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Abstract 

One of the most important problems in rule induction 
methods is how to estimate which method is the best 
to use in an applied domain. While some methods are 
useful in some domains, they aTe not useful in other 
domains. Therefore it is very dificult to choose one 
of these methods. FOT this purpose, we introduce mul- 
tiple testing based on recursive iteration of resampling 
methods for rule-induction (MULT-RECITE-R). This 
method consists of four procedures, which includes the 
inner loop and the outer loop procedures. First, orkg- 
inal training samples($) are randomly split into new 
training samples(&) and teat samples(T1) using a Te- 
sampiing scheme. second, & are again spiii inio 
training sample(&) and training samples(li) using 
the same resampling scheme. Rule induction meth- 
ods ave applied and predefined metrics aTe calculated. 
This second procedure, as the inner loop, is repeated 

for 10000 times. Then, third, rule induction methods 
are applied to 5’1, and the met&s calculated by Tl are 
cornpaved with those by Tz. If the metrics derived by 
TZ predicts those by Tl, then we count it as a success. 
The second and third procedures, as the outeT loop, are 
iterated foT 10000 times. Finally, fourth, the overall 
results are interpreted, and the best method is selected 
if the resampling scheme performs well. In OTdeT to 
evaluate this system, we apply this MULT-RECITE- 
R method to three UCI databases. The results show 
that this method gives the best selection of estimation 
methods statistically. 

1. Introduction 
One of the most important problems in rule induc- 
tion methods (Breiman, et al. 1984; Clark and Niblett 
1989; Michalski, et al. 1986; Quinlan 1986; Quinlan 
1993) is how to estimate which method is the best to 
use in an applied domain. While some methods are 
useful in some domains, they are not useful in other 
domains. Therefore it is very difficult to choose one of 
these methods. 

In order to solve this problem, we introduce mul- 
tiple testing based on recursive iteration of resam- 
pling methods for rule induction methods (MULT- 
RECITER). MULT-RECITER consists of the follow- 
ing four procedures: First, it randomly splits train- 
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ing samples(&) into two parts, one for new training 
sampies(&j and the other for new test samples(T1 j 
using a given resampling method(R). Second, Si are 
recursively split into new training samples($) and test 
samples(Tz) using the same resampling strategy(R). 
Then rule induction methods are applied to Sa, re- 
sults are tested and given metrics(Sz metrics) are cal- 
culated by TZ for each rule induction methods. This 
second procedure, as the inner loop, is repeated for 
10000 times and the statistics of metrics are obtained. 
Third, in the same way, rules are induced from Si and 
metrics(Si metrics) are calculated by TI for each rule 
induction m&hods: Then $1 metrics ar.rg CQmpared 
with Sa metrics. If the difference between both re- 
sults are not statistically significant, then it is counted 
as a success. The second and the third procedure, as 
the outer loop, are iterated for 10000 times, which gives 
statistics of success which shows how many times of to- 
tal repetitions S’s metrics predict Sr metrics. Finally, 
fourth, the above results are interpreted in the statis- 
tical way. If calculated statistics is larger than given 
precision, then this estimation method is expected to 
be well-performed, and the induction method which 
gives the best metric is selected as the most suitable 
induction method. Otherwise, this estimation is ex- 
pected not to be a good evaluation method. Thus, a 
list of machine learning methods ordered by 5’1 metrics 
is returned as an output. 

For evaluation of this system, we apply this MULT- 
RECITER method to three UC1 databases (Murphy 
and Aha), Monks three problems, since they have both 
training and test samples. The results show that this 
method gives the best selection of methods in almost 
the all cases. 

