
Conceptual Clustering in Structured Databases: a Practical Approach

A. Ketterlin, P. Gansarski & J.J. Korczak
LSIIT, (CNRS, URA 1871) - Universite Louis Pasteur

7, rue Rene Descartes, F-67084 Strasbourg Cedex.
e-mail: {alain,gancars,jjk}@dpt-info.u-strasbg.fr

Abstract

Many machine-learning (either supervised or unsu-
pervised) techniques assume that data present them-
selves in an attribute-value form. But this formal-
ism is largely insufficient to account for many appli-
cations. Therefore, much of the ongoing research now
focuses on first-order learning systems. But complex
formalisms lead to high computational complexities.
On the other hand, most of the currently installed
databases have been designed according to a formal-
ism known as entity-relationship, and usually imple-
mented on a relational database management system.
This formalism is far less complex than first-order
logic, but much more expressive than attribute-value
lists. In that context, the database schema defines
an abstraction space, and learning must occur at each
level of abstraction. This paper describes a clustering
system able to discover useful groupings in structured
databases. It is based in the COBWEB algorithm, to
which it adds the ability to cluster structured objects.

Introduction
Knowledge discovery in databases (KDD) is a current
trend in machine learning research aimed at developing
techniques and algorithms able to discover previously
unknown knowledge in real-world databases (i.e. usu-
ally huge and noisy repositories of data) (Piatetsky-
Shapiro & Frawley 1991). Clustering techniques re-
spond in many ways to these requirements. The goal
of clustering is to find important regularities in the
data, and its result is a set of classes that have been
found to accurately summarize the data.

In this paper, we concentrate on the fact that real-
world databases are usually structured, i.e. that sev-
eral levels of abstraction exist, at which the data are
observed. Since many statistical as well as machine-
learning algorithms assume that raw data appears in
the form of a rectangular array, with individuals de-
scribed along a fixed list of attributes, databases often
need to be preprocessed to be analyzed. This paper
takes an opposite position, by adapting algorithms to
deal with the data they will meet.

180 KDD-95

Early attempts to handle more complex formalisms
include (Michalski & Stepp 1983), where an extension
of propositional logic is used. More recent works ex-
tend clustering techniques to higher level languages:
KBG (Bisson 1992) deals with first-order logic. KLuS-
TER (Kietz & Morik 1994) uses a KL-ONE-like lan-
guage to avoid computational complexity and still keep
comfortable representative power. However, two main
characteristics of real world databases may make exist-
ing algorithms hard to apply. First, many domains in-
clude a lot of numerical information, which often needs
ad-hoc handling in logic-based formalisms. Second, as
KDD concentrates on large databases, most current
techniques (which work in a batch manner) may fail.
In this paper, incrementality is considered a manda-
tory feature of a KDD system.

Also, most currently used database design for-
malisms are still far less complex than logic-based for-
malisms. In the field of database, at the user level,
representation formalisms have more or less cristalized
on the Entity-Relationship model, even though other
promising approaches emerge. This consensus is partly
due to the wide availability of relational databases
management systems, on which E/R models can easily
be implemented.

This paper advocates a compromise between repre-
sentational complexity and efficiency. The next section
explain how databases are usually structured’and what
form of data a clustering algorithm may be presented
with. Then, a clustering algorithm is briefly reviewed,
and an adaptation is proposed to handle structured
data. An experiment illustrates the algorithm. Fi-
nally, a comparison with other system is sketched, and
various aspects are discussed.

Database Modeling
Any real-world database is designed to reflect the phys-
ical organization of the domain in which it is used:
therefore, databases are usually structured. The struc-
ture is derived by a preliminary analysis of the part of

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

the world to be represented. The result of this analysis
is called a “conceptual model”. This model defines sev-
eral levels of abstractions at which data are observed.

The most widely used approach to this model-
ing task is called Entity-Relationship modeling (Chen
1976). Databases are usually designed at the E/R
level, and then “projected” onto a more specific model
(like the relational model) for the purpose of im-
plementation (Teorey, Yang, & Fry 1986). In some
commercial products, this process is even automated.
Modern databases systems also include some “reverse-
engineering” tools, which derive an E/R model from
an existing relational database, thus allowing mainte-
nance to operate at the E/R level.

