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Abstract 

This paper explores the application of the Min- 
imum Description Length principle for pruning 
decision trees. We present a new algorithm that 
intuitively captures the primary goal of reduc- 
ing the misclassification error. An experimental 
comparison is presented with three other prun- 
ing algorithms. The results show that the MDL 
pruning algorithm achieves good accuracy, small 
trees, and fast execution times. 

Introduction 
Construction or “induction” of decision trees from ex- 
amples has been the subject of extensive research in the 
past [Breiman et. al. 84, Quinlan 861. It is typically 
performed in two steps. First, training data is used to 
grow a decision tree. Then in the second step, called 
pruning, the tree is reduced to prevent “overfitting”. 

There are two broad classes of pruning algorithms. 
The first class includes algorithms like cost-complexity 
pruning [Breiman et. al., 841, that use a separate set 
of samples for pruning, distinct from the set used to 
grow the tree. In many cases, in particular, when the 
number of training instances is small, it is more desir- 
able to use all the samples for both the tree building 
and its pruning. In the absence of separate pruning 
data, cross-validation is used by these algorithms. In 
addition to the ad hoc nature of cross-validation, this 
approach also suffers from the drawback that multi- 
ple candidate trees need to be generated, which can be 
computationally expensive. 

The second class of decision-tree pruning algorithms, 
which includes pessimistic pruning [Quinlan 871, uses 
all of the training samples for tree generation and prun- 
ing. Although these algorithms are computationally 
inexpensive and do not require separate pruning data, 
experiments have shown that they typically lead to 
trees that are “too” large and sometimes higher error 
rates [Mingers 891. 

This paper presents a novel decision-tree pruning al- 
gorithm based on the Minimum Description Length 
(MDL) principle. For earlier but different applica- 
tions of the same principle, see [Rissanen and Wax 
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881, [Quinlan and Rivest 891, [Rissanen 891 and [Wal- 
lace and Patrick 931. Our experiments show that the 
proposed algorithm leads to accurate trees for a wide 
range of datasets. This algorithm does not employ 
cross-validation or a separate data set for pruning. 
Therefore, the tree generation algorithm needs to pro- 
duce only a single tree and the computational expense 
is reduced. Moreover, when compared to other algo- 
rithms such as pessimistic pruning that do not use 
cross-validation or a separate data set for pruning, the 
MDL-based pruning algorithm produces trees that are 
significantly smaller in size. 

The rest of the paper is organized as follows. We 
first give a formal description of the problem. The 
MDL criteria used for pruning is presented in the next 
section followed by a description of the complete prun- 
ing algorithm. We next discuss the performance results 
and finally present our conclusions and suggestions for 
future work. 

Problem Statement 
The data for designing a decision tree, also called 
the “training” sample, consist of n pairs (~1, x(t)) 
fort = 1,2,..., n, where ct are values of the class 
variable c belonging to the set 0, 1, . . . , m - 1, and 
x(t) = x1(t), . . . ) x:rc(t) are values of Ic feature variables 
xi, also called attributes, and written collectively as 
x. Some of the feature variables, called ‘categorical’, 
range over finite sets, say xi over the set { 1,2, . . . , r(i)} 
while others range over the real line or some of its sub- 
set. The intent with the decision tree is to subject a 
future data item to tests, suitably specified by the fea- 
tures, and depending on the result make a prediction of 
the class value. Frequently, such tests are of the type: 
xi(t) < ai for a real-valued feature, where ai is a real 
number, truncated to finite precision, and xi(t) E Ai, 
for a categorical feature, where Ai = {ai,, . . . , ainll,}, 
is a finite set. The numbers ai, or the sets Ai, serve as 
‘thresholds’, which is what we call them. 

The MDL criterion seeks a model within a class 
which permits the shortest encoding of the class se- 
quence cn in the training sample, given the features. 
This means that we must select a class of models, which 
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in case of decision trees can be quite an involved pro- 
cess. We define our model class as the set of all subtrees 
of the decision tree 7 induced from the training data. 
The tree 7 has at each of its nodes a feature taken 
from the sequence of zM = xi, . . . , ZM together with 
the number of outcomes and ranges of the associated 
thresholds. In a significant depart&e from previous ap- 
plications of MDL to decision-tree pruning ([Quinlan 
and Rivest 891, [Wallace and Patrick 93]), we assume 
that the list of features and the ranges for the thresh- 
olds are provided as a preamble to-the decoder. For 
the real-valued features the range is the real line, while 
for the categorical ones the rang\ is specified as a list of 
subsets {A%<, . . . , Ai,r(i)}, of the possible values of the 
feature in question. Therefore, the only parameters for 
the models-are the actual values of the thresholds used 
at each node and the class probabilities (under the in- 
dependence assumption). -The next section explains 
the coding mechanism in greater detail. 

