
A Perspective on Databases and Data Mining

Marcel Holsheimer Martin Kersten Heikki Mannila Hannu Toivonen
CWI

Database Research group
P.O.Box 94079

NL-1090 GB Amsterdam
The Netherlands

(marcel,mk)Qcwi.nl

Abstract

We discuss the use of database met hods for data
mining. Recently impressive results have been
achieved for some data mining problems using
highly specialized and clever data structures. We
study how well one can manage by using general
purpose database management systems.
We illustrate our ideas by investigating the use of
a dbms for a well-researched area: the discovery
of association rules. We present a simple algo-
rithm, consisting of only union and intersection
operations, and show that it achieves quite good
performance on an efficient dbms.
Our method can incorporate inheritance hierar-
chies to the association rule algorithm easily. We
also present a technique that effectively reduces
the number of database operations when search-
ing large search spaces that contain only few in-
teresting items.
Our work shows that database techniques are
promising for data mining: general architectures
can achieve reasonable results.

Introduction
Data mining is an area in the intersection of machine
learning, statistics, and databases. How similar or
different data mining is from machine learning and
statistics is an interesting question. As to databases,
there has been some discussion on the importance of
database methods in data mining: are they useful at
all, or is data mining just machine learning for larger
sets of examples?

In this paper we address this question by looking
at a well-researched and prototypical problem in data
mining, the discovery of association rules. Associa-
tion rules are a simple form of knowledge that can
be used to express relationships between attributes
in binary data. In recent years, several efficient al-
gorithms have been developed for finding association
rules, and there are also some theoretical results in this
area (Agrawal et al. 1995; Agrawal & Srikant 1994;
Mannila, Toivonen, & Verkamo 1994). The algorithms
are specialized, and use clever data structures to speed
up the search.

150 Km-95

University of Helsinki
Department of Computer Science

P.O.Box 26
FIN-00014 University of Helsinki

Finland
{Heikki.Mannila,Hannu.Toivonen)@lcs.Helsinki.FI

We study how one can efficiently find such rules us-
ing only a general-purpose database management sys-
tem and the operations of relational algebra that it
supports. Our goal is to see how well simple and gen-
eral methods compare with other, specialized, tech-
niques.

We show that a simple algorithm using an efficient
relational dbms can achieve quite good performance on
the problem of finding association rules. The algorithm
uses only union and intersection operations, and con-
structs new relations. Additionally, the method can
incorporate inheritance hierarchies to the association
rule framework quite easily.

We also present a relational technique that can be
used to efficiently prune large search spaces with only
few interesting items.

Our work shows that the potential of general dbms
techniques is high for data mining applications; general
architectures can compete with specialized methods.

In more detail, the paper is organized as follows.
Association rules and a general algorithm for their dis-
covery are discussed in Section 2. Section 3 describes
our implementation of this algorithm, where the data
is stored in a general purpose database. As we will see,
the search space can be very large, so in Section 4, we
outline a technique to assemble global information on
this space. Experiments in Section 5 show that this
technique can reduce execution time by 50% and the
number of database operations by up to 90%. Section 6
is a short conclusion.

Association rules
Association rules are a class of regularities in binary
databases (Agrawal, Imielinski, & Swami 1993). An
association rule is an expression X + Y, where X and
Y are sets of attributes, meaning that in the rows of
the database where the attributes in X have value true,
also the attributes in Y tend to have value true.

Application areas are numerous. We have applied
association rules e.g. in telecommunications alarm cor-
relation, university course enrollment analysis, and dis-
covery of product sets often ordered together from
a manufacturer. A prototypical application area -

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

also the domain of our examples - is customer behav-
ior analysis in retailing, the so-called basket analysis :
which items do customers often buy together in a su-
permarket?

Such data can be viewed as a relation with binary
attributes: each transaction is a row in the database,
and contains l’s in the attributes corresponding to the
items bought in this transaction. Retailers are inter-
ested in which items are often bought together, the
so-called itemsets. Given an itemset X, the support
s(X) of X is the number of transactions that contain
all items in X ‘. Given a support threshold CT, we say
that an itemset X is large if s(X) 2 0. The support
threshold 0 is specified by the user, as the minimum
fraction of the database that is still interesting. The
confidence of an association rule X + Y is 0) * e(xy)’ l-e.1
the probability that a transaction with items X also
contains items Y. An itemset consisting of s items is
called an s-itemset.

