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Abstract 

This paper introduces a new measurement, robustness, 
to measure the quality of machine-discovered knowl- 
edge from real-world databases that change over time. 
A piece of knowledge is robust if it is unlikely to 
become inconsistent with new database states. Ro- 
bustness is different from predictive accuracy in that 
by the latter, the system considers only the consis- 
tency of a rule with unseen data, while by the former, 
the consistency after deletions and updates of existing 
data is also considered. Combining robustness with 
other utility measurements, a system can make intel- 
ligent decisions in learning and maintenance of knowl- 
edge learned from changing databases. This paper 
defines robustness, then presents an estimation ap- 
proach for the robustness of Horn-clause rules learned 
from a relational database. The estimation approach 
applies the Laplace law of succession, which can be 
efficiently computed. The estimation is based on 
database schemas and transaction logs. No domain- 
specific information is required. However, if it is avail- 
able, the approach can exploit it. 

Introduction 
Databases are evolving entities. Knowledge discovered 
from one database state may become invalid or incon- 
sistent with a new database state. It is important to 
know whether a piece of knowledge is robust against 
database changes. Predictive accuracy, commonly used 
in inductive learning and knowledge discovery as a 
measurement, is not appropriate for databases that 
change. Although data tuples look alike in a database 
and in an example set of inductive learning applica- 
tions, they should be treated differently. In inductive 
learning, a tuple represents a static state, an example 
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of experience, whereas in a database, a tuple repre- 
sents a dynamic state of the world that changes over 
time. Moreover, data may be deleted or updated in 
a database, but predictive accuracy measures only the 
probability that learned knowledge is consistent with 
new data. 

In a changing environment like a database, estimat- 
ing robustness of learned knowledge enables a system 
to make intelligent decisions in order to learn and 
maintain knowledge economically. Consider a tour 
guide who leads groups of tourists. From a particu- 
lar group of tourists, the tour guide might learn that 
the age of these tourists is more than 55. He might also 
learn that tourists from Quebec speak fluent French. 
Obviously, knowledge about age is not robust, because 
it changes depending on particular groups, but knowl- 
edge about language usage is robust. The tour guide 
may try to remember the knowledge about language 
usage but forget the knowledge about age right after 
he sends the group home. However, the knowledge 
about age may still be useful for the guide to decide 
how often he should let his tourists take a break. 

Estimating the robustness of learned knowledge 
is especially useful for applications that learn from 
databases so as to improve their performance. An 
example of those applications is learning for semantic 
query optimization (Siegel 1988; Hsu & Knoblock 1994; 
1995). Semantic query optimization (SQO) (King 
1981; Hsu & Knoblock 1993b) optimizes a query by 
using semantic rules, such as all Maltese seaports have 
railroad access, to reformulate a query into a less ex- 
pensive but equivalent query. For example, suppose 
we have a query to find all Maltese seaports with rail- 
road access and 2,000,OOO ft3 of storage space. From 
the rule given above, we can reformulate the query so 
that there is no need to check the railroad access of 
seaports, which may reduce execution time. 

In our previous work (Hsu & Knoblock 1993a; 1994; 
1995), we have developed a learning approach that 
achieves an optimization saving above 43 percent using 
learned rules. Though these rules yield good optimiza- 
tion performance, many of them may become invalid 
after the database changes. To deal with this problem, 

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



Schema: 
geoloc(name,glc-cd,country,latitude,longitude), 
seaport(name,glczd,storage,silo,crane,rail). 

Rules: 
Rl: ?latitude > 35.89 -+ geoloc(-,-,"Halta",?latitude,$. 
R2: seaport(-,?glc-cd,-,-,-,-I f= geoloc(-,?glc-cd,"Halta",-,-). 
R3: ?storage > 2000000 (: seaport&,?glc-cd,?storage,-,-,-) A geoloc(-,?glc-cd,"Halta",-,-I. 