Prediction Error 
In earlier applications of the MDL principle to the tree 
design the error criterion used has been the code length 
with which the string can be encoded [Rissanen 87, 
Quinlan and Rivest 89, Rissanen 891. This length is ei- 
ther one resulting from predictive coding, or it includes 
the code length required to encode the various symbol 
occurrence counts. Such a code length may be written 
as (all logarithms are natural logarithms) 

In ,!..“tl-,! +ln (“,“_; ‘)j 0) 

where ni denotes the number of times symbol i occurs 
in c1 (see [Davison 731 for the binary case and [Rissanen 
871 for the general case with coding-theoretic interpre- 
tations). The second term represents the code length 
needed to encode the symbol occurrence counts, and 
it may be viewed as the model cost of the model class 
involved. The code length (equation 1) has the defect 
that the model cost becomes of the same order of mag- 
nitude as the first term, the code length for the data, 
when some of the counts are either close to zero or close 
to t. A better formula is the following [Krichevsky and 
Trofimov 831, 

p/2 
L(2) = C ti In 4 + 9 In 1 + In r(m/2) (2) 

i i 

where ti denote the number of times symbol i occurs in 
ct. This code length, called the stochastic complexity, 
has distinguished optimality properties [Rissanen 941. 

Although the design or just the pruning of decision 
trees can be based on the code length (equation 2) 
as the criterion, we prefer here another which better 
captures the intuitive goal, and use the code length 
(equation 2) for the tie breaks, only. Let S(ct+r , &+I) 
be an m x m matrix of positive elements, except for 
the diagonals which are zero, where &+I is the predic- 
tion of ct+l as a function of the past string ct. With 

such a matrix we can select freely the relative penal- 
ties incurred when the prediction &+I differs from ct+l. 
How should we define the predictor? First, predict the 
very first element cl as the smallest symbol j for which 
Cd S(i, j) is minimized. Then predict &+I as the sym- 
bol for which the sum is minimized: 

C tib(i, h+l) = minC tib(i, j), 
i 

J 
i 

where ti denotes the number of times symbol i occurs 
in ct. In case several symbols achieve the same mini- 
mum, we break the tie by taking &+I as that symbol 
from among the minimizing ones for which (equation 2) 
is minimized. The so obtained accumulated ‘honest’ 
prediction errors, then, for the string ct when the oc- 
currence counts are not known until the entire string 
has been processed, are given by 

Sf)(C’) = C S(Ci, ii)- (3) 
i=l 

The criterion (equation 3) includes the ‘model cost’ 
due to our not knowing the occurrence counts in an 
implicit way. To see this, suppose the class string 
were a sample from an m-valued independent station- 
ary random process and we knew the symbol probabil- 
ities pi, Then the optimal predictor would result if we 
always predict the symbol j that minimizes the sum 
Ca pi6(i,j), say the symbol S. The mean per symbol 
prediction error would then be 

For strings generated by such a process, the mean 
per symbol prediction error of (equation 3) is higher, 
E+O( l/t), th e excess being attributed to the fact that 
for the predictor in (equation 3) we must estimate the 
symbol, namely j, with the smallest mean error (equa- 
tion 4), and this adds to the cost (equation 3) un- 
til the estimation is done error free. Accordingly, we 
may interpret the excess prediction error as a ‘model 
cost’. This cost is less than the one in (equation 2), 
O((ln n)/n) reflecting the fact that for optimal predic- 
tion only a part of the complete model needs to be 
estimated, namely, the symbol that has the smallest 
sum (equation 4), rather than the symbol probabilities 
themselves. 