All association rules X + Y with s(XY) 2 u can
be found in two phases (Agrawal, Imielinski, & Swami
1993) * In the first, expensive phase the database
is searched for all large itemsets, i.e., sets of items
that occur together at least in u transactions in the
database. In the second - and easy - phase, associa-
tion rules are generated from these large itemsets. In
this paper, we focus on the first phase: the discovery
of large itemsets. Details on the construction of asso-
ciation rules can be found in (Agrawal, Imielinski, &
Swami 1993).

Most algorithms for the discovery of large itemsets
work as follows (Agrawal et al. 1995; Agrawal &
Srikant 1994; Mannila, Toivonen, & Verkamo 1994).
First, the supports for single items are computed and
large 1-itemsets are found. Then, iteratively for sizes
s = 2,3, * . ., candidate s-itemsets are generated from
the large (s - 1)-itemsets of the previous pass. Sup-
ports for the candidates are then computed from the
database, and those candidates that turned out to be
large are used in the next pass to generate candidates
ofsizes+l.

The specification of candidate itemsets is based on
the observation that for a large s-itemset, all its (s - l)-
subsets are large; accordingly, for sizes s > 1, candi-
date itemsets are those s-itemsets whose all (s - l)-
itemsets are large. This simple condition effectively
prunes the potentially large search space.

Hierarchies
In retailing, much domain-knowledge is available in the
form of hierarchies: items belong to categories of a
generalization hierarchy. For example, Budweiser and
Heineken are both beer; beer, lemonade, and juice are
beverages, etc. Rules expressed in terms of such gen-

‘We use a notion of support slightly different from
(Agrawal, Imielinski, & Swami 1993), where s(X) is de-
fined as the fraction of the database that contains X.

era1 categories provide very useful high-level informs
tion. Also, generalization may be necessary for having
supports larger then the support threshold: the com-
bination of Heineken and chips may not be large, put
the more general ‘beer and chips’ probably is.

The items of a category need not be disjunct. I.e., a
customer can buy both Heineken and Budweiser. Ac-
cordingly, to compute the support for beer, we have to
take the union of the rows with Heineken and the rows
with Budweiser, rather than simply add the supports
for Heineken and Budweiser.

Algorithms for discovering large sets do not directly
support item hierarchies. Hierarchies can, of course,
be accounted for by generating derived attributes, but
then effort is wasted on the discovery of redundant
large sets. We will show in Section 4 how item hierar-
chies can be supported architecturally.

Database support
The expensive activity in the above described associ-
ation rule algorithm is in computing the supports for
itemsets, i.e., operations on the data. We now describe
the use of the general purpose database system Monet
(Kersten August 1991; van den Berg & Kersten 1994)
for that task. Monet offers the necessary storage struc-
tures and operations, and takes care of optimizing the
database activity.

Data representation
The database is stored as a decomposed storage struc-
ture (Khoshafian et al. 1987). Normally one would
store the data as a set of transactions (rows), and for
each transaction enumerate the items that are mem-
bers of this transaction. In a decomposed storage
structure, each transaction has a unique transaction
identifier (TID) , and the database is stored as a set
of items (columns), where for each item the TIDs of
the transactions that contain this item are enumer-
ated. For example, a database with 100,000 transac-
tions, each containing on average 10 items out of a
choice of 500, is stored as a set of 500 columns, where
each column contains on average 2000 TIDs.

Operations
The advantage of a decomposed storage structure is
that each candidate (itemset) in the search space has
its counterpart in the database, such that its support
can be computed by a few simple database operations,
rather than a full scan over the database. The support
of an 1-itemset A is simply the size of column A in the
database. So in pass 1 of the large set discovery algo-
rithm, we only have to select 1-itemsets whose columns
have size above the support threshold (T.

.