Table 1: Schema of a geographic database and semantic rules 

geoloc("Safaqis", 8001, Tunisia, . ..) seaport("Marsaxlokk" 8003 . ..I 
geoloc("Valletta", 8002, Malta, . ..)+ seaport("Grand Harbor" 8002 . ..) 
geoloc('%arsaxlokk", 8003, Halta, . . .I+ seaport("Harsa" 8005 . ..) 
geoloc("San Paul", 8004, I4alta, . ..)+ seaport("St Pauls Bay" 8004 . ..) 
geoloc('Warsalforn", 8005, Xalta, . ..)+ seaport("Catania" 8016 . ..) 
geoloc("Abano", 8006, Italy, . ..I seaport("Palerm0" 8012 . ..) 
geoloc("Torino", 8007, Italy, . ..I seaport("Traparri" 8015 . ..) 
geoloc("Venezia", 8008, Italy, . ..I seaport("AbuKamash" 8017 . ..) 

. . . . . . 

Table 2: A database fragment 

the learning system can estimate the robustness of can- 
didate rules and learn those rules with high estimated 
robustness. When the database is changed, a main- 
tenance system can be used to update the robustness 
and delete those rules with low robustness. Meanwhile, 
the learning system can keep learning new rules from 
new database states. This way, the system can au- 
tonomously maintain a set of effective and consistent 
rules for optimization. 

In this paper, we first establish the basic terminol- 
ogy on databases and rules. Next, we present both 
informal and formal definitions of robustness. Follow- 
ing that, we review the Laplace law of succession and 
then describe how it is used to estimate the robust- 
ness of a Horn-clause rule. Finally, we conclude with a 
summary of the contributions and directions for future 
work. 

Databases and Rules 
This section briefly introduces the basic database and 
knowledge discovery terminology that will be used 
throughout this paper. We are particularly interested 
in estimating the robustness of Horn-clause rules de- 
rived from a relational database, because Horn-clause 
rules and relational databases are widely used in prac- 
tice. In this paper, a database consists of a set of re- 
lations. A relation is then a set of instances. Each in- 
stance is a vector of attribute values. The number of at- 
tributes is fixed for all instances in a relation. The val- 
ues of attributes can be either a number or a string, but 
with a fixed type. Table 1 shows the schema of an ex- 
ample database with two relations and their attributes. 
In this database, the relation geoloc stores data about 
geographic locations, and the attribute glc-cd is a ge- 

ographic location code. 
Knowledge is expressed in Horn-clause rules in this 

paper. Table 1 shows some Horn-clause rules describ- 
ing the data. We adopt standard Prolog terminol- 
ogy and semantics as defined in (Lloyd 1987) in our 
discussion of rules. In addition, we refer to literals 
on database relations as database literuls (e.g., sea- 
port(-,?glc-cd,?storage,-,-,-)), and literals on built-in 
relations as built-in literuls (e.g., ?latitude 2 35.89). 
In Table 1, rule Rl states that the latitude of a Mal- 
tese geographic location is greater than or equal to 
35.89. R2 states that all Maltese geographic locations 
are seaports. R3 states that all Maltese seaports have 
a storage capacity greater than 2,000,OOO ft3. 

A database state at a given time t is the collection 
of the instances presented in the database at the time 
t. We use the closed-world assumption (CWA) to in- 
terpret the semantics of a database state. That is, 
information not explicitly presented in the database is 
taken to be false. A rule is said to be consistent with a 
database state if all variable instantiations that satisfy 
the antecedent of the rule also satisfy the consequent 
of the rule. A straightforward approach to identify- 
ing an inconsistent rule is to transform a rule of the 
form C + A into a query 4’ A A. If the query re- 
turns an answer that is not empty, then the rule is 
inconsistent. For example, R2 in Table 1 is consistent 
with the database fragment shown in Table 2, since for 
all geoloc tuples that satisfy the body of R2 (labeled 
with a “+” in Table l), there is a corresponding tuple 
in seaport with a common glc-cd value. 

