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Abstract 

Protein structure analysis from DNA sequences is an 
important and fast growing area in both computeT 
science and biochemistry. Although interesting ap- 
proaches have been studied, it is very dificult to cap- 
ture the characteristics of protein, since even a sim- 
ple protein are made of more than 100 amino acids, 
which makes biochemical experiments very dificult to 
detect functional components. For this reason, almost 
all the problems in this field are left unsolved and it 
is very important to develop a system which assists 
researchers on molecular biology to remove the difi- 
culties caused by combinatorial explosions. In this pa- 
per we report a system, called MWI (Molecular biol- 
ogists’ Workbench version l.O), which extracts knowl- 
edge from amino-acid sequences by controlling appli- 
cation of domain knowledge automatically. We apply 
this method to comparative analysis of lysozyme and LX- 
lactalbumin. The results show that we obtain several 
interesting results from amino-acid sequences, which 
have not been reported before. 

1. Introduction 
Protein structure analysis from DNA sequences is an 
important and fast growing area in both computer 
science and biochemistry. Although interesting ap- 
proaches have been studied, it is very difficult to cap- 
ture the characteristics of proteins, because even a sim- 
ple protein has a complex combinatorial structure. For 
example, let us consider a very small protein made of 
an one hundred amino-acid sequence (most of the pro- 
teins have larger than three hundred sequences). Then, 
there are 201°0 N 2*O” kinds of possibilities, because 
each component of its sequence can take one value from 
20 kinds of amino acids. Thus, it is hard to estimate 
possible structure or chemical properties of proteins 
from these sequences. What makes the matters worse 
is that we have only iittie knowiedge about possibie 

function and structure of proteins. 
For this reason, almost all the problems in this field 

are left unsolved because of the above intractable na- 
ture caused by complex structure, and it is very impor- 
tant to develop a system which assists researchers on 
molecular biology to remove the difficulties caused by 
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combinatorial explosions (Hunter 1993). For this pur- 
pose, we can introduce a rule induction method, such 
as AQ15 (Michalski et aZ. 1986) and ID3 (Quinlan 
1986). However, applications of such machine learning 
methods only induce classification rules, which are not 
sufficient to analyze the functional differences. There- 
fore we also need to introduce a mechanism which con- 
trols the application of domain knowledge in order to 
analyze the characteristics of induced results and to ex- 
tract as much information as oossible from databases. -r--m 

In order to incorporate the above control strategy 
into machine learning methods, we develop a system, 
called MWl (Molecular biologists’ Workbench version 
1.0)) which extracts knowledge from amino-acid se- 
quences by controlling application of domain knowl- 
edge automatically. 

MWl consists of the following five procedures. First, 
it exhaustively induces all the classification rules from 
databases of amino-acid sequences. Second, MWl 
changes representation of amino-acid sequences with 
respect to the main chemical features Then, third, all 
the rules are induced from each transformed database. 
Next, fourth, the program estimates the secondary 
structure of amino-acid sequences via Chou-Fasman 
method (Chou and Fasman 1974). Finally, fifth, MWl 
induces all the rules from the databases of secondary 
structure. 

This method is applied to comparative analysis of 
lysozyme and a-lactalbumin, and the results show that 
several interesting results are obtained from amino- 
acid sequences, which has not been reported be- 
fore. Based on these new discovered knowledge, sev- 
eral experiments are being planned in order to val- 
idate discovered results. Interestingly enough, some 
of them are recently confirmed by biochemical experi- 
ments(Tsumoto,K. 1994). The evaluation of other re- ,..lL, ---111 L - -_---A.-, --.I--- LL- --L-1- ------:---A.- -211 
5~165 WILI oe reporbea WIIBII GKIC: w1101e exper~~~~erlbs: WII~ 
have been completed. 