The E/R modeling formalism is based on three no-
tions:

Entities: an entity is basically the definition of the
representation of a set of instances (occurrences)
that will be represented with the same list of vari-
ables. Entities correspond to “types” of objects en-
countered in the domain, each one providing a par-
ticular level of abstraction.

Fjk r ~------Fl

Each occurrence xi of X “contains” (more precisely
“is connected to”) any number of occurrences of Y.
Objects like xi are called composite, or simply struc-
tured, because their complete representation spans sev-
eral levels of abstraction. They may be written down
as:

Attributes: attributes are the variables along which
entities are described. Attributes may have two us-
ages: identifiers (i.e. with distinct values along each
occurrence) or descriptive attributes. Obviously,
identifiers are of no use to a learning system, and
only descriptive attributes may be used in search for
useful generalizations.

xi = (r = (yihyi2, -. . ,yh}>

Now the question is: If we had a set xi ,x2 ,. . . xn of oc-
currences of X, how would we find coherent groupings
of them, and how would we compute a representation
for a grouping? This is the topic of the next section.

Relationships: a relationship connects two (or more)
entities. Relationships are used to represent the
structural organization of pieces of data, and pro-
vide links between distinct abstraction levels. A rela-
tionship is characterized by its “cardinality”, which
gives the number of occurrences of one entity con-
nected to one occurrence of the other entity involved.
One-to-one relationships connect one occurrence of
one entity to exactly one occurrence of the other
entity. One-to-many relationships allows several oc-
currences of the entity at the “many-side” to be con-
nected to the same occurrence of the entity at the
“one-side”. Many-to-many relationships allows mul-
tiple connections in both directions.

Clustering and Composite Objects
Conceptual Clustering

Though one-to-one relationships may be seen

Let us first briefly recall the algorithm used to solve the
clustering problem. The COBWEB algorithm (Fisher
1987) takes as input a sequence of attribute-value lists,
and forms a hierarchy of increasingly specific clusters.
Unlike statistical cluster-analysis techniques, the de-
scription of a cluster is more than the set of instances
it covers. In the case of COBWEB, some prototypical
value is kept for each attribute, along with an indica-
tion on how instances’ values may vary. Each incoming
object is driven through the existing hierarchy in a top-
down manner. On its path from the root to a leaf, the
object may trigger restructuring operators, leading to
topological modifications of the hierarchy.

as structuring conventions only, one-to-many and The heuristic used to drive the incorporation of a
many-to-many relationships cannot be represented in new object is based on the predictive ability of the
attribute-value formalisms. The representation of an clusters. The predictivity of a cluster is an averaging
occurrence is no more of a fixed size, because the num- of the predictivity of individual attributes inside that
ber of other occurrences to which it is connected to cluster. The predictivity of an attribute given a clus-
may not be the same for all occurrences: the data do no ter is expressed as a summation of squared conditional
more fit in a rectangular array. If the E/R model is to probabilities of potential values of that attribute.

be implemented on a relational database management
system, two major cases can be distinguished: either
some tables are augmented with foreign-key columns,
or specific tables are created to contain occurrences of
relationships (Teorey, Yang, & Fry 1986).

The “conceptual” model of a database is the result of
a thorough study of the domain. From a learning point
of view, it provides an abstraction space. Unsupervised
learning in an E/R modeled domain involves learning
at different levels of abstraction: this means that clus-
ters have to be build for each entity. This problem has
been called structured concept formation (Thompson
& Langley 1991). To illustrate the problem, suppose
two entities X and Y connected by a one-to-many re-
lationship r (from X to Y).