A database can be changed by transactions. There 
are three kinds of primitive transactions - inserting 
a new tuple into a relation, deleting an existing tuple 
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from a relation, and updating an existing tuple in a 
relation. A transaction can be considered as a mapping 
from a database state to a new database state. 

Robustness 
Intuitively, a rule is robust against database changes 
if it is unlikely to become inconsistent after database 
changes. This can be expressed as the probability that 
a database is in a state consistent with a rule. 

Definition 1 (Robustness - intuitive definition) 
Given a rule r, let D denote thP event that a database 
is in a state that is consistent with r. The robustness 
of r is Robust(r) = Pr(D). 

This probability can be estimated by the ratio be- 
tween the number of all possible database states and 
the number of database states consistent with a rule. 
That is, 

Robust(r) = 
# of database states consistent with r 

# of all possible database states 
There are two problems with this estimation. The 

first problem is that it treats all database states as if 
they are equally probable. That is obviously not the 
case in real-world databases. The other problem is that 
the number of possible database states is intractably 
large, even for a small database. An alternative defini- 
tion can be derived from the observation that the like- 
lihood of database states is determined by a current 
database state and the probability of certain transac- 
tions on that state. A rule become inconsistent when 
a transaction that results in a new state inconsistent 
with the rule is performed. The robustness of a rule 
can then be defined as the complement of the proba- 
bility that such a transaction is performed. In other 
words, for a given rule and a current database state, 
if the transactions that will invalidate the rule are un- 
likely to be performed, then the rule is robust. We 
present this reformulated definition as follows: 
Definition 2 (Robustness) Given a database state 
d and a rule r that is consistent with d, let t denote 
the transactions on d that result in new database states 
inconsistent with r. The robustness of r in the database 
state d is Robust(rld) = 1 - Pr(tld). 

This definition retains our intuitive notion of robust- 
ness, but allows us to estimate robustness without es- 
timating the probability of possible database states. 
The main difference is in that the intuitive definition 
defines the robustness regardless of how databases are 
changed. In Definition 2, the robustness of a rule is 
different in different database states. Since databases 
are changed over time, the robustness of a rule should 
change accordingly. Definition 2 captures this idea. 

Laplace Law of Succession 
This section introduces two useful estimates for the 
probability of the outcomes of a repeatable random 

experiment. They 
ness of rules. 

will be used to estimate the robust- 

Theorem 1 (Laplace Law of Succession) Given 
a repeatable experiment with an outcome of one of any 
K classes. Suppose we have conducted this experiment 
n times, r of which have resulted in some outcome C, 
in which we are interested. The probability that the 
outcome of the next experiment will be C can be esti- 

r+l mated as - 
n+k’ 

Detailed description and a proof of the Laplace law 
of succession can be found in (Howson & Urbach 1988). 
The Laplace law applies to aiy repeatable experiments 
that can be performed as many times as required. An 
example of a repeatable experiment is tossing a coin. 
The Laplace law is a special case of a modified estimate 
called m-Probability (Cestnik & Bratko 1991). A prior 
probability of outcomes can be brought to bear in this 
more general estimate. 
Theorem 2 (m-Probability) Let r, n, and C be as 
in Theorem 1. Suppose Pr(C) is known as the prior 
probability that the-experimkni has an outcome CT and 
m is an madjusting constant that indicates our confi- 
dence in the prior probability Pr(C). The probability 
that the outcome of the next experiment will be C can 

be estimated as 
r+rnePr(C) 

n+m . 
The idea of m-Probability can be understood as a 

weighted average of known relative frequency and prior 
probability: 

r+m-Pr(C) = 
n-l-m ( &) - t;, + (5) - WC) 

where n and m are the weights. The Laplace law 
is a special case of the m-probability estimate with 
Pr(C) = l/k, and m = k. The prior probability used 
here is that k outcomes are equally probable. The 
m-probability estimate has been used in many ma- 
chine learning systems for different purposes. Convinc- 
ing results in handling noisy data and pruning deci- 
sion trees have been achieved (Cestnik & Bratko 1991; 
LavraE & Dieroski 1994). We will use these theorems 
to estimate the probability of transactions and the ro- 
bustness of rules. 