When predicting the symbols at the nodes of a deci- 
sion tree there will be other components to be added to 
the model cost than just the symbol occurrence counts. 
Although in principle their effect could be included in 
the same ‘honest’ predictive error criterion, it would be 
impractical requiring a large amount of computations. 
A much simpler way is to calculate the various ad- 
ditional model costs separately, non-predictively, and 
add them to the prediction errors. This creates a dif- 
ficulty, because such model costs, which will be of the 
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nature of code lengths, cannot logically be added to 
anything but code lengths. We resolve the difficulty 
by defining a bona fide code length which is equiva- 
lent with (equation 3). Indeed, define a conditional 
probability measure as follows 

P(c,+lIc’) = K(2)e -6(ct+1,&+1) 
(5) 

where the normalizing constant is seen to be 
~(~2) = l/C e’(‘,‘il) > K = min l/ c e’(‘tj), 

a j i 
Therefore, regardless of what the predicted symbol is 
encoding of the data sequence ct can be done with the 
ideal code length 

Ls(c’) = So(ct) -tin K. (6) 
This differs from (equation 3) only by a term propor- 
tional to the length of the string, which will be seen 
to be irrelevant to the pruning of the tree. The word 
“ideal”’ refers to the convenient practice of ignoring 
the integer length requirement for a code length. 

It will now be easy to consider the missing code 
lengths to be added to the model cost. First of these is 
due to the code length needed to describe the threshold 
needed at each node in which a test is made. Consider 
first the case of a real-valued test c on the feature 5, 
with thresholds al, . . . , a,.-~. Truncating each to the 
precision e-q the thresholds can be encoded with about 
d-1) t ( t na s na ural logarithm bits). Ideally, the opti- 
mal precision should be determined independently for 
each test involving a real-valued attribute. However, 
for practical considerations, we use a constant precision 
value throughout the decision tree (see the section on 
Performance Evaluation). For a categorical test, whose 
single threshold ranges over a list Al, . . . , A, of subsets, 
as specified in the tree 7, the code length needed to 
specify the threshold is then lnp. Write the required 
cost in each case (real-valued/categorical) as L(thr). 
When a class sequence ci is predicted after the test, 
the T - 1 thresholds of the test (r = 2 for a categorical 
pyre) partition the string c’ into r substrings, c(j), . = 1 9 *“f T, each of which is predicted with the 
rule as in (equation 5). The resulting error criterion is 
then given by 

Sl(q = c So(c(j)) + LQhr). (7) 
j=l 

Notice that if we had instead used the code length 
criterion (equation 6) in both cases the same constant 
-t In K would have been added to the prediction error 
criteria, and the comparison of the two ways of doing 
the prediction and coding would have been the same. 

There is one more component to the model cost to be 
considered, namely, the code length needed to describe 
the structure of the final subtree. The optimal prun- 
ing algorithm will have to distribute this cost among 
the nodes, which process is easiest to describe together 
with the algorithm in the next section. 

Optimal Pruning Algorithm 
In order to describe the optimal pruning algorithm we 
need a few preliminaries. First, let PT( 1) denote the 
ratio of the number of internal nodes to the number of 
all nodes in the tree 7, and put P?(O) = 1 - P!(l). 
In the special case where all the outcomes of the tests; 
i.e., the arities of the nodes in the tree, are equal, say 
r, the inverse of this ratio is given by T( 1+ l/(M - 1)). 
Next, let s denote any node in the tree and write c(s) 
for the class sequence that ‘falls off’ the node s; i.e., 
a subsequence of cn whose test values coincide with 
the path from the root to the node s. Write L(thr,) 
for the code length needed to describe the threshold of 
the test at this node, in the notations of the preceding 
section either lnp or (r - l)q, depending on the type 
of the feature. Finally, in order to break the ties in the 
predictor we also need to collect the occurrence counts 
n;(s) of the symbols i in the string c(s) and compute 
their sum n(s) = Ci ni(s). 

The pruning algorithm consists of the steps: 

1. Initialization. At the leaves s of 7 gather the 
countsna(s)i=O,l,...,m-1,andcompute 
S(s) = - In Pi@) + SO(+)) 

2. Recursively in bottom-up order, put 
TZ~(S) = Cj ni(sj), i = 0, 1, . . ., m - 1, the sum over 
all children sj of s, and set 

S(s) = min 
1 

- ln Pi(O) + SO(@), 
- In PT(1) + L(thr,) + cj S(Sj) 

If the first element is smaller than or equal to the 
second, delete all children. 