The paper is organized as follows: Section 2 gives 
a brief description about our domain: comparative 
analysis of lysozyme IIc and cx-lactalbumin. Section 
3 gives discussion on problems on application of em- 
pirical learning methods to sequential analysis. Section 
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Table 1: Primary (Amino-acid) Sequences 

Protein Sequence contributions to molecular biology and computational 
CY- KQFTKCELSQLLKB@DIDGYGGIALPELIC 

biology. First, as to molecular biology, the analysis 
Lactalbumin TMFIiTSGYDTQAIVEN@QNESTEYGLFQIS 

will make it clear what kind of knowledge biological 
NKLWCKSSQVPQSRNICDISCDKFLDDDIT 

systems acquired through the evolution from birds to 
DDIMCAKKILODIKGIDYWLAHKALCTEKL 

mammals. Second, as to computational biology, the 
EOQWL@@CEKLO 

analysis will make it clear what kind of mechanisms is 
Lysozyme KVFERCELARTLKRLGMDGYRGISLANWMC 

useful to analyze the sequences of similar proteins. 
LAKWESGYNTRATNYNAGDRSTDYGIFQIN 

SRYWCNDGKTPGAVNACHLSCSALLQDNIA 
_1=1~“.__.,lln__h”~_ 1..,.,*.~ln.,m”~.v~~ UtlYk%btlRnY v n”r~“lnrrr” “nvrnnn~bpn” 

VRQYVQGCQ@GV 
,I ,, Q denotes “gap” regions after processing 

multiple alignment procedure. 

4 presents the discovery strategy of MWl and how it 
works. Section 5 shows the results of application of 
this system to comparative analysis of lysozyme IIc 
and a-lactalbumin. Section 6 compares our method 
with related work. Finally, Section 7 concludes this 
paper. 

2. Lysozyme and a-Lactalbumin 
Lysozyme IIc is a enzyme which dissolves the bac- 

terial walls and suppress the growth of bacteria. All 
living things have this kind of enzyme, and especially, 
in the category of vertebrate animals, such as fishes, 
birds, and monkeys, the sequences are almost pre- 
served. 

On the other hand, a-lactalbumin functions as a co- 
enzyme of one reaction which dissolves the chemicals 
in milk into those easy for babies to take nutrition. 
So this enzyme only exists in the mammals, such as 
monkeys, and the marsupials, such as kangaroos. 

The comparative analysis of these two proteins is 
one of the most interesting subjects in molecular bi- 
ology because of the following two reasons (McKenzie 
and White 1991). First, cr-lactalbumin are thought 
to be originated from lysozyme IIc, since both of 
the sequences are very similar (Table 1). According 
to the results of homological search, about 60 % of 
the sequences of a-lactalbumin matches with those of 1---------_ --.LI-L -__----L- LL-1 LL--- ^-- -l-AL- -^-^ -2 rysozyme, wnicn suggests 6na~ cney are 01 LII~ same OKI- 
gin I. In addition to this similarity, the global three- 
dimensional structure of these two proteins are almost 
the same. Second, it is not well known what kinds of 
sequences mainly contributes to the functions of both 
enzymes, although many experiments suggests that in- 
teractions of several components play an important 
role in those functions. 

lIn this methodology, a amino-acid sequence of a protein 
of one species, such as cytochrome c of the mammals, only 
matches with only 25 % of sequences of different species, -..-L _- ---L--L---- _ -I- AL- ---*:I-- sucn as r;yL”ulr”IIK! c “I LIE rapLwza. 

3. Problems of Empirical Learning 
Mtathnrlp *.lv”.LvuY 

It is easy to see that simple application of machine 
learning methods to DNA or amino-acid sequences 
without using domain-specific knowledge cannot in- 
duce enough knowledge. 

For example, simple application of induction of de- 
cision trees (Breiman et al. 1984; Quinlan 1986) gen- 
erates only one rule from many possible rules. How- 
ever, many attributes (exactly, 52 attributes) have the 
maximum value of information gain. Thus, we have to 
choose one of such attributes. If simplicity is preferred, 
th.t ia if thn nmmhnr nf lewna chnmlrl hn m;nim;nml “Ilcv” ‘“1 AL “ALL. 1LUYL”“L “A 1~W.V” “zA”UIU vu ,Y’~~‘&‘A~YUU) 

then location 44 will be selected as shown below. 