The paper is organized as follows: in Section 2, we 
introduce resampling methods, which are usually used 
as methods of error estimation. Section 3 presents the 
strategy of MULT-RECITER and illustrates how it 
works. Section 4 gives experimental results and in Sec- 
tion 5 we make a brief discussion about these results. 
Finally, in Section 6, we compare our work with related 
work. 
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2. Resampling Met hods 
Resampling Methods (Efron 1982,1994) consist of iter- 
ation of the following four processes in general. First, 
new training samples and new test samples are gen- 
erated from original samples (Generation Process). 
Second, they calculate statistical objects, such as dis- 
criminant functions, allocation rules from the gener- 
ated training samples (Induction Process). Third, 
they make statistical estimation of these objects from 
the test samples, such as error rate (Validation Pro- 
cess). These processes are repeated for finite times, 
say 100 times, and finally, fourth, statistical reason- 
ing is evoked to process these obtained statistics. For 
example, when we take error rate as a statistic, we 
calculate the means and variances of derived error 
rates(Estimation Process). 

Although there have been proposed several resam- 
pling methods, such as cross-validation, the Bootstrap 
method, the only difference is in generation pro- 
cess, or resampling plans. Thus, for the limitation of 
the space, we only focus on cross-validation, although 
our scheme is not dependent on a resampling scheme. 
For more information on other resampling methods, 
readers could refer to (Efron 1982,1994; Tsumoto and 
Tanaka 1994). 

2.1 Cross-Validation Method 
Cross-validation method (Breiman, et al. 1984; Efron 
1982, 1994) is performed as follows: first, in its gen- 
eration process, the whole training samples L: are ran- 
domly split into V blocks: {&, Lz,. + 9 , JZ~}. Second, 
it repeats for V times the procedure in which rules or 
statistical models are induced from the training sam- 
ples t - C,(i = 1, * * * , V) and validated by using Li as 
the test samples. Finally, estimation process is evoked. 
For example, in the case of error estimation, the whole 
error rate eTT is derived by averaging erri over i, that 
is, err = Cr=, err,/V. The whole process is called 
V-fold cross-validation, since V iteration is needed to 
complete these processes. 

One of the most important practical problems on 
cross-validation is that we have to take care of evalua- 
tion of cross-validation estimates, since those variances 
are very high (Efron 1994). Therefore estimation pro- 
cess is very important to tame these high variabilities. 

In order to suppress this high variabilities, Walker 
introduces repeated cross-validation (Walker 1992). 
This method iterates cross-validation method for fi- 
nite times, say 100 times, and estimators are averaged 
over all the trials. Since this repeating resampling 
scheme performs very well in artificial and real-world 
databases (Walker 1992), we adopt this repeated cross- 
validation as a resampling scheme. 

2.2 Matryoshka Principle 
As discussed above, generation process generates a set 
of training samples, which is a subset of original sam- 
ples. If induced results by training samples are differ- 

ent from ones by original samples, then it is thought 
that this difference reflects the difference between orig- 
inal samples and total population(al1 the samples in 
real-world). 

Therefore we should consider two relations between 
three hierarchical objects; the relation between total 
population (Fo) and original samples (Fl), denoted 
by RI (Fo, FL), and the relation between original sam- 
ples (Fl) and resampled training samples (Fz), denoted 
by Rz(Fl,Fz). If we assume the fractalness of to- 
tal population, or self-similarity of total population, 
then the above two relations are assumed to be al- 
most equivalent, that is, Rl(Fo, FI) 11 Rz(Fl, Fz). In 
this way, we implicitly assume the fractalness of real- 
world data when we apply resampling methods. This 
idea underlying resampling methods is called the “ma- 
tryoshka” principle by Hall (Hall 1992), although Hall 
never mentions that fractal characteristics. It, is no- 
table that this principle is also concerned with the 
problem of sampling bias in the field of statistics (Efron 
1994; Hall 1992). The main point of sampling bias is 
that if original training samples are suitably sampled 
from population, then the results of these samples are 
asymptotically equal to those by using total popula- 
tion. Therefore sampling from these training samples, 
if not, biased, gives the same result. And the perfor- 
mance of resampling methods empirically suggests that 
this assumption be true (Efron 1994; Hall 1992). We 
discuss this issue later in Section 6. 