The support of a 2-itemset AB is the number of
transactions that contain both items A and B. Since
we stored the TIDs for the transactions for A and B
in separate database columns, we need to know how
many TIDs appear in both A and B. So we compute

Holsheimer 151

the intersection A n B, using the Monet intersect com-
mand:

AB=intersect(A,B);

The result of this intersection is a new column AB
that contains the TIDs that are in both A and B2.
This column is stored in the database system or de-
stroyed upon user demand. The size of this column is
the support for the 2-itemset AB. If all AB, BC and
AC are large, then in the third pass the support for the
3-itemset ABC must be computed. Since intersection
is a binary operation, we can first take the intersection
of A and B, and intersect the result with column C, as
in

ABC=intersect(intersect(A,B),C);

The intersection AB has already been computed
the previous pass, and the result can be reused:

in

ABC=intersect(AB,C);

By retaining all columns for large itemsets of the pre-
vious pass, we can reduce the number of intersections
in each pass to exactly one intersection per candidate
itemset. A further optimization can be achieved by
rewriting the intersection to take only results of the
previous pass as arguments. That is

ABC=intersect(AB,AC);

These intersections will be faster, because the size
of their arguments decreases. Moreover, there is no
need to access the columns A, B, and C from the orig-
inal database anymore. Hence these columns can be
removed from memory, thereby decreasing memory re-
quirements. By reusing results we actually manipulate
the database itself, such that it always reflects the in-
formation need of the association algorithm.

Optimization:
A bird’s eye view of the search space

Although the methods described above are efficient,
the problem is that especially in the second pass many
candidates are generated, but only very few prove to
be large. As an example take the database that we will
present in Section 5: in the first pass 600 out of 1000
1-itemsets are large. In the second pass, these large
sets generate 6002/2 = 180,000 candidates, of which
only 44 (!) are actually large. To find these, we need
180,000 intersections; they consume over 99% of total
processing time.

Because of the sparseness of the databases one can
reduce the number of database operations by exploring

, the candidate space using a coarser granularity. That
is, we assemble aggregate information on sets of can-
didates, rather than on single candidates. This infor-
mation allows us to infer that the candidate collection
under investigation either does not contain any large

2With AB we denote both the 2-itemset (A, B) and the
result of the Monet intersection A n B.

itemsets, or that the collection might contain large
itemsets. The first case allows us to discard the whole
candidate collection; in the latter case we have to do
some computation on this collection that has be done
in the naive method. The extra investment consists
of assembling global information, and zooming in on
suspect subsets. However, this extra investment pays
if a small fraction of the candidates is actually large.

Aggregate information
The idea of assembling aggregate information is simple.
Assume that Al, AZ, . . . , A, are large 1-itemsets. In
pass 2, the naive method would compute the (n(n -
1)/2) intersections AlAs, AlAa,. . . , A,-IA,. If the
size of intersection Al A2 is larger than the support
threshold 6, Al A2 is a large set. The union Al U A2
contains all TIDs of transactions that are either in Al
or As. If we take the aggregate intersection

(Al U A2) n (A3 u A4)
and this intersection is small (i.e., not large), then
this allows us to infer that none of AlAa, AlAd,
A2A3, A2A4 is large. Correctness is easily verified: if
for example Al A3 is large, then there are at least 0
TIDs that are both in Al and A3. These TIDs are
also in the unions (Al U As) and (A3 U Ad), so their
intersection has to be large as well.

If the aggregate intersection is large, we have to com-
pute all intersections Al As, Al Ad, A2A3, AzA4 to de-
termine which of these are large. If none of these in-
tersections is large, we did some superfluous work and
the aggregate is said to be a false alarm.

By computing the union A1 U A2 we also know the
size of intersection A1 As, since this is the sum of the
sizes of both operands minus the size of their union. So
by taking the union, we can determine whether Al A2
is a large itemset.

Taking the aggregate intersection costs three opera-
tions. If the result is small, no further computation is
needed as we established that none of the 6 candidates
are large. If the result is large, we have to compute 4
additional intersections. So we either win 3 operations,
or lose 1, compared to the naive approach, where all 6
intersections are needed.

So in this approach we split the set Al, AZ, . . . , A,
into n/2 pairs, compute the n/2 unions and the n2/8
intersections between the pairs. At best, i.e., when
all aggregate intersections are small, this saves about
3/4 of the operations. So for our example, we reduced
the number of database operations from 180,000 to
45,000. The worst case is that all aggregate intersec-
tions are large so all n2/2 intersections have to be made
as well. In total this would be l/4 more operations
than in the naive approach.