44 = N - . - lysozyme -a-(45cases) 
44=F/ . . . o - Eactalbumin - - - (23cases) 

In this case, we get a simple tree, which consists of one 
node and two leaves. Unfortunately, this result is not 
enough, since our objective is not to find a simple rule 
for classification, but to find as much information as 
possible. 

However, exhaustive induction of possible rules also 
cause another problem: it is very difficult to interpret 
all the possible rules without using domain knowledge. 

Hence it is very crucial to control application of do- 
main knowledge, according to what problem we want 
to solve. If we need only some evidential knowledge, 
we should strictly apply domain knowledge, and focus 
only on several attributes of training samples. These 
cognitive aspects of machine discovery system are dis- 
cussed by researchers on machine discovery (Zytkow 
1992). 

In order to implement discovery strategy of molecular 
biologists, we develop a system, called MWl (Molecu- 
lar biologists’ Workbench version l.O), which extracts 
knowledge from amino-acid sequences by controlling 
application of domain knowledge automatically. 

MWl consists of the following six procedures. First, 
it applies PRIMEROSEEX, discussed in the next sub- 
section, and exhaustively induces all the classification 
rules from databases of amino-acid sequences. Sec- 
ond, MWl changes representation of amino-acid se- 
I...T.."a.n . . ..+1. .w.nrrnn+ +rr CL, m.T:r. nh~m:n"l +-a.x+..ran qulzuLc5" Wlbll Lr;up~L" II" CUG Ulcwl, bLIcx,,~LaL Lcia.llULGju 
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of amino acids, such as the characteristics of elec- 
tronic charge (i.e., basic, neutral, or acidic) (Pri- 
mary Structure Rearrangement). That is, MWl 
generates new databases focused on a certain chem- 
ical property from original databases. Then, third, 
PRIMEROSEEX is applied again, all the rules are 
induced from each database generated by the second 
procedure. Furthermore, the statistics of each chem- 
ical characteristic are calculated. Next, fourth, the 
program estimates the secondary structure of amino- 
acid sequences using Chou-Fasman method (Chou and 
Fasman 1974) (S econdary Structure Rearrange- 
ment ) . Finally, fifth, MWl induces all the rules 
from the databases of secondary structure, applying 
PRIMEROSEEX. 

4.1 PRIMEROSE-EX 
In order to induce rule exhaustively, we introduce a 
..rnnrn- nr\ll,-.A DDTXZli’DACE’ li’Y fDs-.h.-.l.:l:,+:, D..,,. p,r”glallL, LaIIcxl I lLIIvIuIc”L)u-uA \’ I”“c&“IIIDCIL ILUlt: 

Induction Method based on Rough Sets for Exhaus- 
tive induction). This method is based on rough set 
theory, which gives a mathematical approach to the 
reduction of decision tables, corresponding to the ex- 
haustive search for possible rules. For the limitation 
of the space, we only discuss the definition of prob- 
abilistic rules of PRIMEROSE-EX and an induction 
algorithm of this system. Readers, who would like to 
know further information on rough sets, could refer to 
(Pawlak 1991; Ziarko 1991; Ziarko 1994). 

Ruies of PRIIvIERCSE-EX. in the framework of 
rough set theory, we have several specific notations as 
follows. First, a combination of attribute-value pairs, 
corresponding to a complex in AQ terminology, is de- 
noted by an equivalence relation R. For example, 
[u = l]&[b = l] will b e one equivalence relation, de- 
noted by R = [a = l]&[b = 11. Second, a set of samples 
which satisfies R is denoted by [&, corresponding to 
a star in AQ terminology. For example, when {1,2,3} 
is a set of samples which satisfy R, [E]R is equal to 
{1,2,3) 2. Finally, third, U, which stands for “Uni- 
verse”? denotes the whole training samples. 

According to this notation, probabilistic rules are 
defined as follows: 
Definition 1 (Probabilistic Rules) Let R, be an 
equivalence relation, D denote a set whose elements 
belong to a class d, or positive examples in the whole 
training samples, U, and [x]~, denote the set of train- 
ing samples which satisfies an equivalence relation Ri. 
Finally, let IDI d enote the cardinality of D, that is, the 
total number of samples in D. 