3. MULT-RECITE-R 
3.1 Strategy of MULT-RECITE-R 
The most important problems for statistical evaluation 
are how to choose a metric and how to evaluate rule 
induction methods using several databases. 

As to the first problem, it is hard and controversial to 
determine what factor should be applied to evaluation 
of rule induction methods. While some researchers fo- 
cus on classificatory accuracy (Quinlan 1993; Thrun et 
al. 1991), others may focus on comprehensiblity of the 
induced results. However, if one would like to eval- 
uate rule induction methods statistically, we need to 
use numerical metrics, such aa accuracy. Therefore we 
also use accuracy as a metric for evaluation, although 
MULT-RECITER is independent of choice of metrics. 

Concerning the second problem, one of the impor- 
tant disadvantages of using accuracy is that these per- 
formances may depend on applied domains (Schaffer 
1993a, 1993b), or applied training samples. How- 
ever, in general, one may want to evaluate these rule 
induction methods without domain knowledge, since 
domain-specific knowledge may not be applicable. In 
this case, one way for evaluation is to select one method 
from considerable resampling methods, that, is to say, 
to select the best rule induction method by using sub- 
sets of training samples. For example, let us con- 
sider the case when we have training samples, say 
(1 2 3 4 5 6 7 8 9 10). Then, first, it is split into new ,,>,I,,I, 
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training samples, say (1,3,5,7,9}, and new test sam- 
ples, {2,4,6,8,10}. Using new training samples, rule 
induction methods are applied and the results are com- 
pared with the result by the new test samples. Then a 
method which gives the best metric, such as the best 
classification rate, should be selected. For example, if 
the accuracy of the induced decision tree is 0.97, and 
the accuracy of the rule is 0.82, then induction of deci- 
sion tree is selected as the best method. It may depend 
on splitting, so these procedures should be iterated for 
certain times, say 100 times. Then these metrics can 
be compared statistically, since it is easy to calculate 
several statistics of the given metrics, such as average, 
variance, and t-statistics from newly generated data. 

In MULT-RECITER, we assume that the ma- 
tryoshka principle is true. That is, the best method for 
total population can be selected from original train- 
ing samples, and the best method for original train- 
ing samples can be estimated from training samples 
generated by resampling plans. Therefore, in terms 
of Section 2 and 3, a domain of both R1 and Rz is 
the best select method (Rl(Fo, Fl) N Rz(Fl,Fz) = 
(the best method).) 

3,2 b-2 _h_!anrit.hm fnr MTTT,T-R’&ECTTE-R., b”*” ---^- *-* -.- - -- 
An algorithm for MULT-RECITER can be described 
by embedding a rule induction method into the follow- 
ing algorithm based on a resampling scheme. 

INPUTS: 5’s: Training Samples 
(Y: Precision for statistical test 
L: List of Induction Methods 

(hn: List of Metrics) 
R: Resampling Scheme 

OUTPUTS: SR: Overall Success Rate 
BI,: List of Best Induction 

met hods 
J&p: List of Induction Methods 

ordered by p Values 
Lp: List of Adjusted-p Values 

(1) Set Counter to 0 (i := 0, sue := 0, p-cal := 0). 
(2) Randomly split training samples(&) into two 
parts, one for new training samples(&) and the other 
for new test samples(Ti) using a given resampling 
plan(R). 
(3) Randomly split training samples($) into two 
parts, one for new training samples(&) and the other 
for new test samples(Ts) using the same resampling 
plan(R). Then perform the following subprocedures. 

(3-a) Induce rules from S’s for each member of L. 
(3-b) Test induced results using Tz and calculate 

metrics (Ss metrics). 
(3-c) Repeat (3-b) and (3-c) for 10000 times. Then, 

calculate statistics of Ss metrics. 
(4) Apply all the rule induction methods to Sl. Then 
execute the following procedures. 

(4-a) Test induced results by using Tl and Calculate 
metrics(Si metrics). 