If we take the aggregate union instead of the inter-
section, we can reuse the resulting column (i.e., the
union of Al, AZ, A3 and A4) and compute the aggre-
gate intersection with another union:

152 KDD-95

[(AI u A2) u (A3 u A4)] n [(A5 u As) u (A7 u As)]

If this aggregate intersection is small, each of the 16
combinations AlAs, AlA6,. . ., A4A8 is small as well.
By again taking the union instead of the intersection,
we can reuse this result to compute the intersection of
the union of Al,. . . , A8 and Ag, . . . , A16. If this inter-
section is small, we can rule out another 64 candidates.
So finally we construct the following tree:

P\ /Y P\ P-k
U U U U U U U U

Each node D; in this tree is a newly generated col-
umn in the database, formed by the union of its chil-
dren. During tree construction, we compute the size
of the intersection for each node, using the size of the
union and the sizes of its children. When the size of
an intersection DiDj exceeds the support threshold 0,
then DiDj possibly contains large %itemsets, and is
called an alarm.

Since the size of the unions in this tree increases,
and hence also the probability of false alarms, it is
not useful to compute the tree up to the highest level.
It may be better to cut-off the tree-construction at a
particular level, and compute all remaining n’(n’ - 1)/2
for the n’ nodes at this level.

We wish to compute the level in which false alarms
start to dominate. For brevity, we present the re-
sults only in an extremely simple model. Assume the
support of all large 1-itemsets is 20, twice the sup-
port threshold, and that occurrences of such itemsets
are independent. Thus there are no large 2-itemsets
in this model. Then the expected size of the set Di
at level k is approximately 2”+l0, and for the ex-
pected support E of the intersection Din Di+l we have
Em 2k+la2”+la = 22k+2a2. This is greater than or
equal to u in the case k 2 3 log(l/a) - 1, for example
for u = 0.001 for about k 2 4. Thus in this model
from about the fourth level upwards the false alarms
become quite frequent.

One may observe that internal nodes in this tree cor-
respond to higher-level concepts, e.g., ‘beer or wine’.
If we construct the tree such that it cant ains the gener-
alization hierarchies, we can label some of the internal
nodes with category names. Once we have computed
the tree, we also know the support for these categories.
Hierarchies need not be binary trees, so we may have
to include intermediate nodes, e.g., D1 in the figure
below.

Solving Alarms
If Di Dj at level 1 is an alarm, then the intersection of
D; and Dj is large. These columns are unions of nodes

at level I - 1, respectively, e.g., D1 U D2 and 03 U D4,
so we have to check the four remaining intersections of*
these children, i.e., DlD3, DlD4, DzD3, DzD4. If one
or more of these intersections is large, then we must
find out which of the children in level 1 - 2 caused
this intersection to be large, i.e., recursively repeat the
above activities.

We work our way down the tree and when we fi-
nally find a large intersection where both arguments
are either items (leaves) or categories, we have located
a large 2-itemset. When one of the arguments is a
category (as in ‘beer and chips’), we continue with its
children (‘Heineken and chips’, ‘Budweiser and chips’).
If, on the other hand, at level 1-k no large intersections
can be found, then the alarm was false, and dissolved
at level 2 - k.

In the following, we give the algorithm for solving
alarms in pseudo-code. As input it takes the two nodes
D; and Dj whose intersection is large. The output
consists of the discovered large itemsets; if the alarm
was false, then the algorithm returns an empty set.
With I, we denote the set of all items and category
names.

procedure solve-alarm(Di, Dj)
if Di E I, Dj E I then Large := (DiDj)

else Large := 0
if D; E I then Next := Di x children(Dj) (1)
if Dj E I then Next := Next U children(D;) x Dj (2)
ifDi@I,Dj#Ithen (3)

Next := children(Di) x children(Dj)
forall DiD$ E Next do

compute-intersection(Di, 0;)
if intersection is large then

Large := Large U solve-alarm(Di, 05)
ret urn Large

When Da is a leaf, the set children(Di) is empty. The
set A x B denotes the Cartesian product of sets A and
B, i.e., {ab) a E A, b E B}.

