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Abstract 

Many machine-learning (either supervised or unsu- 
pervised) techniques assume that data present them- 
selves in an attribute-value form. But this formal- 
ism is largely insufficient to account for many appli- 
cations. Therefore, much of the ongoing research now 
focuses on first-order learning systems. But complex 
formalisms lead to high computational complexities. 
On the other hand, most of the currently installed 
databases have been designed according to a formal- 
ism known as entity-relationship, and usually imple- 
mented on a relational database management system. 
This formalism is far less complex than first-order 
logic, but much more expressive than attribute-value 
lists. In that context, the database schema defines 
an abstraction space, and learning must occur at each 
level of abstraction. This paper describes a clustering 
system able to discover useful groupings in structured 
databases. It is based in the COBWEB algorithm, to 
which it adds the ability to cluster structured objects. 

Introduction 
Knowledge discovery in databases (KDD) is a current 
trend in machine learning research aimed at developing 
techniques and algorithms able to discover previously 
unknown knowledge in real-world databases (i.e. usu- 
ally huge and noisy repositories of data) (Piatetsky- 
Shapiro & Frawley 1991). Clustering techniques re- 
spond in many ways to these requirements. The goal 
of clustering is to find important regularities in the 
data, and its result is a set of classes that have been 
found to accurately summarize the data. 

In this paper, we concentrate on the fact that real- 
world databases are usually structured, i.e. that sev- 
eral levels of abstraction exist, at which the data are 
observed. Since many statistical as well as machine- 
learning algorithms assume that raw data appears in 
the form of a rectangular array, with individuals de- 
scribed along a fixed list of attributes, databases often 
need to be preprocessed to be analyzed. This paper 
takes an opposite position, by adapting algorithms to 
deal with the data they will meet. 
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Early attempts to handle more complex formalisms 
include (Michalski & Stepp 1983), where an extension 
of propositional logic is used. More recent works ex- 
tend clustering techniques to higher level languages: 
KBG (Bisson 1992) deals with first-order logic. KLuS- 
TER (Kietz & Morik 1994) uses a KL-ONE-like lan- 
guage to avoid computational complexity and still keep 
comfortable representative power. However, two main 
characteristics of real world databases may make exist- 
ing algorithms hard to apply. First, many domains in- 
clude a lot of numerical information, which often needs 
ad-hoc handling in logic-based formalisms. Second, as 
KDD concentrates on large databases, most current 
techniques (which work in a batch manner) may fail. 
In this paper, incrementality is considered a manda- 
tory feature of a KDD system. 

Also, most currently used database design for- 
malisms are still far less complex than logic-based for- 
malisms. In the field of database, at the user level, 
representation formalisms have more or less cristalized 
on the Entity-Relationship model, even though other 
promising approaches emerge. This consensus is partly 
due to the wide availability of relational databases 
management systems, on which E/R models can easily 
be implemented. 

This paper advocates a compromise between repre- 
sentational complexity and efficiency. The next section 
explain how databases are usually structured’and what 
form of data a clustering algorithm may be presented 
with. Then, a clustering algorithm is briefly reviewed, 
and an adaptation is proposed to handle structured 
data. An experiment illustrates the algorithm. Fi- 
nally, a comparison with other system is sketched, and 
various aspects are discussed. 

Database Modeling 
Any real-world database is designed to reflect the phys- 
ical organization of the domain in which it is used: 
therefore, databases are usually structured. The struc- 
ture is derived by a preliminary analysis of the part of 
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the world to be represented. The result of this analysis 
is called a “conceptual model”. This model defines sev- 
eral levels of abstractions at which data are observed. 

The most widely used approach to this model- 
ing task is called Entity-Relationship modeling (Chen 
1976). Databases are usually designed at the E/R 
level, and then “projected” onto a more specific model 
(like the relational model) for the purpose of im- 
plementation (Teorey, Yang, & Fry 1986). In some 
commercial products, this process is even automated. 
Modern databases systems also include some “reverse- 
engineering” tools, which derive an E/R model from 
an existing relational database, thus allowing mainte- 
nance to operate at the E/R level. 

The E/R modeling formalism is based on three no- 
tions: 

Entities: an entity is basically the definition of the 
representation of a set of instances (occurrences) 
that will be represented with the same list of vari- 
ables. Entities correspond to “types” of objects en- 
countered in the domain, each one providing a par- 
ticular level of abstraction. 