(4-b) Compare Si metrics with S2 metrics. If the 
best induction method j for Si metrics is the same as 
that of S2 metrics, then count this trial as a success on 
evaluation (sucj := sucj + 1). Otherwise, count it as 
a failure. 

(4-c) Test statistical significance between the best 
statistics of S’s metrics and Sr metrics using student 
t-test. If not significant, goto (5). Otherwise, count 
this trial as a failure (~Jx$ := p_caZj -I- 1). 
(5) Increment the counter (i := i + 1). If the counter is 
less than the upper bound(i < lOOOO), goto 2). If not, 
goto 6). 
(6) Calculate the overall success rate (SR := C sucj 
/10000). 
(7) Calculate each adjusted p-value (pj := p-colj 
/lOOOO). Then sort adjusted-pvalues pj of each mem- 
ber in L in ascending order (e.g., p,+ 5 pl 5 - -. 5 pm), 
and store as a ordered list Mip (e.g.,(pk,pl,. . - ,pm)). 
(8) Interpret the above results using adjusted-p values. 
For a member of Mip, execute the following subproce- 
dure. 

(8-l) Let Ic := 0, m := [LPI, C := MQ and BI, := 
0. 

(8-2) Take the k + 1 element of LP, say ~k+~. 
(B-3j if q~+~ > a/(m - kj, then got0 Sj. Otherwise, 

remove qa+l from C and append it to BI,. 
(8-4) If C is empty, then goto 9). Otherwise, incre- 

ment Ic(L := Ic + l), Then goto (8-2). 
(9)If BI, is not empty, it means that we have the best 
selection methods, which are statistically significant. 
Thus, output BI,, MIP, and L, and return the whole 
procedure as success. Otherwise, it means that we do 
not have the best method, which satisfies a statistical 
criterion. Thus, output MIP, LP, SR, and SRP and 
return the whole procedure as failure. q 

Let us make several remarks about the above al- 
gorithm. First, in the steps of evaluation, MULT- 
RECITER calculate several fundamental statistics, 
such as average, mode, variances, and t-statistics, 
which are obtained by these fundamental statistics. 

Second, in the step (8), MULT-RECITER applies 
multiple testing technique, which is one of the promis- 
ing approaches in statistical data analysis (Westfall 
1993). Intuitively, multiple testing is a technique for 
testing several hypotheses simultaneously. For exam- 
ple, let us consider a case when we test the following 
three null hypothesis: Ho : al = us, HI : u2 = us, and 
Hz : us = al, where oj denotes accuracy of a method 
j (Note that we would like to reject these hypothesis in 
the ordinary meaning of statistical test). Then, first, 
p-values are calculated for all the hypotheses: pa, pl, 
and ~2. Second, these p-values are sorted in the as- 
cending order, say pl < pz < ps. Finally, the following 
rejection algorithm is evoked. (1) If pi > a/3, then ac- 
cept all hypotheses and stop; otherwise, reject HI and 
goto (2). (2) If pg > a/2, then accept HO and HZ and 
stop; otherwise, reject HZ and goto (3). (3) If po > CY, 
then accept HO; otherwise reject Ho. 
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Table 1: Results of Ss Metric(Accuracy) 

Sz Metric 
Domain C4.5 AQR CN2 
Monk-i 84.3fi.5 90.2f0.9 9Nifi.8 
Monk-2 62.6f2.4 74.8f1.9 59.1f1.7 
Monk-3 87.7f1.4 82.5f1.3 84.8f0.9 

Table 2: Results of 5’1 Metric(Accuracy) 
5’1 Metric 

Domain C45 
85.3f0.9 

A&R CN2 
Monk-l 91.2f0.5 93.0f0.2 
Monk-2 66.7f1.3 75.8f0.7 60.1f0.8 
Monk-3 89,?fOe2 83:&&j 83:8fO,!j 

This sequential algorithm is firstly developed by 
Holm (Holm 1979) in order to solve the problem of 
multiple testing; when several hypotheses are tested, 
using the same precision do not always give us desir- 
able results. For example, all the hypotheses, say Ho, 
HI, and Hz can be accepted whereas only the hypoth- 
esis HO should be accepted. For further discussion on 
multiple testing, readers could refer to (Westfall 1993). 