A probabilistic rule of D is defined as a quadruple, 
< R a2P d,a, ~,p >, where R a3P d satisfies the 
following proposition: 

R a3P d s.t. [x]~ n D # 4, 

21n this notation, “1” denotes the first(lst) sample in a 
dataset. 

where (Y and n are defined as: 

~= wd-m 
I[xlRI ’ 

and K = IbiRm 
PI ’ 

and where p is a p-value of x2-statistics when the rela- 
tion between [x]~, D, and U is tested as a contingency 
+...l.1, ‘UVK. ci 

The intuitive meaning of the above three variables, CY, 
K, and p-value is given as follows. First, (Y corresponds 
to the accuracy measure. For example, if Q of a rule is 
equal to 0.9, then the accuracy is also equal to 0.9. Sec- 
ond, K is a statistical measure of how proportion of D 
is covered by this rule, that is, coverage or true positive 
rate. For example, when IE is equal to 0.5, half of the 
members of a class belongs to the set whose members 
satisfy that equivalence relation. Finally, third, pvalue 
denotes the statistical reliability of a rule R a3P d. For 
example, when p is equai to 0.95, the reiiabiiity of the 
rule is 95%. 

As to the calculation of p-value, we view the rela- 
tion between [x]~, D, and U as a contingency table as 
shown in the following table. 

Total 
s+t 
u+v 

Total s+u t+v s+t+u+v(=n) 

In the above table, TR and yd denotes the negation of 
R and d; respectively. Note that each items in the table 
can be described in the framework of rough set theory, 
that is, s, t, u, v can be described as ][x]R n Dl(= 
$1, I[+ n (u - D>l(= t>, ID - [X]R n Dl(= u>, and 
](U - D) - [x]~ n (V - D)l(= v), respectively. It is 
also notable that s + t = ][x]n], s + u = IDI, and 
s+t+u+v=IUI. 

From the above table, x2-statistics can be calculated 
ZlS: 

n(sv - tu)Z 
x2 = (3 + u)(t + v)(s + t)(u + v)’ 

where n> s! tt u!v is given in the above table. This 
statistics is a test staGstics to check whether R is inde- 
pendent of d. In other words, it indicates whether R is 
not useful for classification of d or not. From the value 
of this statistics, pvalue is calculated from where this 
value is located in the x2-distribution. For example, 
when the p-value of x2-statistics ~0 is equal to 0.99, 
the region whose x2-statistics is below ~0 occupies 99% 
of the whole distribution. Thus, the probability with 
which this event will occur is 99%. 

According to those values, we classify the induced 
probabilistic rules into the following four categories: 

(1) Definite Rules: cr = 1.0 and K = 1.0, 
(2) Significant Rules: 0.5 < Q: < 1.0 and 0.9 I p < 1.0 
(3) Strong Rules: 0.5 < CLI < 1.0 and 0.5 < p < 0.9, 
(4) Weak Rules: cr > 0. 
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An algorithm for PRIMEROSE-EX. Let D de- 
note training samples of the target class d, or positive 
examples. In the following algorithm, we provide two 
kinds of specific sets. The one is Li, which denotes 
a set of equivaience reiations whose size of attribute- 
value pairs is equal to i - 1. For example, L3 in- 
cludes [a = l]&[b = 11, whereas Lz includes [a = l] 
and [b = 11. The other is Mi, which denotes a set 
of equivalence relations for weak rules. For example, 
when Ms includes a [u = l]&[b = 11, the accuracy of 
[u = l]&[b = l] as to the target concept is lower than 
0.5 or the pvalue of x2-statistics as to the target con- 
cept is lower than 0.5. Thus, an equivalence relation 
in iV& is weak for classification or do not cover enough 
training samples. 