Fjk r ~------Fl 

Each occurrence xi of X “contains” (more precisely 
“is connected to”) any number of occurrences of Y. 
Objects like xi are called composite, or simply struc- 
tured, because their complete representation spans sev- 
eral levels of abstraction. They may be written down 
as: 

Attributes: attributes are the variables along which 
entities are described. Attributes may have two us- 
ages: identifiers (i.e. with distinct values along each 
occurrence) or descriptive attributes. Obviously, 
identifiers are of no use to a learning system, and 
only descriptive attributes may be used in search for 
useful generalizations. 

xi = (r = (yihyi2, -. . ,yh}> 

Now the question is: If we had a set xi ,x2 ,. . . xn of oc- 
currences of X, how would we find coherent groupings 
of them, and how would we compute a representation 
for a grouping? This is the topic of the next section. 

Relationships: a relationship connects two (or more) 
entities. Relationships are used to represent the 
structural organization of pieces of data, and pro- 
vide links between distinct abstraction levels. A rela- 
tionship is characterized by its “cardinality”, which 
gives the number of occurrences of one entity con- 
nected to one occurrence of the other entity involved. 
One-to-one relationships connect one occurrence of 
one entity to exactly one occurrence of the other 
entity. One-to-many relationships allows several oc- 
currences of the entity at the “many-side” to be con- 
nected to the same occurrence of the entity at the 
“one-side”. Many-to-many relationships allows mul- 
tiple connections in both directions. 

Clustering and Composite Objects 
Conceptual Clustering 

Though one-to-one relationships may be seen 

Let us first briefly recall the algorithm used to solve the 
clustering problem. The COBWEB algorithm (Fisher 
1987) takes as input a sequence of attribute-value lists, 
and forms a hierarchy of increasingly specific clusters. 
Unlike statistical cluster-analysis techniques, the de- 
scription of a cluster is more than the set of instances 
it covers. In the case of COBWEB, some prototypical 
value is kept for each attribute, along with an indica- 
tion on how instances’ values may vary. Each incoming 
object is driven through the existing hierarchy in a top- 
down manner. On its path from the root to a leaf, the 
object may trigger restructuring operators, leading to 
topological modifications of the hierarchy. 

as structuring conventions only, one-to-many and The heuristic used to drive the incorporation of a 
many-to-many relationships cannot be represented in new object is based on the predictive ability of the 
attribute-value formalisms. The representation of an clusters. The predictivity of a cluster is an averaging 
occurrence is no more of a fixed size, because the num- of the predictivity of individual attributes inside that 
ber of other occurrences to which it is connected to cluster. The predictivity of an attribute given a clus- 
may not be the same for all occurrences: the data do no ter is expressed as a summation of squared conditional 
more fit in a rectangular array. If the E/R model is to probabilities of potential values of that attribute. 

be implemented on a relational database management 
system, two major cases can be distinguished: either 
some tables are augmented with foreign-key columns, 
or specific tables are created to contain occurrences of 
relationships (Teorey, Yang, & Fry 1986). 

The “conceptual” model of a database is the result of 
a thorough study of the domain. From a learning point 
of view, it provides an abstraction space. Unsupervised 
learning in an E/R modeled domain involves learning 
at different levels of abstraction: this means that clus- 
ters have to be build for each entity. This problem has 
been called structured concept formation (Thompson 
& Langley 1991). To illustrate the problem, suppose 
two entities X and Y connected by a one-to-many re- 
lationship r (from X to Y). 
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Let I be the number of attributes. The predictivity 
of a cluster C is then defined as: 

II(C) = 5 &qA,,C), 
i=l 

where the predictivity of an attribute is 

J(i) 
ll(Ai, C) = c P(Ai = V& 1 C)“, 

j=l 

if J(i) is the number of potential values of Ai. This 
measure has been developed by cognitive scientists to 
account for human abilities in deciding which objects 
form a category. Space is insufficient here to repeat the 
argument, but full details are given by Fisher (1987). 
This predictivity measure is also the one used in CART, 
where it is called gini-index. The quantity II(C) may 
be interpreted as the number of attribute values that 
can be accurately predicted given membership to C. 
This gives a quantitative index that monotonically in- 
creases on any path from the root to a leaf of the hi- 
erarchy. 

The predictivity of clusters is used to compute the 
quality of partitioning a cluster C into {Cl, . . . , CK}. 
Such a partition leads to a gain in predictivity, which 
can be evaluated with: 

f 5 P(G) [IqGc) - W>l7 
lc=l 

that is, a weighted average of the gain in predictivity 
between C and each of its sub-cluster. This heuristic 
is very similar to the one used in supervised learn- 
ing algorithm like CART or 1~3, except that the whole 
representation is used to measure the “quality” of the 
sub-clusters, instead of a single class-attribute. 

