowledge. 

Sometimes when we are trying to understand the causes 
of a variable of interest, or to predict how to manipulate 
that variable, we may, without knowing it, measure 

,-P ~1~ -c rl-- eJJeca ol me v#av,e we wislj ‘@ exp’&l a2d prp&i. hi 
such cases regression methods may be badly misleading. 
In many cases of this kind, the TETRAD II procedures 
can sometimes help. Consider the following diagram: 

Figure 3 

Suppose the task is to fmd from among Xl,...,X5, those 
variables that actually influence Y directly, and the figure 
represents the true but unknown structure. If Y is some 
characteristic we want to change in a population, and the 
Xs represent variables we think we can manipulate, then 
we want to find out which of the Xs actually influence Y. 
We can fmd linear systems with this causal structure aud 
also systems in which the variables are discrete. In the 
linear case, for almost any values of the linear coefficients 
and variances, linear regression will give us false results. 
Even with population correlations, linear regression will 
tell us incorrectly that Xl, X2, X3, and X5 have 
significant regression coefficients, and methods for 
selecting subsets of regressors do no better. Given 
population data, the Build procedure in TETRAD II will 
correctlv identifv XI and X5 as the onlv nossible causes 4 r ---~-~- 
of Y among the five X variables. For discrete variables 
logistic regression meets with similar problems. Twenty 
data sets were generated by C. Meek using Monte Carlo 
methods from the model in figure 3, each with a sample 
size of 5,000. The variables and the disturbance with 
distributed normally and the linear coefftcients were 
generated randomly for each sample. In all 20 data sets a 
straightforward linear regression inferred that the 
coefficients for Xl, X2, X3, and X5 am significant. 
Regression selector packages did even worse. In all 20 
cases, best subsets (Mallows CP and Adjusted R2) and 
stepwise procedures picked either all five X variables or 
omitted only X4. In all twenty cases, by contrast, the 
Build procedure in TETRAD II correctly identilied only 
Xl, X3, and X5 as adjacent to Y, and for 94% of the 
adjacencies the procedure found the causal order correctly 
as well. 

The same regression mistakes would occur if in figure 3 
X3 and Y were connected by an unmeasured common 
FOI.EP wwl in tha .ZQ.~P ,.,.a., 77;l-R An 11 .wm.lA n;.m TWO”, ULlU 111 Urn” Ycull” “UJ, LYLLW LI W”U” 5”” 

correct information in such a case. 

Causal Models flor Discrete Variables, or 
Bayes Networks. Many variables of interest are better 
measured by categories than by a real variable, and the 
properties of models of discrete variables have been 
extensively studied in the last twenty years. Just as with 
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linear models, one of the common uses of models for 
discrete variables is to attempt to represent and quantify 
causal dependencies. 

The diagram in figure 4 below, called the ALARM 
network, was developed for use as an emergency medical 
system (Beinlich, et al. 1989). The variables am all 
discrete, taking 2, 3 or 4 distinct values. In most 
instances a d&ted arrow indicates that one variable is 
regardedas a cause of another. The physicians who built 
the network also assigned it a probability distribution: 
each variable V is given a probability distribution 
rnnrlitinnsll nn pm-h VW-tnr nf valn~c nf the ye$$eg V”,nCYU”.ICY “1. “ss.,.. 7-L”. “I .-WV” “S U.” 

having edges directed into V. 

Figure 4 

The directed graph has 37 variables and 46 edges. 
Herskovitz and Cooper (1990) used the diagram to 
generate simulated emergency medicine statistics for 
20,000 individuals. From half or even a tenth of the data, 
the TETRAD II program recreates almost all of the 
ALARM network, including information about the 
directions of the edges. Depending on sample size, the 
program makes two or three errors in identifying edges 
and four or five errors in determining the directions of 
influence. Given the data and a causal diagram, the 
Estimate module of the TETRAD II program will provide 
a maximum likelihood estimate (assuming a multinomial 
distribution) for any Bayes network without cycles or 
latent variables. 

The UPDATE Module. Suppose a Bayes network 
hnn l.nnr\ l...:1t F,... llaa “cell “UUL I”1 a domam, . .& *l.c. . . ..A...l..1:+zc.~ l.IlG yl”“a”‘LluGa 

associated with the network have been estimated. The 
network can function as an “expert system” that will 
make predictions for new units in the population. Given 
the measured values of one or more variables for a new 
unit (for example, a new patient) the program will use 
the Bayes’ network to compute the new probabilities for 
values of any other variables for that unit. Thus with the 
ALARM network, if the program is given values for the 
variables attached to some of the nodes, it will compute a 

new set of probabilities for the values of any other node 
in the network. 