Rn.sd nn thew. nntatinns. the search orocedure can ---- - --- L---C- ---d&l---L, 1__- L--_---_ =---- ---- 
be described as a kind of the greedy algorithm in the 
following. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Let LO be equal to a set of all the attribute-value 
pairs [a, = vj](selectors in terms of AQ method) 
and i be equal to 0. 
Set A& to (1, an empty list. Repeat the following 
three procedures for all the members in a list L, until 
Li is empty. If L, is empty, got0 (7). 
Select one pair R = A[Q = v3] and check whether 
[x]nrlD # #(CX > 0). If so, then goto (4). Otherwise, 
remove the pair from Li, and repeat this procedure 
again. 
Check whether (Y > 0.5. If so, then goto (5). Oth- 
erwise, include the pair in a list of weak rules of d, 
and add this pair to Mi and goto (2). 
If cy = 1.0 and K = 1.0, then save this pair as a 
definite rule of d. Remove the pair from L, and goto 
(2). Otherwise, goto (6). 
Check the pvalue. If p > 0.9, register this pair as a 
significant rule of d. Remove the pair from Li and 
g&n (2). If p > 0,5, rqjster this pair as a strong 
rule of d. Remove the pair from L, and goto (2). 
Otherwise, include the pair in a list of weak rules of 
d, and add this pair to A& and goto (2). 
If Mi is empty, quit. Otherwise, generate a list of 
the whole combination of the conjunction formulae 
in Mi as Li+l. Then increment i(i:=i+l), goto (2). 

The above procedure is repeated for all the attribute- 
value pairs. It is notable that the above algorithm is 
very similar to discovery of association rules developed 
by Mannila et al. (Mannila et a1.1994). We will discuss 
thn rnmnaricnn nf thraae twn m&,hnd!: in ‘b-+inn fj. “&AU ~“~L’yw~‘““” vI yA.vI- “.,., .__.,” _---I --- L--l --_- -. 

In the above algorithm, equivalence relations for sig- 
nificant rules and strong rules in L, are removed from 
candidates for generation of Lz+l, because they are not 
included in Mi. Thus, if significant members of Li are 
not included in Mi, then computational complexity of 
generation of L,+l is small. However, when significant 
members are included in Mi, then the complexity will 
be very large. This tendency has already been well 

studied by (Mannila et al. 1994), although in their ap- 
proaches the complexity will be large when significant 
members are not included in n/r,. According to Man- 
nila’s results, the running time would be linear in the 
size of training sampies, but exponentiai in the size of 
M,. We also discuss this issue later in Section 6. 

4.2 Change of Representation 
We introduce two kinds of change of representation. 
One is to generate new databases which focus on a 
certain chemical characteristic from original databases, 
called primary structure rearrangement. The other one 
is to transform original databases, according to the es- 
timation of the secondary structure, called secondary 
structure rearrangement. 
Primary Structure Rearrangement. 
The most important chemical characteristics of amino 
acids which are thought to contribute to determine a 
protein structure are the following: hydrophobicity, 
polarity or electronic charge of a side chain, the size 
of an amino acid, and the tendency of an amino acid 
to locate the interior of proteins. 

For example, in the case of hydrophobicity, which de- 
notes how much an amino acid is intimate with water 
molecule, there are two kinds of attribute-value pairs: 
[hydrophobicity = yes] or [hydrophobicity = no] 3. -1 .A?--~- -_- Vsing these notatrons, we can change representation 
of amino-acid sequences. For example, let us con- 
sider a case when an attribute-value pair of an orig- 
inal database is [33 = F], which denotes that the 33th 
amino acid of a protein is F (phenylalanine). Because 
phenylalanine (F) is hydrophobic, this attribute-value 
pair is transformed into: [33 = [hydrophobicity = 
yes]]. This procedure is repeated for all the amino- 
acids in an original sequence. 
Secondary Structure Rearrangement. 
Next, MWl estimates secondary structure from amino- 
acid sequences using the C/~LUB-~CLSI~I(L~L III~~IIUU l~lrou- 
Fasman 1974), which is the most popular estimation 
method 4. This Chou-Fasman method outputs the 
place where specific secondary structures: a! - helix, 
P- sheet, and turn. According to this estimation, 
MWl changes representation of original databases. For 
example, the 4th to 10th amino acids are estimated to 
form an o-helix. Based on the above results, the value 
of each attribute, which is the address of a primary 
sequence, are replaced by the above knowledge on sec- 
ondary structure. In the above example, the values of 
the 4 th to 10th attributes are substituted for o-helix, 

31n this paper, we only use these qualitative values, 
although we also have the coefficients of hydrophobicity, 
which are quantitative values. It would be our future work 
to deal with quantitative coefficients. 