3. Continue until the root X is reached. 

The value S(A) of the criterion for the classes in 
the training sample, obtained with the subtree T*, is 
the smallest obtainable with the subtrees of 7. This 
is seen to be true by the dynamic programming ar- 
gument, based on the fact that every subtree of the 
optimal subtree is optimal. The algorithm generalizes 
another described in [Nohre 941 in a special case. In 
particular, the code length for the structure of the op- 
timal subtree T*, defined by the increments In &(O) 
and In PT (1)) is given by 

L(7*) = -tarni In PT(1) - nreaf In PT(O), (8) 

where r&t and nreaf denote the number of internal 
nodes and leaves in T*, respectively. We may regard 
this as an optimal code length of the structure, for 
(equation 8) defines a probability for each subtree Y of 
7 by, 

pT(v) = 
e-L(v) 

c s e-L(S) ’ 
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where the summation is over all possible subtrees of 
T. Clearly, no code exists which would have a shorter 
codeword for every subtree than In PT(V), and we 
may regard (equation ) to define an optimal code for 
the subtrees. The code length (equation 8) differs 
from that of the optimal codeword only by a constant, 
which, however, is the same for all the subtrees. 

Performance Evaluation 
Experimental Set up 
We present results on seven datasets used previously in 
the STATLOG project (see [Michie et. al. 941 for a full 
description). The datasets are available via anonymous 
FTP from ftp.strath.ac.uk in directory Stams/statlog. 
The experimental methodology for each dataset is the 
same as in the STATLOG project and is summarized 
in Table 1. 

Dataset 
Australian 
DNA 
Diabetes 
Letter 
Segment 
Satimage 
Vehicle 

Domain 
lo-fold Cross-Validation 
Separate Training & Test Set 
la-fold Cross-Validation 
Separate Training & Test Set 
lo-fold Cross-Validation 
Separate Training & Test Set 

g-fold Cross-Validation 

Table 1: Experimental Setup 

The initial decision trees were generated using the 
CART algorithm available in the IND software package 
[Buntine and Carauan 921. We experimented with both 
the “twoing” and the “gini” index [Breiman et. al. 841 
for growing the initial tree. The results were similar for 
both the cases and only the results with the twoing in- 
dex are presented in this paper. The IND package also 
provides implementations of three pruning algorithms: 
the cost-complexity algorithm, the “pessimistic” prun- 
ing algorithm, and a modified version of the pessimistic 
algorithm used in C4.5. In order to avoid making an 
ad-hoc choice of the size of the data set to be set aside 
for pruning, lo-fold cross-validation was used for the 
cost-complexity pruning algorithm. We implemented 
the MDL-pruning algorithm and ran it on the tree gen- 
erated by IND. All of the experiments were done on an 
IBM RS/SOOO 250 workstation running the AIX 3.2.5 
operating system. 

Performance Results 
Choosing the Precision for MDL Pruning Re- 
call that our MDL pruning algorithm uses a constant 
precision for all the tests in the decision tree based 
on continuous attributes. The first experiment deter- 
mines the precision value that should be used with the 
MDL pruning algorithm. Table 2 shows the error rates 
achieved with the MDL pruning algorithm for precision 
values of 1, 2, 4, and 6. 

Dataset MDL Precision 
12 4 6 

Australian 15.3 15.5 15.9 15.8 
Diabetes 24.1 25.3 23.2 24.1 
DNA 8.1 8.1 8.1 8.1 
Letter 15.8 17.4 20.0 22.3 
Satimage 14.6 14.9 15.7 16.0 
Segment 5.5 5.9 6.5 7.0 
Vehicle 29.3 30.7 32.4 33.7 

Table 2: Effect of Precision Value on MDL Pruning 

The results show that the error rates increase as the 
precision value increases from 1 to 6. This is because 
a higher precision value implies that the tree is pruned 
more aggressively. Therefore, at higher precision val- 
ues, the tree gets “over-pruned” leading to an increase 
in the error rates. The best performance is achieved 
using a precision value of 1. Similar, results were also 
obtained for a large number of other datasets exam- 
ined by the authors. Therefore, our MDL pruning al- 
gorithm uses a precision value of 1 for all datasets. 

Comparing Pruning Algorithms Three criteria 
are used to compare the pruning algorithms: the error 
rate obtained on the test set, the size of the pruned 
tree, and the execution time of the algorithm. Since 
cost-complexity pruning in IND is executed as part of 
the tree generation phase, all timing measurements in- 
clude the time taken to generate and prune the decision 
tree. 

Table 3 shows the error rates achieved by each of 
the algorithms. The results show that all the pruning 
algorithms lead to error rates which are not too differ- 
ent from each other. C4.5 and MDL pruning perform 
robustly for all the datasets; for each dataset, the er- 
ror rates achieved by these algorithms are less than 1% 
greater than the best performing algorithm. 