4. Examples 
In this section we illustrate how the proposed al- 

gorithm, MULT-RECITER works using Monk’s three 
problems (Thrun et al. 1991) in UC1 databases (Mur- 
phy and Aha). The Monk’s three problems are in- 
troduced in order to compare the existing machine- 
learning methods. Monks-l, 2 and 3 consist of train- 
ing samples, whose sizes are 124, 169 and 122, respec- 
tively, and test samples whose sizes are all 432. The 
reason why we choose these problems is that each prob- 
lem focuses on different problems of machine learning 
methods and that test samples (TO) are clearly given. 

Let R, L,, L, be equal to {a-fold repeated cross- 
validation}, (C4.5, AQR, CN2) (Clark and Niblett 
1989; Michalski et al. 1986; Quinlan 1993; Thrun 
1991), and {accuracy}, respectively. Let cy be equal 
to 0.01. MULT-RECITER procedures are executed 
as follows. First, it splits training samples(&) into Sr 
and Tl, both of which are composed of 62, 85,61 sam- 
ples. Second, Sr are again split into Sz and T2, both 
of which are composed of 31, 43, 31 samples. And 
then rules are induced from Sz and tested by Tz. In 
this case, since 8 given -metric is Only an test acciiracji, 
accuracy for each method is calculated. This subproce- 
dures are repeated for 10000 times, whose results are 
shown in Table 1. Results of metrics are shown as 
(average f variance) according to the standard sta- 
tistical notations. The best metric is characterized by 
bold letters in this figure. Third, rule induction meth- 
ods are applied to Sr. The induced rules are tested 

Table 3: Success Rate (10000 Trials:%) 
Success Rate 

Domain OSR C4 5 A&R CN2 
Monk-l 95.37 9.31 12.76 73.30 
Monk-2 77.45 19.81 36.49 21.15 
Monk-3 91.84 82.70 6.79 2.35 
Notation. OSR: Overall Success Rate 

Table 4: Adjusted-p Value (10000 Trials) 
Adjusted-p Value 

Domain C-P c45 
Monk-l 0.0158 0.0672 

AQR CN2 
0.0075 0.0011 

Monk-2 0.0136 0.0051 0.0041 0.0045 - _.-- - ---_ - ---_ - ---- Monk-3 0.0170 0.0021 0.0071 mu78 
Notation. O-p: Overall p-value 

by Tl. We repeat this procedures for 10000 times, and 
test estimators are calculated as shown in Table 2. In 
this case, test estimators for TO are also obtained (Ta- 
ble 5), since test samples are available. Furthermore, 
success rates for each database are given in Table 3, 
and adjusted-p values are presented in Table 4. Using 
the multiple testing shown in the procedure (8), both 
Monk-l and Monk-3 have the best methods, {CNS) 
and {C4.5}, respectively, which are statistically signif- 
icant. On the other hand, Monk-2 has no significant 
method. Thus, we can only choose Monk-2 if [Y is larger 
than 0.0041* 3 = 0.0123. Finally, Table 5 presents the 
test estimators derived by original test samples. 

These results show that selection by S2 metric (accu- 
racy) is almost the same as one by Sl metric (accuracy) 
and that the best selection by MULT-RECITER is the 
same as the best method derived by test accuracy. 

The above experiments give us four interesting results, 
although all of the applied databases are of small size. 

First, the selected methods by a-fold repeated cross- 
validation method correspond to the best estimation 
methods and the derived estimators are very close to 
test estimators. 