Estimating Robustness 
Our problem is to estimate the robustness of a rule 
based on the probability of transactions that may in- 
validate the rule. This problem can be decomposed 
into the problem of deriving a set of transactions that 
may invalidate a rule and estimating the probability 
of those transactions. This section illustrates our ap- 
proach with an example. 

Consider Rd in Table 3 as an example. Transactions 
that map the current database state to a state that sat- 
isfies the negation of RI will invalidate RI. The nega- 
tion of Rl is: 
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Rl: ?latitude 2: 35.89 + geoloc(-,,,"Halta",?latitude,S. 

Tl: One of the existing tuples of geoloc with its country - "Halta" is updated such that its 
latitude < 35.89. 

T2: A new tuple of geoloc with its country = "Halta" and latitude < 35.89 is inserted to , 
the database. 

T3: One of the existing tuples of geoloc with its latitude < 35.89 and its country not equal to 
"Malta" is updated such that its country = "Halta". 

Table 3: Transactions that invalidate RI 

3 ?latitude: ?latitude < 35.89 A 
geoloc(-,-, "Halta",?latitude,S. 

Note that variables in a Horn-clause rule are uni- 
versally quantified. Table 3 lists three transactions 
that will invalidate RI because in the database states 
yielded by them, there exists a tuple of geoloc that 
satisfies the negation of RI. Since Tl, T2, and T3 
are mutually exclusive, we have Pr(T1 V T2 V T3) = 
Pr(T1) + Pr(T2) + Pr(T3). The probability of these 
transactions, and thus the robustness of RI, can be 
estimated from the probabilities of Tl, T2, and T3. 

We now demonstrate how Pr(T1) can be estimated 
only with the database schema information, and how 
we can use the Laplace law of succession when transac- 
tion logs and other prior knowledge are available. We 
first decompose the transaction Tl into a conjunction 
of more primitive statements such that constraints of 
different degrees of detail are excerpted: 
l al: a tuple is updated. 
l a2: a tuple of geoloc is updated. 
l as: a tuple of geoloc with its country = ‘%alta” 

is updated. 
o a.+: atuple of geoloc whose latitude isupdated. 
l as: a tuple of geoloc whose latitude is updated 

to a value less than 35.89. 
These statements specify constraints, respectively, of 
the type of the transaction, which relation, which tu- 
ples, which attributes, and how the update is per- 
formed. From the probability theory, we have 

Pr(T1) = Pr(al A a2 A a3 A a4 A as) 
= Pr(al) - Pr(aalal) - Pr(asla2 A al) - 

Pr(aa(aa A a2 A al) . Pr(asla4 A a3 A a2 A al) 

We estimate each conditional probability using the 
Laplace law or the m-probability theorem. They are 
applicable because transactions of a database are ran- 
dom repeatable events. Since we decompose a com- 
plex transaction into conditional events, information 
such as database schema, transaction logs, and domain 
knowledge such as expected size of relations, expected 
distribution, range of attribute values, etc., can be eas- 
ily included in the estimation. When no information is 
available, we use the principle of indifference and treat 
all possibilities as equally probable. We now describe 
how these conditional probabilities can be estimated. 

l A tuple is updated: 
1 

Pr(a1) = 
g# 

no information available 
transaction log available 

where t, is the number of previous updates and t is 
the total number of previous transactions. Because 
there are three types of primitive transactions (inser- 
tion, deletion, and update), when no information is 
available, we will assume that updating a tuple is one 
of three possibilities. When a transaction log is avail- 
able, we can use the Laplace law to estimate this prob- 
ability. 