EXAMPLE 1 Assume that during the construction of
the tree in the above figure, we discover that beverages-
02 is an alarm. Since beverages is a category, we apply
rule 1 of the algorithm and compute the two intersec-
tions beverages-snacks and beverages-fruit.

Beverages-snacks is a large 2-itemset. Both bever-
ages and snacks are categories, so we apply rules 1
and 2, and compute the intersections beverages-
chips, beverages-peanuts, beer-snacks and Dl-snacks,
of whom the first three are large. Next, we solve
beverages-chips and discover that beer-chips is large

Holsheimer 153

and &-chips is small. All combinations in beer- $$&Ym
chips (Heineken-chips and Budweiser-chips) are small, (’ “O”O\

database
operations
o(1y1

just as the combinations in beverages-peanuts (beer-
peanuts and &-peanuts).

So finally we discovered the large sets: beverages-
snacks, beverages-chips, beverages-peanuts, beer-
snacks and beer-chips. Likewise, the alarm beverages-
fruit is solved, discovering that also beverages-apples,
juice-fruit and juice-apples are large 2itemsets. I

Experimental results
To verify our theoretical results, and assess the rela-
tive reduction of database operations, we implemented
our algorithm on top of the Monet database server
(Kersten August 1991; van den Berg & Kersten 1994).
Monet uses a vertically partitioned database model,
which is very well suited for a decomposed storage
structure. It supports SQL and ODMG interfaces,
and is used for another data mining tool, Data Sur-
veyor (Holsheimer, Kersten, & Siebes forthcoming;
Holsheimer & Kersten 1994).

Although Monet can execute operations in paral-
lel, we ran our experiments in sequential mode on
an SGI Challenge with 150 Mhz processors and 256
Mbytes of memory (performance results on parallel
database mining can be found in (Holsheimer, Kersten,
& Siebes forthcoming)). As a test-database, we used
the T10.14.DlOOK and the T5.12.DlOOK databases,
used in (Agrawal et al. 1995; Agrawal & Srikant 1994).
These databases contain 100,000 transactions and the
average number of items per transaction is 10 and 5
respectively.

Number of database operations
In the first test, we measured the number of database
operations for different databases, support levels and
cutoff-levels. Figure 1 depicts the number of database
operations (unions and intersections) as a function of
the cut-off level. A cut-off level of 1 corresponds to the
naive approach, where all n(n - 1)/2 intersections are
computed. These test-results show that our technique
effectively reduces the number of database queries with
up to 90% if we construct at least three levels of the
tree.

Elementary database operations
The previous experiment suggests that performance is
stable for cut-off level 2 3. However, database activity,
and hence the execution time, is not only determined
by the number of database operations, but also by the
size of the database relations.
’ In the following experiment, we assess the influence
of the cut-off level on the database activity. To ob-
t ain implement ation and machine independent results,
the amount of activity is measured as the number
of elementary operations, i.e., comparisons between
database objects (TIDs) in the union and intersect op-
erations.

154 KDD-95

400

350

300

250

200

150

100

50

0

200

150

100

50

0

support:
- 250
----- 500
.._..____ 750
. ..***..* ,(-Jo0

T10.14.DlOOK T5.12.DlOOK

Figure 1: Number of database operations

The results for the T10.14.DlOOK database in Fig-
ure 2 show that the cost of tree construction (a) is
linear in the height of the tree: although the number
of nodes halves at each level, the average size of each
node doubles, since it is nearly the sum of the size of its
children. The costs of computing intersections (b) de-
creases, since fewer intersections have to be computed,
but their arguments grow in size. For higher cut-off
levels, the costs for solving alarms (c) grow very fast,
because more false alarms are encountered. Alarms in
the higher levels in the tree are also more expensive to
solve, since arguments for the intersections are larger.