Next, we compare the sizes (in terms of number of 
nodes) of the pruned trees produced by each of the 
pruning algorithms. A smaller decision tree is desir- 
able since it provides more compact class descriptions, 
unless the smaller tree size leads to a loss in accuracy, 
Table 4 shows the sizes for each of the datasets. The 
results show that the MDL pruning algorithm achieves 
trees that are significantly smaller than the trees gen- 
erated by the Pessimistic and C4.5 pruning algorithms, 
However, the smallest trees are generated by the cost- 
complexity algorithm which prunes trees most aggres- 
sively. These results also show that the effect of the 
tree size on the error rate is domain-dependent. For ex- 
ample, while the large tree produced by the pessimistic 
algorithm produces the best error rate for the Letter 
dataset, it leads to the worst performance for the Dia- 
betes and DNA datasets. 

The final criterion for comparing the pruning algo- 
rithms is the execution times of the algorithms. The 
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Diabetes 25.4 24.7 27.0 24.1 
DNA 8.6 8.5 9.1 8.1 
Letter 15.7 15.7 15.1 15.8 
Satimage 15.3 14.8 15.1 14.6 
Segment 5.2 5.3 5.2 5.5 
Vehicle 30.3 29.2 29.1 29.3 

Dataset Cost-Complexity C4.5 Pessimistic MDL 
Australian 14.9 15.5 15.8 15.3 

1 Dataset 

1 Dataset 
Australian 
Diabetes 
DNA 
Letter 
Satimage 
Segment 
Vehicle 

Table 3: Testing Error Rates 

Cost-Complexity c4.5 
5.2 38.2 

11.5 65.5 
35.0 65.0 

1199.5 1266.3 
90.0 244.8 
52.0 71.0 
50.1 101.2 

Pessimistic 
54.0 

100.8 
93.0 

1459.0 
319.0 

77.0 
124.5 

MDL ] 

Table 4: Pruned-Tree Size 

Cost-Complexity C4.5 Pessimistic MDL 
3.2 0.1 0.1 0.1 

4.67 0.1 0.2 0.2 
38.82 4.0 4.0 4.0 
243.9 24.9 24.7 24.6 
193.0 19.9 20.2 19.9 
41.0 3.8 3.5 3.7 
11.9 0.9 1.0 0.9 

Table 5: Execution Times 

results are collected in Table 5 and show that the cost- 
complexity algorithm, which uses cross-validation for 
pruning and grows multiple tree, has the largest exe- 
cution time. The other three algorithms grow a single 
decision tree, and therefore are nearly an order of mag- 
nitude faster in comparison. 

Results Summary The experimental results show 
that the cost-complexity pruning algorithm achieves 
good accuracy and small trees. However, the algorithm 
is nearly an order of magnitude slower than the other 
pruning algorithms. The Pessimistic and C4.5 pruning 
algorithms are accurate and have fast execution times, 
but lead to large decision trees. The MDL pruning 
algorithm, on the other hand, does not suffer from any 
of these drawbacks. MDL pruning produces error rates 
that are comparable or better than those achieved with 
the other pruning algorithms. It leads to decision trees 
that are significantly smaller than the ones achieved by 
C4.5 and the pessimistic algorithms. At the same time, 
the MDL pruning algorithm executes nearly an order of 
magnitude faster than the cost-complexity algorithm. 

Conclusions and Future Work 
We presented a novel algorithm that uses the Mini- 
mum Description Length (MDL) principle for prun- 
ing decision trees. Instead of minimizing the length 
of the class sequence in the training sample together 
with the length of the decision tree, as in previous ap- 
plications of MDL to decision tree design, a new length 
criterion was introduced in this paper. This criterion 
captures well the intuitive goal of reducing the rate 
of misclassifications. Experimental comparison with 
other pruning algorithms showed that the proposed al- 
gorithm provides high accuracy, small decision trees, 
and fast execution times. 

The MDL algorithm presented in this paper can be 
extended in several ways. Currently, the algorithm 
does not permit the removal of a subset of the chil- 
dren of a node. We are in the process of evaluating an 
extension of the algorithm that allows such “partial” 
pruning of children at the nodes. This will allow the 
MDL principle to obtain even smaller decision trees 
without losing accuracy. Another possible direction 
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for future work is to experiment with different classes 
of models. This will allow the algorithm to be applied 
to cases where the model costs are much higher than 
those in the trees generated by algorithms like CART 
and C4.5 (e.g. [Bennett 931). 
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