Ketterlin 181

Let I be the number of attributes. The predictivity
of a cluster C is then defined as:

II(C) = 5 &qA,,C),
i=l

where the predictivity of an attribute is

J(i)
ll(Ai, C) = c P(Ai = V& 1 C)“,

j=l

if J(i) is the number of potential values of Ai. This
measure has been developed by cognitive scientists to
account for human abilities in deciding which objects
form a category. Space is insufficient here to repeat the
argument, but full details are given by Fisher (1987).
This predictivity measure is also the one used in CART,
where it is called gini-index. The quantity II(C) may
be interpreted as the number of attribute values that
can be accurately predicted given membership to C.
This gives a quantitative index that monotonically in-
creases on any path from the root to a leaf of the hi-
erarchy.

The predictivity of clusters is used to compute the
quality of partitioning a cluster C into {Cl, . . . , CK}.
Such a partition leads to a gain in predictivity, which
can be evaluated with:

f 5 P(G) [IqGc) - W>l7
lc=l

that is, a weighted average of the gain in predictivity
between C and each of its sub-cluster. This heuristic
is very similar to the one used in supervised learn-
ing algorithm like CART or 1~3, except that the whole
representation is used to measure the “quality” of the
sub-clusters, instead of a single class-attribute.

The original COBWEB algorithm was designed to
deal with nominal attributes. In that case, the predic-
tivity of an attribute is computed from the frequency
count of each value of each attribute, which is stored in
each cluster. The CLASSIT algorithm (Gennari, Lan-
gley, & Fisher 1989) extends this formalism to deal
with numerical attributes, where an underlying nor-
mal distribution is assumed. The predictivity can thus
be expressed as the inverse of the standard deviation.
Any new type of attribute could be defined, as soon as
a representation is provided for generalizations, along
with a measure of predictivity (i.e. II(Ai, C)) to eval-
uate such generalizations.

Representation
As seen above, a preliminary analysis of the domain
leads to entities, which represent abstractions of the

data to analyze. In this section, we will concentrate
on the problem of clustering occurrences of an entity
which is at the “one-side” of a one-to-many relation-
ship. We will assume that a hierarchical clustering
of occurrences of the entity at the “many-side” can
be computed, or is given as background knowledge.
Occurrences of the entity at the “one-side” are called
composite objects, and occurrences of the entity at the
“many-side” are called components. The goal is to
build a hierarchical organization of clusters of com-
posite objects.

In contrast with strictly logical formalisms, which
characterize clusters (or concepts) by necessary and
sufficient conditions, COBWEB represents clusters in
a probabilist form. The characterization of a cluster
includes, for each attribute, a distribution of the val-
ues observed in instances covered by the cluster. A
distribution includes a typical value and some infor-
mation on how this value may vary between instances.
Therefore, in the case where objects are structured, the
requirements are twofold:

l find a characterization of a cluster of composite ob-
jects (i.e. a generalization for a set of sets of compo-
nents);

l evaluate how much this characterization is “predic-
tive” (i.e. how precisely components of instances of
that cluster can be predicted).

The system described in this paper performs com-
posite objects clustering in a “component first”
style. Components are clustered first, leading to a
component-clusters hierarchy. Then, composite ob-
jects are clustered. The characterizations of composite-
clusters are built up with references to the component-
clusters that describe commonalities between the cov-
ered composite objects.

Central Clusters
This section describes how, with the help of a compo-
nent cluster hierarchy, the algorithm can build a com-
posite cluster hierarchy. The COBWEB algorithm is
used to cluster components as well as composite ob-
jects. This section describes the representation of com-
posite clusters (i.e. the representation of a prototype)
and their evaluation (i.e. the computation of II(C)).

When presented with several sets of objects, the only
way to give a general description (a generalization) of
these sets is to find their common parts, i.e. the way
they are similar to each others. The problem is thus to
find their mutual intersection. But a crude intersection
is of no use, because the instance space is usually large
(if not infinite), and the intersection is usually empty.
The idea behind structured concept formation is that

182 KDD-95

a preliminary clustering at the level of the components
provides the “vocabulary” to express such generaliza-
tions in a flexible way.