41t is notable that our method is independent of this es- 
timation method. Thus, we can replace the Chow-Fasman 
method with the new methods which may gain more pre- 
dictive accuracy, when such methods are obtained. 
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Table 2: Results of Primary Structure Rearrangement 

Protein Amino Acid and its Location 
lysozyme c N 27 (A,L 31) K 33 
a-lact E 27 T 31 F 33 
lysozyme c E 35 N 44 (Y,D 53) 
cu-lact W,T 35) v 44 E 53 
lysozyme c (A G 76) 

i 76 
(A,R 107) 

cr-lact D 107 
lysozyme c (G,D,Q 117) L 129 
a-lact s 117 E 129 

a-helix, a-helix, a-helix, o-helix, and a-helix. That is, 
Primary Structure ERCELA 

1 111111 
Secondary Structure cr a Q a Q cr. 

It is notable that some attributes may have no spe- 
cific secondary structure. In these cases, the value of 
these attributes are replaced by one of the four char- 
acteristics: {hydrophobic, polar, acidic, basic}, since 
they play an important role in making secondary struc- 
ture, as discussed in the section on primary structure 
rearrangement. For example, let us consider a case 
when an attribute-value pair of an original database 
is [86 = 01, which denotes that the 86th amino acid 
of a protein is D (asparatic acid). Because asparatic 
acid (D) is acidic, this attribute-value pair is trans- 
formed into: [86 = acidic] 5. 

5. Results and Discussion 
We apply MWl to 23 sequences of cr-lactalbumin 

and 45 sequences of lysozyme from PIR databases, 
both of which are used as original training samples 6 
Then, as inputs of MWl, we use the sequences pro- 
cessed by multiple alignment procedures. 

The induced results are shown in Table 2 to 4, where 
the following three interesting results are obtained 7. 

First, Table 2 shows the induced definite rules be- 
fore change of representation. From the second to sixth 
columns, alphabets denote amino-acids, and the num- 
bers denote the location in the sequence of a protein. 

% is notable that this information can be retrieved from 
the database generated in the process of primary structure 
rearrangement. 

‘Readers may say that 68 samples are very small. 
However, these samples are now all included in Protein 
databases. As pointed out, most of the datasets collected in 
genome databases are genes of bacteria, mouse, and other 
animals which are often used in biochemical experiments. 
This tendency is one of the difficult problems in genome 
databases. 

7The shown results are mainly induced definite rules 
and significant rules, because including strong and weak 
rules takes much more space. Thus, due to the limitation 
of space, we only discuss the results of definite rules and 
significant rules. 

Table 3: Results of Primary Structure Rearrangement 
with respect to Hydrophobicity 

Protein Location 
2 4 9 11 33 35 

lysozyme c 1 0 1 1 0 0 

cr-lactalbumin 0 1 0 0 1 44 45 72 73 74 7”s 
lysozyme c 1 0 1 1 0 0 
a-lactalbumin 0 1 0 0 1 1 

83 88 92 98 103 106 
lysozyme c 1 1 0 1 0 
&-lactalbumin 

0 
0 0 1 0 1 1 

112 114 115 116 118 123 
lysozyme c 0 0 0 0 1 0 
cr-lactalbumin 1 1 1 1 0 1 

129 
lysozyme c 1 
cr-lactalbumin 0 
Notations: 1: yes, and 0: no. 

Table 4: Results of Secondary Structure Rearrange- 
ment 

Protein Location 
70-77 83-94 98-104 

lysozyme c hydrophobic hydrophobic loop 
a-lact polar acidic a-helix 

107-110 113-117 
lysozyme c a-helix basic 
a-lact hydrophobic hydrophobic 

For example, N 27 means that the 27th amino acid of 
lysozyme IIc is N, or aspargine. These results mean 
that these amino acids are specific to each protein. In 
other words, the most characteristic regions are ex- 
pected to be included. Actually, it is known that E 35, 
and Y or D 53 are the active site of lysozyme, and also 
K 33, N 44 and A or R 107 are said to play an impor- 
tant role in its function (McKenzie and White 1991). 
However, N 27 and L 129 are new discovery results, and 
no observations or experimental results are reported. 
Thus, these acids may contribute to the function of 
lysozyme. 