l A tuple of geoloc is updated, given that a tuple is 
updated: 

Pr(a2lal) = 
no information available 
transaction log available 

where R is the number of relations in the database (this 
information is available in the schema), and tu,geoloc 
is the number of updates made to tuples of relation 
geoloc. Similar to the estimation of Pr(al), when no 
information is available, the probability that the up- 
date is made on a tuple of any particular relation is 
one over the number of relations in the database. 

l A tuple of geoloc with its country = “Malta” is 
updated, given that a tuple of geoloc is updated: 

no information available 
transaction log available 

where G is the size of relation geoloc, Ia is the 
number of tuples in geoloc that-satisfy country = 
“Xalta”, and t u,a3 is the number of updates made on 
the tuples in geoloc that satisfy country = “Malta”. 
The number of tuples that satisfy a literal can be 
retrieved from the- database. If this is too expen- 
sive for large databases, we can use the estima- 
tion approaches used for conventional query optimiza- 
tion (Ullman 1988; Piatetsky-Shapiro 1984) to esti- 
mate this number. 

l The value of latitude is updated, given that a tu- 
ple of geoloc with its country = “Malta” is updated: 
Pr(a4las A a2 A al) = Pr(aJla2 A al) 

no information available 
transaction log available 
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R2: seaport(-,?glc-cd,-,-,-,-) (: geoloc(-,?glc-cd,"Malta",-,J. 

Tl: One of the existing tuples of geoloc with its couutry = 'Walta" is updated such that its 
glc-cd value is not equal to any glc-cd values of seaport tuples. 

T2: A set of tuples of seaport sharing their glc-cd values is updated such that their glc-cd 
values are not equal to any glc-cd values of geoloc tuples with their country = "Halta". 

T3: A new tuple of geoloc with its country = "Halta" and glc-cd not equal to any glc-cd 
values of seaport tuples is inserted into the database. 

T4: A set of tuples of seaport sharing their glc-cd values , which are equal to any glc-cd 
values of geoloc tuples with their country = 'Y¶alta", is deleted. 

Table 4: Transactions that invalidate R2 

where A is the number of attributes of geoloc, 
tu,geoloe,latitude is the number of updates made on the 
latitude attribute of the geoloc relation. Note that 
a4 and us are independent and the condition that 
country = “Halta’@  can be ignored. Here we have 
an example of when domain-specific knowledge can be 
used in estimation. We can infer that latitude is less 
likely to be updated than other attributes of geoloc 
from our knowledge that it will be updated only if the 
database has stored incorrect data. 

l The value of latitude is updated to a value less 
than 35.89, given that a tuple of geoloc with its 
country = “Halta” is updated: 

Pr(asla4 A a3 A a2 A al) 

{ 
0.5 no information available = 0.398 with range information 

Without any information, we assume that the attribute 
will be updated to any value with uniform chances. 
The information about the distribution of attribute 
values is useful in estimating how the attribute will 
be updated. In this case, we know that the latitude is 
between 0 to 90, and the chance that a new value of 
latitude is less than 35.89 should be 35.89/90 = 0.398. 
This information can be derived from the data or pro- 
vided by the users. 

Assuming that the size of relation geoloc is 80, four 
of them with country = “Halta”, without any trans- 
action log information, and from the example schema 
and the database state (see Table 1 and Table 2), 
we have 2 relations in the database, 5 attributes for 
geoloc relation. Therefore, 

Pr(Tl)= - 1 .- 1 .- 4 .-.- 1 1 = 
3 2 80 5 2 

0.008 

Similarly, we can estimate Pr(T2) and Pr(T3). Suppose 
that Pr(T2) = 0.241 and Pr(T3) = 0.001, then the 
robustness of the rule can be estimated as 1 - (0.008 + 
0.241+ 0.001) = 0.75. 