The component clusters to be used in the description
of a composite cluster are called central clusters, and
must be such that:

each central cluster must cover at least one member
of each value: this means that each cluster must
characterize the intersection between all the sets (i.e.
composite objects) under consideration;

all the members of the sets must be covered by cen-
tral clusters: this means that central clusters must
cover all the elements of all the sets, thus avoiding
“marginal” intersections between only parts of the
sets (that would leave some other components, i.e.
members, uncovered) ;

central clusters have to be as specific as possible:
this means that the set of central clusters is the
most “precise” characterization of the intersection
between all the sets.

Since the algorithm seeks a characterization of the in-
tersection of all the sets of components, the first con-
straint is obviously derived. Note that at least one cen-
tral cluster always exists: the root of the component
cluster hierarchy covers all the components of all the
composite objects, and thus can be used as a “worst-
case” definition of a composite cluster. But obviously,
the most informative characterization is the most spe-
cific one.

Once characterized by a set of component clusters, a
composite cluster has to be evaluated. This evaluation
must quantify the predictive ability of the set of central
clusters, i.e. the precision with which one could infer
the components of a composite object, given that it is
an instance of the cluster. Since component clusters
are discovered by COBWEB, they are hierarchically or-
ganized and labeled with their predictive ability (i.e.
II(C)), which monotonically increases along the paths
from the root to the leaves. The predictivity of the
set of central clusters is directly related to the indi-
vidual predictivity of its members. But since all the
central clusters do not cover the same number of com-
ponents, their contribution to the overall predictivity
is weighted according to their representativeness. Sup-
pose A, is the structured attribute, C is the composite
cluster to evaluate, yr, . . . , “or, are the central clusters.
Our implementation uses:

II(A,, C) = 2 +)II(~~)
I!=1 o

where no(n) is the number of components covered by
Al, No being the total number of components in the ob-
jects covered by C. The weight associated with each
central cluster may become important in the case of
composite objects with large differences in their num-
ber of components. It has almost no effect when com-
posite objects have approximately the same size (thus
reducing the formula to an unweighted average of pre-
dictivity scores).

Properties

Incrementality The COBWEB algorithm is incre-
mental, i.e. it accepts instances at any time and in-
corporates them in its memory structure. This is es-
pecially important when the system has to deal with
very large, continuously growing databases, which is
typically the case in a KDD system (even though this
is seldom a primary focus of machine learning algo-
rithms). Any extension to COBWEB should preserve
incrementality to ensure its wide applicability.

The problem of incrementality may be stated as:
given a composite cluster C, described with central
clusters yr , . . . , ye, and an incoming composite object
0 with components Or, . . . , ON, is it possible to com-
pute the set of central clusters of C+O (i.e. the cluster
obtained by incorporating 0 into C). Updates have to
be made to the set of central clusters in two cases:

1. a central cluster does not cover at least one compo-
nent of the incoming object;

2. a component of the new object is not covered by any
of the current central clusters.

In the first case, one central cluster must be replaced by
its most specific ancestor, and this generalization even-
tually repeated until reaching an ancestor that covers
at least one component of the new object. In the sec-
ond case, a new central cluster must be added: this
cluster must cover the new object and at least one of
the previous central clusters. Each time a central clus-
ter is added and/or generalized, care must be taken
that mutual exclusiveness is preserved (i.e. no two cen-
tral cluster have a non-empty intersection). Greater
details of the updating process are given in (Ketterlin,
Ganqarski, & Korczak 1995).

Complexity The COBWEB algorithm has a compu-
tational complexity of 0(N log N) , where N is the
number of objects. The extension described in the pre-
vious section entails an additional cost due to the incor-
poration process. Let us consider a composite-cluster
C covering N objects Or,. . . , ON, and let ni =I Oi I.
It is easy to see that C will be represented by at most
w = mini{ni} central clusters. Hence, the integration

Ketterlin 183

of the next composite object in C may lead to at most
w generalizations during the first step of the updating
process. The second step may apply only 1 ON+~ I
times. The whole updating process is thus linear in
the average number of components per composite ob-
ject. Incorporating N composite objects has a cost
of O(N2 log N) (to which must be added the cost of
incorporating the components).