The original COBWEB algorithm was designed to 
deal with nominal attributes. In that case, the predic- 
tivity of an attribute is computed from the frequency 
count of each value of each attribute, which is stored in 
each cluster. The CLASSIT algorithm (Gennari, Lan- 
gley, & Fisher 1989) extends this formalism to deal 
with numerical attributes, where an underlying nor- 
mal distribution is assumed. The predictivity can thus 
be expressed as the inverse of the standard deviation. 
Any new type of attribute could be defined, as soon as 
a representation is provided for generalizations, along 
with a measure of predictivity (i.e. II(Ai, C)) to eval- 
uate such generalizations. 

Representation 
As seen above, a preliminary analysis of the domain 
leads to entities, which represent abstractions of the 

data to analyze. In this section, we will concentrate 
on the problem of clustering occurrences of an entity 
which is at the “one-side” of a one-to-many relation- 
ship. We will assume that a hierarchical clustering 
of occurrences of the entity at the “many-side” can 
be computed, or is given as background knowledge. 
Occurrences of the entity at the “one-side” are called 
composite objects, and occurrences of the entity at the 
“many-side” are called components. The goal is to 
build a hierarchical organization of clusters of com- 
posite objects. 

In contrast with strictly logical formalisms, which 
characterize clusters (or concepts) by necessary and 
sufficient conditions, COBWEB represents clusters in 
a probabilist form. The characterization of a cluster 
includes, for each attribute, a distribution of the val- 
ues observed in instances covered by the cluster. A 
distribution includes a typical value and some infor- 
mation on how this value may vary between instances. 
Therefore, in the case where objects are structured, the 
requirements are twofold: 

l find a characterization of a cluster of composite ob- 
jects (i.e. a generalization for a set of sets of compo- 
nents); 

l evaluate how much this characterization is “predic- 
tive” (i.e. how precisely components of instances of 
that cluster can be predicted). 

The system described in this paper performs com- 
posite objects clustering in a “component first” 
style. Components are clustered first, leading to a 
component-clusters hierarchy. Then, composite ob- 
jects are clustered. The characterizations of composite- 
clusters are built up with references to the component- 
clusters that describe commonalities between the cov- 
ered composite objects. 

Central Clusters 
This section describes how, with the help of a compo- 
nent cluster hierarchy, the algorithm can build a com- 
posite cluster hierarchy. The COBWEB algorithm is 
used to cluster components as well as composite ob- 
jects. This section describes the representation of com- 
posite clusters (i.e. the representation of a prototype) 
and their evaluation (i.e. the computation of II(C)). 

When presented with several sets of objects, the only 
way to give a general description (a generalization) of 
these sets is to find their common parts, i.e. the way 
they are similar to each others. The problem is thus to 
find their mutual intersection. But a crude intersection 
is of no use, because the instance space is usually large 
(if not infinite), and the intersection is usually empty. 
The idea behind structured concept formation is that 
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a preliminary clustering at the level of the components 
provides the “vocabulary” to express such generaliza- 
tions in a flexible way. 

The component clusters to be used in the description 
of a composite cluster are called central clusters, and 
must be such that: 

each central cluster must cover at least one member 
of each value: this means that each cluster must 
characterize the intersection between all the sets (i.e. 
composite objects) under consideration; 

all the members of the sets must be covered by cen- 
tral clusters: this means that central clusters must 
cover all the elements of all the sets, thus avoiding 
“marginal” intersections between only parts of the 
sets (that would leave some other components, i.e. 
members, uncovered) ; 

central clusters have to be as specific as possible: 
this means that the set of central clusters is the 
most “precise” characterization of the intersection 
between all the sets. 

Since the algorithm seeks a characterization of the in- 
tersection of all the sets of components, the first con- 
straint is obviously derived. Note that at least one cen- 
tral cluster always exists: the root of the component 
cluster hierarchy covers all the components of all the 
composite objects, and thus can be used as a “worst- 
case” definition of a composite cluster. But obviously, 
the most informative characterization is the most spe- 
cific one. 