Finding Causal Relations Involving 
Unmeasured Variables. Unmeasured variables are 
important in two roles. On the one hand, they may be 
responsible for statistical associations among measured 
variables, and we must then correctly recognize the latent 
structure if we am to predict the results of policies or 
interventions. Uniquely, the TETRAD II program 
contains an asymptotically correct pmcedme for this 
problem. 

Figure 5 

Given large sample data for the variables shown in 
rectangles but not for the variables in ovals in figure 5, 
the BUILD procedure will reconstruct the graph shown, 
but with double headed arrows indicating the iatent 
variables, and leaving uncertain whether income and 
parent’s smoking habits are respectively related to 
smoking by unmeasured common causes. 

On the other hand, in many cases the variables we 
measure are only indicators of the variables that are of 
interest. That is typically the case in personnel studies, 
psychometric studies, sociomeuic studies, and many other 
cases. Often the data are from questionnaires or other 
sources for which the investigator has a fairly clear idea as 
to which sets of measured variables form clusters that 
indicate the same unmeasured causal factor. The 
investigator may be fairly confident, for example, that a 
certain collection of items are all affected by a particular 
personality factor, that another collection is affected by 
perceived economic opportunity, and so on. But how am 
the influences of the unmeasured variables on one 
another, or on other behavioral variables, to be estimated? 
Under the assumptions of linearity. normality, and two 
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assumptions characteristic of graphical models (see n . .~ aplrres, et ai., i993 for detaiisj, when the sample is ‘kirge 
enough that cortxct (in the population distribution) 
statistical decisions are made, the PURIFY and MIMbuild 
modules of TETRAD II will provably give reliable 
information about the connections among the unmeasured 
variables provided the program is given correct 
:,c,-..&:,.. ^I CA . ..hL.l. . . . . ..z..hl~” ,l..“,,... l Y...,.*h,... 
lllL”llll&lu”ll iw L” WIULII “aluuJIciJ l.x”3LCI l.qgxKx as 

indicators of a common unmeasured latent variable. The 
procedure will work when some of the indicators of one 
latent variable are also affected by other latent variables, 
and even when some of the measured variables directly 
influence one another. Parts of the procedure have been 
used successfully on real data by Steve Sorenson and his 
associates at the Navy Personnel Research and 
nwdnnmmt Ppntm WP grill ilhrcfratn dth a ~imdmwl Y”.“I”y.nw..C ““n.Wn. I, ” . ..nz lll”“YuI” ..A*,& u “Y,.U- 

CaSe. 

From the linear structure given by the diagram in figure 6 
a sample of 2,000 units of the measured variables was 
generated by the Monte Carlo module of the TETIUD II 
nrnmam. The thicker &mows r~resent cau=J r&eons =--~-.-. ----I r------- 
that confound the original clustering of the measured 
variables: 

True Structure 

El1 El2 El3 84 E15 E16 cl7 '18 fi9 @O 

Figure 6 

The data for the measured variables was then given to the 
PURIFY module, along with the clusterings of the 
measured variables shown in figure 7. For each cluster, 
TETRAD II automatically finds a sub-collection of 
measured variables that are not affected by the latent 
variables of other clusters or by other measunxl variables. 
The output of PURIFY is shown in figure 8. 

Given the clusters in figure 8 and the original data, the 
\ “\” . . , .- -I- 
nu~ouuo program men returns the correct information 
about the causal relations among the unmeasured 
variables, shown in figure 9. 

Originally Specified 
El1 42 E13 E14 %5 

tt+++ 

Measurement Model 
46 47 '16 &I9 %?O 

ttttt 

ttttt 
&6 &-I E9 E9 eiO 

Figure 7 

Largest Pure Measurement Model 

Figure 8 

Causal Structure Among the Latents 

Figure 9 

Selection of Prediction Variables. Given a set S 
of variables and a variable Y one wishes to predict from 
S, it is often important in applications to minimize the 
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number of variables in S needed for prediction. The Build 
procedure excludes variables by finding a subset of S 
condiitonal on which all other variables in S are 
independent of Y. For example, Neuralwate divides 
Fisher’s well known Iris data into a training and test set 
to illustrate the use of neural nets in a simple 
classification problem in which variety Y is to be 
predicted from a set S of four features of flowers. BUILD 
identifies two of the four variables that suffice for 
predicting Iris type. When the same Neuralwam pmcedum 
is applied using only these two variables as predictors, 
the resulting network misclassifies only a single extra 
case than does the original larger network, which made a 
single error in 75 test cases. 

Researchers in a number of areas have begun to make use 
to TETRAD II procedures. The program has been used to 
develop models of plant metabolism, to study job 
satisfaction, to develop scales of pain and grief, to detect 
leakage in frequency channels in devices for measuring 
sound, to locate structural defects in satellites, to study 
evoked response potentials, student retention in 
universities, pneumonia triage, and in other applications. 
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