An Experiment
This experiment involves some simplified form of pat-
tern recognition. The basic idea is to consider a pat-
tern as a set of pixels. To compensate the loss of the
information of the spatial arrangement of pixels, the
representation of each individual pixel is based on sev-
eral convolutions.

The design of the experiment is as follows: each
pattern is computed from an underlying polygon, to
which a rotation is applied, whose angle is randomly
drawn. The rotated figure is then discretized, lead-
ing to a grey-level icon. Each icon is convolved with
the Laplacian of a Gaussian at several different scales.
Each non-white pixel in the original pattern is consid-
ered as a component of that pattern. Each component
is described by the values of the convolutions at its po-
sition. These values can be seen as local characteristics
of the pixel in the original pattern: in fact, as shown
in (Marr & Hildreth 1980), convolution by the Lapla-
cian of a Gaussian can be used as an edge detector (a
value near zero meaning that the pixel is on an edge
in the original image). In the experiments reported
here, three convolutions are used, with 0 respectively
equal to 5/2, 3 and 7/2 (see (Marr & Hildreth 1980)
for details about the meaning of this parameter). The
convolutions are directly applied to the iconic images.
Thus, in that case, the system has to build clusters of
occurrences of the “Pattern” entity, expressed in terms
of clusters of occurrences of the ‘LPixel” entity.

Three “patterns” were used to generate the data.
Each pattern was randomly rotated by three different
angles, and each time expressed as a set of pixels. Fig-
ure 1 shows the patterns, with the angle of rotation
and the number of pixels (i.e. of components). An
E/R model is shown in Figure 2.

The system thus has 426 components and 9 com-
posite objects to cluster. The result of the clustering
is shown on Figure 3. Results suggest that the set clus-
tering algorithm is able to discover rotational-invariant
classes of patterns.

Even though this experiment is far from being con-
vincing from a pattern recognition point of view, it
illustrates some of the properties of the algorithm de-
scribed above. First, objects with different numbers of

a = 122 a = 25 cl! = 357
n =44 n =46 n =44

a = 46 a = 306 a = 219
n= 51 n=47 n = 50

a = 190 a = 21 a = 47
n=47 n=47 n= 50

Figure 1: Nine rotated polygons.

F+has-+E
; V2G,, ____________-_
; V2G,, ,--------------
: V2G,, ._______-------

1

Figure 2: An E/R model of the pattern recognition do-
main: Pattern and Pixel are the entities, has is a one-
to-many relationship (attributes are shown in dashed
boxes).

Figure 3: Results in the pattern recognition domain.

components are clustered. Second, a relatively large
number of components are present in each object. Fi-
nally, this example illustrates the difference between
distinct levels of abstraction: the hierarchy of clusters
of pixels carries almost only numerical information,
while the hierarchy of patterns exhibits some symbolic
knowledge of simple patterns.

Discussion
Related Work
Most work on structural (also called relational) learn-
ing has been developed in a supervised setting (this in-
cludes “inductive logic programming”), and can hardly
be used in unsupervised learning. However, some sys-
tems address the clustering problem.

LABYRINTH (Thompson & Langley 1991) is also
based on COBWEB, and works approximately the same
way as the algorithm described above. But it puts ad-
ditional restrictions on representable instances, in the
sense that all observations must have the same num-
ber of components. Since it does not use the composite
clusters hierarchy as a “component-matcher”, the pro-
cess of adding an object to a cluster has a cost expo-
nential in the number of components (all the possible

184 KDD-95

bindings between components and a predefined list of
attributes are tested).

KBG (Bisson 1992) and KLUSTER (Kietz & Morik
1994) both employ high-level languages (respectively
first-order logic and description logic). Both systems
build a DAG of clusters, instead of a hierarchy. But
both work bottom-up, and do not support incremen-
tality. This may be prohibitive with large databases.