Once characterized by a set of component clusters, a 
composite cluster has to be evaluated. This evaluation 
must quantify the predictive ability of the set of central 
clusters, i.e. the precision with which one could infer 
the components of a composite object, given that it is 
an instance of the cluster. Since component clusters 
are discovered by COBWEB, they are hierarchically or- 
ganized and labeled with their predictive ability (i.e. 
II(C)), which monotonically increases along the paths 
from the root to the leaves. The predictivity of the 
set of central clusters is directly related to the indi- 
vidual predictivity of its members. But since all the 
central clusters do not cover the same number of com- 
ponents, their contribution to the overall predictivity 
is weighted according to their representativeness. Sup- 
pose A, is the structured attribute, C is the composite 
cluster to evaluate, yr, . . . , “or, are the central clusters. 
Our implementation uses: 

II(A,, C) = 2 +)II(~~) 
I!=1 o 

where no(n) is the number of components covered by 
Al, No being the total number of components in the ob- 
jects covered by C. The weight associated with each 
central cluster may become important in the case of 
composite objects with large differences in their num- 
ber of components. It has almost no effect when com- 
posite objects have approximately the same size (thus 
reducing the formula to an unweighted average of pre- 
dictivity scores). 

Properties 

Incrementality The COBWEB algorithm is incre- 
mental, i.e. it accepts instances at any time and in- 
corporates them in its memory structure. This is es- 
pecially important when the system has to deal with 
very large, continuously growing databases, which is 
typically the case in a KDD system (even though this 
is seldom a primary focus of machine learning algo- 
rithms). Any extension to COBWEB should preserve 
incrementality to ensure its wide applicability. 

The problem of incrementality may be stated as: 
given a composite cluster C, described with central 
clusters yr , . . . , ye, and an incoming composite object 
0 with components Or, . . . , ON, is it possible to com- 
pute the set of central clusters of C+O (i.e. the cluster 
obtained by incorporating 0 into C). Updates have to 
be made to the set of central clusters in two cases: 

1. a central cluster does not cover at least one compo- 
nent of the incoming object; 

2. a component of the new object is not covered by any 
of the current central clusters. 

In the first case, one central cluster must be replaced by 
its most specific ancestor, and this generalization even- 
tually repeated until reaching an ancestor that covers 
at least one component of the new object. In the sec- 
ond case, a new central cluster must be added: this 
cluster must cover the new object and at least one of 
the previous central clusters. Each time a central clus- 
ter is added and/or generalized, care must be taken 
that mutual exclusiveness is preserved (i.e. no two cen- 
tral cluster have a non-empty intersection). Greater 
details of the updating process are given in (Ketterlin, 
Ganqarski, & Korczak 1995). 

Complexity The COBWEB algorithm has a compu- 
tational complexity of 0( N log N) , where N is the 
number of objects. The extension described in the pre- 
vious section entails an additional cost due to the incor- 
poration process. Let us consider a composite-cluster 
C covering N objects Or,. . . , ON, and let ni =I Oi I. 
It is easy to see that C will be represented by at most 
w = mini{ni} central clusters. Hence, the integration 
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of the next composite object in C may lead to at most 
w generalizations during the first step of the updating 
process. The second step may apply only 1 ON+~ I 
times. The whole updating process is thus linear in 
the average number of components per composite ob- 
ject. Incorporating N composite objects has a cost 
of O(N2 log N) (to which must be added the cost of 
incorporating the components). 

An Experiment 
This experiment involves some simplified form of pat- 
tern recognition. The basic idea is to consider a pat- 
tern as a set of pixels. To compensate the loss of the 
information of the spatial arrangement of pixels, the 
representation of each individual pixel is based on sev- 
eral convolutions. 

The design of the experiment is as follows: each 
pattern is computed from an underlying polygon, to 
which a rotation is applied, whose angle is randomly 
drawn. The rotated figure is then discretized, lead- 
ing to a grey-level icon. Each icon is convolved with 
the Laplacian of a Gaussian at several different scales. 
Each non-white pixel in the original pattern is consid- 
ered as a component of that pattern. Each component 
is described by the values of the convolutions at its po- 
sition. These values can be seen as local characteristics 
of the pixel in the original pattern: in fact, as shown 
in (Marr & Hildreth 1980), convolution by the Lapla- 
cian of a Gaussian can be used as an edge detector (a 
value near zero meaning that the pixel is on an edge 
in the original image). In the experiments reported 
here, three convolutions are used, with 0 respectively 
equal to 5/2, 3 and 7/2 (see (Marr & Hildreth 1980) 
for details about the meaning of this parameter). The 
convolutions are directly applied to the iconic images. 
Thus, in that case, the system has to build clusters of 
occurrences of the “Pattern” entity, expressed in terms 
of clusters of occurrences of the ‘LPixel” entity. 