The costs of solving alarms start to dominate from
level 3 onwards. So we may expect that for this
database an optimal performance is achieved by cut-
ting the tree construction at level 3. This also matches
our theoretical analysis in Section 4, that suggested
that false alarms dominate from level 4 on. Fig-
ure 3 shows that our assumption is correct, the to-
tal execution time for both the T10.14.DlOOK and the
T5.12.DlOOK databases is minimal at cut-off level 3.

toted
fcma~Uon time
md

tow
executbn time
(W

I

cutomovel

T10.14.DlOOK T5.12.DlOOK

Figure 3: Total execution time.

elem
OperatlOnS
Ix low

ek4m

I I I I I I
1234567

CUtOffleVel

(a) Tree construction
CUtOffleVel culollievel

(b) Comput ing intersections (c) Solving alarms

,e-- *
@ ,

200
/

/ / *.__----

=l+Li-

I .-
I .-

,.--
100 I ,' a'

..*
I ,'**

I l ’ ..’
’ . .

0
L c ‘<<.

2 3 4 5 6

Figure 2: Elementary operations for different phases.

Conclusions
We have considered finding association rules by using
a general-purpose database management system. The
resulting algorithm is extremely easy to implement and
reasonably fast: while it does not compete with the
fastest methods, it is quite usable on all but the largest
data sets and the smallest support thresholds.

Our results support the notion that dbms techniques
can be used profitably in building data mining tools
(Holsheimer et al. 1995). We are currently investigat-
ing how this approach works on other topics, e.g., for
finding integrity constraints on databases (Mannila &
Raiha 1994).

While our goal was not to develop a yet faster as-
sociation rule finding method, the approach described
above gives some possibilities even for that. For exam-
ple, if the construction of the tree in Section 4 succeeds
in an optimal way, there will be very few alarms. While
an optimal construction is difficult, one can approxi-
mate it quite well either by looking at the supports of
the large 1-itemsets, or by taking a sample, finding the
large 2-itemsets from it and using that information to
build the tree. Moreover, parallel database techniques
(Holsheimer, Kersten, & Siebes forthcoming) can be
exploited to even further speed up search.

References
Agrawal, R., and Srikant, R. 1994. Fast algorithms
for mining association rules in large databases. In
VLDB ‘94.
Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.;
and Verkamo, A. I. 1995. Fast discovery of associa-
tion rules. In Fayyad, U. M.; Piatetsky-Shapiro, G.;
Smyth, P.; and Uthurusamy, R., eds., Advances in
Knowledge Discovery and Data Mining. AAAIfMIT
Press. To appear.
Agrawal, R.; Imielinski, T.; and Swami, A. 1993.
Mining association rules between sets of items in large

databases. In Proceedings of the 1999 International
Conference on Management of Data (SIGMOD 98),
207 - 216.
Fayyad, U. M., and Uthurusamy, R., eds.
1994. AAAI-94 Workshop Knowledge Discovery in
Databases.
Holsheimer, M., and Kersten, M. L. 1994. Architec-
tural support for data mining. In Fayyad and Uthu-
rusamy (1994), 217 - 228.
Holsheimer, M.; Klosgen, W .; Mannila, H.; and
Siebes, A. 1995. A data mining architecture. In
preparation.
Holsheimer, M.; Kersten, M.; and Siebes, A. forth-
coming. Data Surveyor: Searching the nuggets in
parallel. In Fayyad, U. M.; Piatetsky-Shapiro, G.;
Smyth, P.; and Uthurusamy, R., eds., Advances in
Knowledge Discovery and Data Mining. AAAI/MIT
Press.
Kersten, M. L. August 1991. Goblin: A DBPL de-
signed for Advanced Database Applications, In 2nd
Int. Conf. on Database and Expert Systems Applica-
tions, DEXA ‘91.
Khoshafian, S.; Copeland, G.; Jadodits, T.; Boral, H.;
and Valduriez, P. 1987. A query processing strategy
for the decomposed storage model. In Proc. IEEE
Data Engineering Conf, 636-643.
Mannila, H., and Raiha, K.-J. 1994. Algorithms for
inferring functional dependencies. Data tY Knowledge
Engineering 12(1):83- 99.
Mannila, H.; Toivonen, H.; and Verkamo, A. I. 1994.
Efficient algorithms for discovering association rules.
In Fayyad and Uthurusamy (1994), 181 - 192.
van den Berg, C. A., and Kersten, M. L. 1994. An
analysis of a dynamic query optimisation scheme for
different data distributions. In Freytag, J.; Maier, D.;
and Vossen, G., eds., Advances in Query Processing.
Morgan-Kaufmann. 449 - 470.

Holsheimer 155