Limit at ions
Like any incremental system, COBWEB suffers from
ordering effects, i.e. the discovered clusters may dif-
fer depending on the order in which the objects ap-
peared. Clustering at higher levels of abstraction may
be strongly affected by ordering effects at lower levels.
This ordering problem is inherent to the algorithm,
and is due to the hill-climbing search strategy. How-
ever, large data sets, like the one KDD is intended
to, reduce the impact of order. Some authors have
addressed this problem: a review, along with new so-
lutions, appear in (Fisher 1995). These solutions are
independent of the extensions we propose, and could
therefore be directly integrated in a finalized system.

Because of the “component-first” strategy, the sys-
tem described in this paper requires the E/R model to
be put in the form of a directed acyclic graph (DAG).
This DAG is then traversed bottom-up. But some
models cannot be transformed into a DAG, because
they exhibit cyclic relationships. In such cases, the al-
gorithm cannot be applied without some sort of “boot-
strapping”. Note however that this problem is simi-
lar to discovering recursive predicates, and that simi-
lar problems are encountered in the field of knowledge
representation, where so-called “terminological cycles”
are, in some systems, simply not allowed.

Conclusion
An extension of the COBWEB clustering algorithm has
been presented, which is applicable over one-to-many
relationships. The algorithm builds a hierarchy of clus-
ters, where each cluster is characterized by a prototype
of its members. This prototype is expressed in terms of
clusters of components that have themselves been dis-
covered, i.e. generalizations are discovered at several
levels of abstraction simultaneously. The algorithm ap-
plies whether all the composite objects have the same
number of components or not. An example has been
given to illustrate these abilities.

Michalski, R. S., and Stepp, R. E. 1983. Learning
from observation: Conceptual clustering. In Michal-
ski, R. S.; Carbonell, J. G.; and Mitchell, T. M.,
eds., Machine Learning: An Artificial Intelligence
Approach. Morgan Kaufmann.

Piatetsky-Shapiro, G., and Frawley, W. J. 1991.
Knowledge Discovery in Databases. AAAI/MIT
Press.

Teorey, T. J.; Yang, D.; and Fry, J. P. 1986. A logical
design methodology for relational databases using the
extended entity-relationship model. A CM Computing
Surveys 18(2):197-22.

Planned further studies include the extension of the Thompson, K., and Langley, P. 1991. Concept for-
clustering mechanisms to ordered sequences of compo- mation in structured domains. In Fisher, D. H.; Paz-
nents. This goes a little beyond the E/R formalism, zani, M.; and Langley, P., eds., Concept Formation:
but is often implicitly incorporated (e.g. by the way Knowledge and Experience in Unsupervised Learning.
of “date” attributes), and could model, for example, Morgan Kaufmann.

temporal variations of a component. Ordered lists are
much more than sets, and additional constraints must
be placed on the choice of central clusters. An imple-
mentation is currently under testing.

References
Bisson, G. 1992. Conceptual clustering in a first
order logic representation. In Proceedings of the Tenth
European Conference on Artijicial Intelligence, 458-
462. J. Wiley and Sons.

Chen, P. P. 1976. The entity-relationship model -
toward a unified view of data. ACM Trunsactions on
Database Systems l(1):9-36.

Fisher, D. H. 1987. Knowledge acquisition via in-
cremental conceptual clustering. Machine Learning
2:139-172.

Fisher, D. H. 1995. Iterative optimization and simpli-
fication of hierarchical clusterings. Technical Report
CS-95-01, Vanderbilt University, Nashville TN.

Gennari, J. H.; Langley, P.; and Fisher, D. H. 1989.
Models of incremental concept formation. Artificial
Intelligence 40: 11-61.

Ketterlin, A.; Gangarski, P.; and Korczak, J. J. 1995.
Hierarchical clustering of composite objects with a
variable number of components. In Working Papers
of the Fij%h International Workshop on Artificial In-
telligence and Statistics.

Kietz, J.-U., and Morik, K. 1994. A polynomial
approach to the constructive induction of structural
knowledge. Machine Learning 14:193-217.

Marr, D., and Hildreth, E. 1980. Theory of edge
detection. Proceedings of the Royal Society of London
B. 207:187-217.

Ketterlin 185