Three “patterns” were used to generate the data. 
Each pattern was randomly rotated by three different 
angles, and each time expressed as a set of pixels. Fig- 
ure 1 shows the patterns, with the angle of rotation 
and the number of pixels (i.e. of components). An 
E/R model is shown in Figure 2. 

The system thus has 426 components and 9 com- 
posite objects to cluster. The result of the clustering 
is shown on Figure 3. Results suggest that the set clus- 
tering algorithm is able to discover rotational-invariant 
classes of patterns. 

Even though this experiment is far from being con- 
vincing from a pattern recognition point of view, it 
illustrates some of the properties of the algorithm de- 
scribed above. First, objects with different numbers of 

a = 122 a = 25 cl! = 357 
n =44 n =46 n =44 

a = 46 a = 306 a = 219 
n= 51 n=47 n = 50 

a = 190 a = 21 a = 47 
n=47 n=47 n= 50 

Figure 1: Nine rotated polygons. 

F+has-+E 
; V2G,, ____________-_ 
; V2G,, ,-------------- 
: V2G,, ._______------- 

1 

Figure 2: An E/R model of the pattern recognition do- 
main: Pattern and Pixel are the entities, has is a one- 
to-many relationship (attributes are shown in dashed 
boxes). 

Figure 3: Results in the pattern recognition domain. 

components are clustered. Second, a relatively large 
number of components are present in each object. Fi- 
nally, this example illustrates the difference between 
distinct levels of abstraction: the hierarchy of clusters 
of pixels carries almost only numerical information, 
while the hierarchy of patterns exhibits some symbolic 
knowledge of simple patterns. 

Discussion 
Related Work 
Most work on structural (also called relational) learn- 
ing has been developed in a supervised setting (this in- 
cludes “inductive logic programming”), and can hardly 
be used in unsupervised learning. However, some sys- 
tems address the clustering problem. 

LABYRINTH (Thompson & Langley 1991) is also 
based on COBWEB, and works approximately the same 
way as the algorithm described above. But it puts ad- 
ditional restrictions on representable instances, in the 
sense that all observations must have the same num- 
ber of components. Since it does not use the composite 
clusters hierarchy as a “component-matcher”, the pro- 
cess of adding an object to a cluster has a cost expo- 
nential in the number of components (all the possible 
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bindings between components and a predefined list of 
attributes are tested). 

KBG (Bisson 1992) and KLUSTER (Kietz & Morik 
1994) both employ high-level languages (respectively 
first-order logic and description logic). Both systems 
build a DAG of clusters, instead of a hierarchy. But 
both work bottom-up, and do not support incremen- 
tality. This may be prohibitive with large databases. 

Limit at ions 
Like any incremental system, COBWEB suffers from 
ordering effects, i.e. the discovered clusters may dif- 
fer depending on the order in which the objects ap- 
peared. Clustering at higher levels of abstraction may 
be strongly affected by ordering effects at lower levels. 
This ordering problem is inherent to the algorithm, 
and is due to the hill-climbing search strategy. How- 
ever, large data sets, like the one KDD is intended 
to, reduce the impact of order. Some authors have 
addressed this problem: a review, along with new so- 
lutions, appear in (Fisher 1995). These solutions are 
independent of the extensions we propose, and could 
therefore be directly integrated in a finalized system. 

Because of the “component-first” strategy, the sys- 
tem described in this paper requires the E/R model to 
be put in the form of a directed acyclic graph (DAG). 
This DAG is then traversed bottom-up. But some 
models cannot be transformed into a DAG, because 
they exhibit cyclic relationships. In such cases, the al- 
gorithm cannot be applied without some sort of “boot- 
strapping”. Note however that this problem is simi- 
lar to discovering recursive predicates, and that simi- 
lar problems are encountered in the field of knowledge 
representation, where so-called “terminological cycles” 
are, in some systems, simply not allowed. 

Conclusion 
An extension of the COBWEB clustering algorithm has 
been presented, which is applicable over one-to-many 
relationships. The algorithm builds a hierarchy of clus- 
ters, where each cluster is characterized by a prototype 
of its members. This prototype is expressed in terms of 
clusters of components that have themselves been dis- 
covered, i.e. generalizations are discovered at several 
levels of abstraction simultaneously. The algorithm ap- 
plies whether all the composite objects have the same 
number of components or not. An example has been 
given to illustrate these abilities. 
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