Second, Table 3 shows the results of definite and 
significant rules after change of representation with re- 
spect to hydrophobicity. This table shows that the 
non-hydrophobic region of 73 to 92th amino acid is spe- 
cific to a-lactalbumin, and that non-hydrophobic re- 
gion of 112 to 116th amino acid is specific to lysozyme. 
The former region corresponds to the binding site of 
calcium ion, which is a main functional part of CX- 
lactalbumin. However, the function of the latter region 
is unknown. It may play an important role in the func- 
tion of lysozyme, because that region easily interacts 
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with targets and water, which causes the dehydration 
of targets (Lewin, 1994). 

Third, Table 4 shows the results of the definite 
rules after secondary structure rearrangement. The 
second row shows the location in sequences, for ex- 
ample, 70-77 means 70th to 77th amino acid in se- 
quences of lysozyme c. Interestingly, although specific 
amino acids are mainly located at the lower address 
part (called it N-terminal), specific local structure are 
mainly located at the higher address part (called it 
C-terminal). The most significant regions are 98-104 
and 113-117 l.nnn..nn ,,,h o,nr.“Anrrr o+r.*n+..ra :” .,.3,s.l , “~LQIUJO r;a.Lll oca”wAody UblUblrUlG ID “GLJ 
different. Other regions also show that hydrophobic re- 
gions of lysozyme correspond to non-hydrophobic re- 
gions of cY-lactalbumin, and vice versa. Thus, these 
regions may play an important role in realizing each 
function 8. 

According to these results, they are now planning 
to validate these results by the experiment8 based on 
technique of recombinant DNA. Since it takes about 
one to three weeks to study the characteristics of one 
“mutant” protein, we need more that 6 months to con- 
firm our induced results. Readers may say that it takes 
too much long time for validation, but it is said that 
we need 10 to 20 years to study the characteristics of 
the two proteins. Therefore we can save our time to 
make efficient experiments. 

6. Related Work 
6.1 Discovery of Association Rules 
Mannila et al.(Mannila et al. 1994) report a new al- 
gorithm for discovery of association rules, which is 
one class of regularities, introduced by Agrawal et 
al.(Agrawal et al. 1993). Their method is very sim- 
ilar to ours with respect to the following two points. 

(1) Association Rules. The concept of association 
rules is similar to our induced rules. Actually, associa- 
tion rules can be described in the rough set framework. 

That is, we say that an association rule over T satis- 
fies W =+ 3 with respect to 7 and u, if 

I[+v f-l [+I 2 cm 
and 

blw ” MB 
blw 2 7, _ - 

where n, 7, and c denotes the size of training samples, 
confidence threshold, and support threshold, respec- 
tively. Also, W and B denotes an equivalence relation 
and a class, respectively. Furthermore, we also say that 
W is covering, if 

It is notable that the above formulae correspond to the 
formula as to K and p-value shown in 4.1.1, coverage 

‘Recently, our collaborating domain experts have got 
the results! which suggest that 9%104th amino acid plays 
an important role in lysoayme function(Tsumoto, K. 1994). 

and the formula as to CY, accuracy. The only difference 
is that we classify rules, corresponding to association 
rules, into three categories: definite rules, significant 
rules, and strong rules. 