The estimation accuracy of our approach may de- 
pend on available information, but even given only 
database schemas, our approach can still come up with 
a reasonable estimation. This feature is important 

because not every real-world database system keeps 
transaction log files, and those that do exist may be 
at different levels of granularity. It is also difficult to 
collect domain knowledge and encode it in a database 
system. Nevertheless, the system must be capable of 
exploiting as much available information as possible. 

Implementation 
Deriving transactions that invalidate an arbitrary logic 
statement is not a trivial problem. Fortunately, most 
knowledge discovery systems have strong restrictions 
on the syntax of discovered knowledge. Therefore, we 
can manually derive a set of templates of transactions 
for different classes of knowledge specification. In our 
case of Horn-clause rules, there are two classes that 
need different templates: 
1. A rule with a built-in literal as its consequent (e.g., 

Rl). Templates of transactions that invalidate these 
rules can be generalized from those for RI shown in 
Table 3. 

2. A rule with its consequent a database literal (e.g., 
R2). Templates of transactions that invalidate these 
rules can be generalized from those for R2 shown in 
Table 4. 
To estimate robustness efficiently, each transaction 

in a template must be minimal in the sense that no 
redundant conditions are specified. For Rl, a transac- 
tion that updates a tuple of geoloc with its country 
= “Ralta” such that its latitude < 35.89 and its 
longitude > 130.00 will invalidate Rl. However, the 
extra condition “longitude > 130.00” is redundant; 
thus the transaction is not minimal. Also, transac- 
tions should be mutually exclusive so that no transac- 
tion covers another. For any two transactions t, and 
tb, if tb covers t,, then Pr(t, V tb) = Pr(t,) and it is 
redundant to list tb for probability estimation. Again, 
for RI, a transaction that deletes all geoloc tuples and 
then inserts tuples invalidating Rl does not need to be 
considered, because it covers T2 in Table 3. 

Furthermore, we can derive the templates of the 
equations to compute robustness estimation for each 
type of rules. Then the system can estimate the ro- 
bustness of rules by retrieving necessary parameters 
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(e.g., the size of a relation) and applying the equa- 
tions directly. The system can even link parameters 
with rules. When the database is changed, the system 
can update the robustness of rules by increasing those 
parameters being affected and recompute the proba- 
bility. This way, the estimated robustness is able to 
evolve with databases and thus supports rule mainte- 
nance systems in decision making. 

Discussion 
Robustness is an appropriate and practical measure- 
ment for knowledge discovered from databases that are 
changed frequently. An efficient estimation approach 
for robustness enables effective learning and knowledge 
maintenance. This paper has defined robustness as 
the complement of the probability of rule-invalidating 
transactions, and described an estimating approach. 

Robustness in its more general sense can be used to 
guide the learning of drifting concepts from dynamic 
environments (Helmbold & Long 1994; Widmer & Ku- 
bat 1993). So far, approaches to learning drifting con- 
cepts assume a world that changes gradually, and focus 
on incremental modification of learned rules. Learning 
robust rules may increase their tolerance to the world 
changes and reduce the need of modification effort. 

We are currently working on applying our approach 
to learning for semantic query optimization, as de- 
scribed earlier in this paper. The approach can also be 
applied to other database applications, such as view 
management, intelligent database caching (Arens & 
Knoblock 1994), and learning for the integration of het- 
erogeneous multidatabases (Ambite & Knoblock 1995). 
These applications require the system to extract a com- 
pressed description (e.g., a view definition) of data, and 
the consistency of the description with the database 
is important. Robustness can guide the system to ex- 
tract robust descriptions so that they can be used with 
minimal maintenance effort. Our future work includes 
empirical comparisons of robustness and other mea- 
surements of learned knowledge. Another direction for 
future work is to extend the definition and estimation 
approach of robustness to probabilistic rules. 
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