The reason why we classify these rules is that this 
type of classification can be viewed as the ordering of 
rules or hypothesis. That is, definite rules correspond 
to the strongest hypotheses. However, these strongest 
rules may not be interesting for discovery. Then, sig- 
nificant rules will be considered for the candidates of 
discovery. If they are not so important, then strong 
-..I-- .-:I, I., ^^_I :.J-..-1 lx--II- -11 AL- CL...... I.:--1,. LuleD Will “t: L;“IIsIutxtxl. r umuy, au Cllt: Irllree KIIKlS 
rules are found to be not important, then we should 
search for weak rules. In this way, we simulate the 
discovery strategy of biochemists by using the classifi- 
cation of classification rules. 
(2) Mannila’s Algorithm. Mannila et al. intro- 
duce an algorithm to find association rules based on 
Agrawal’s algorithm. The main point8 of their algo- 
rithms are database pass and candidate generation. 
Database pass produces a set of attributes L, as the 
collection of all covering sets of size s in C,. Then, can- 
,:-l-L- ------A:-- ~~1~..1..L.~- /* -.L:-L -1^^^L^^ LL- UKl&lrt: generalJ1on Cal(;lllabes Lls+1, WlllCll uelloces IJIlt: 
collection of all the sets of attribute8 of size s, from 
L,. Then, again, database pass is repeated to produce 
L s+l. The effectiveness of this algorithm is guaran- 
teed by the fact that all subsets of a covering set are 
covering. 

The main difference between Mannila’s algorithm 
and our MWl algorithm is that Mannila uses the check 
algorithm for covering to obtain association rules, 
whereas we use statistical analysis to compute and clas- 
sify rules. 

In the discovery of association urles, all of the combi- 
nation of attribute-value pairs in C, have the property 
of covering. On the other hand, our algorithm do not 
focus on the above property of covering. It removes 
an attribute-value pair which has both high accuracy 
and high coverage from L, and does not include in Ms. 
That is, PRIMEROSEEX does not search for regular- 
ities which satisfy covering, but search for regularities 
important for classification. 

Thus, interestingly enough, when many attribute- 
value pairs have the covering property, or covers many 
training samples, Mannila’s algorithm will be slow, al- 
though PRIlMEROSE-EX algorithm wiii be fast in this 
case. When few pairs covers many training samples, 
Mannila’s algorithm will be fast, and our system will 
not be faster. 

6.2 Ziarko’s KDD-R 
Ziarko and Shan develop a comprehensive system for 
knowledge discovery in databases using rough sets, 
called KDD-R (Ziarko and Shan 1995b). Their system 
consists of the four functional units: data processing 
unit, a unit for analysis of dependencies, a unit for 
computation of rules from data, and decision unit. 
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The most important unit is one for computation of 
rules from data. This unit computes all, or some, ap- 
proximate rules with decision probabilities, where the 
probabilities are restricted by lower and upper limit 
parameters specifying the area of user interest. The 
rules can be computed for a selected reduct using the 
method of decision matrix (Ziarko and Shan 1995a), 
which is an extention of discerniblity matrix (Skowron 
and Rauzer 1992). 

The main difference between KDD-R and our system 
is that PRIMEROSEEX adopts statistical measures 
A.- - -._-^ ^LL.AL.L^ -^,..A -..:-A T- T)T)T’IIblTnAclTII riv bU psu11t’ abbl-llJULe-Vitlue pami. 111 rllllvlWn.u3~~h, 
attribute-value pairs which have high accuracy and 
high coverage will be used for rule generation and re- 
moved from the candidates of complexed rules. On the 
other hand, KDD-R first removes dependent superflu- 
ous attributes using the extension of rough set model, 
called Variable Precision Rough Set model and then 
calculates rules using the technique of decision matrix, 
which is very useful to generate all approximate rules. 

Thus, KDD-R focuses mainly on dependencies of 
attributes with respect to selection of attribute-value 
pairs, whereas PRIMEROSEEX focuses on mainly on 
statistical significance of attribute-value pairs, which 
is used for selection of attribute-value pairs. Therefore 
the performance of each system may depend on the 
characteristics of an applied domain. That is, KDD-R 
may outperform our method when a dataset has many 
dependent attributes. 

7. Conclusion 
In this paper, we propose a system based on combi- 
nation of a probabilistic rule induction method with 
domain knowledge, which we call MWl (Molecular bi- 
ologists’ Workbench version l.Oj in order to retrieve 
the difficulties from the experimental environments of 
molecular biologists. We apply this method to compar- 
ative analysis of lysozyme and a-lactalbumin, and the 
results show that we get some interesting results from 
amino-acid sequences, which have not been reported 
before. 
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