Second, the best selected method does not always 
perform better than other two methods. That is, in 
some generated samples, other methods will perform 
better. For example, in the Monk’s 1st problem, 73.3 
e.^..rrm.C ,~,,l.-.,.+:,.. ml.,..., cl.,+ C,,Tr) ,n,.+-,v.mo haMar ptxwm “I DCICLCI”II DU”WJ buab “I”.6 pGrr”lLuu Ucj”“~L, 
but in 22.07 percent of selection, it does not. These 
results also suggest that generated training samples 
may affect the performance of rule induction methods. 
Therefore empirical evaluation only gives us probabilis- 
tic evaluation, that is, relative to training samples. 
As to training samples used in our experiments, we 
cannot get the absolute selection such that the only 
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Table 5: Test Estimators(from [Thrun, et al. 19911) 
Test Estimators 

Domain C4 5 AQR CN2 
Monk- 1 99.; 95.9 100 
Monk-2 68.0 79.7 69.0 
Monk-3 95.6 87.0 89.1 

one method always perform better than any other two 
methods. 

Third, in the cases when MULT-RECITER does 
not go well, the differences of three rule induction 
methods in accuracy are not so significant. That is, 
we can select any of three methods, although the ac- 
curacy of each method is not so high. 

Finally, fourth, although accuracy is only used as 
a metric, the “matryoshka” principle as to accuracy 
holds in almost all the databases. Therefore, if we 
would like to use accuracy as the first metric for eval- 
uation of rule induction methods, then this represen- 
tation procedure can be used as one of the good eval- 
uation methods. 

6. Related Work 
In order to estimate which method is the best to used 
in an applied domain, we introduce multiple testing 
based on recursive iteration of resampling methods for 
selection of rule induction methods (MULT-RECITE 
R), and apply this method to three UC1 databases. 
The results show that this method gives the best se- 
lection of estimation methods in almost the all cases. 

Our research is mainly motivated by Schaffer’s work 
which applies lo-fold cross-validation to selection of 
classification methods. Thus, in the following subsec- 
tion, we discuss the relationship between his works and 
our approach. 

6.1 Schaffer’s CV Method 
Schaffer introduces cross-validation method, called 
CV, to select the classification method best for some 
domain without using domain knowledge (Schaffer 
1993a). 

He gives three constituent strategies: ID3 (Quin- 
lan 1986), C4 (Quinlan 1993), and Back Propaga- 
tion (Rumelhart 1988), and introduces the fourth 
strategy, called CV, which conducts a lo-fold cross- 
validation using training data to compare the three 
constituent strategies. The results show that this CV 

s,...,.. l.*++..r bl..... ,. ,:..e1,. ,.lnnn:4tnnC:rm mnCh,-.,.l :m perlulllla "Cilrlr~L bllCLl‘ a 3111&K cA~oJ,‘ILalJI"I, ll.~"ull"U 111 

average. Finally he concludes that cross-validation 
may be seen as a way of applying partial informa- 
tion about the applicability of alternative classification 
strategies. 

This method is also based on the assumption men- 
tioned in Section 3. That is, the results induced by 
subsets reflect those induced by the original samples. 

Table 6: The Worst Selection of Schaffer’s Methods 
CV’s Choice 

Domain C4 
Monk-l 3’ 

5 AQR CN2 
3 4 

Monk-2 5 3 2 
Monk-3 4 3 3 

Table 7: The Best Selection of Schafler’s Methods 
CV’s Choice 

Domain C4 5 AQR m 
Monk-l 0’ 0 10 
Monk-2 2 6 2 
Monk-3 10 0 0 

As shown in his paper (Schaffer 1993b), his results also 
suggest that this assumption be true. Furthermore, he 
points out that this assumption is closely related with 
the performance of cross-validation, which is precisely 
discussed in (Schaffer 1993a). We will discuss this as- 
nr.-n+:nn :.. +I., na.r+ nrrl-.oKw.+:*.3 uunlp,br”n 111 Llllrj UCjnC UU”Uc3dVI”I‘. 

The main differences between Schaffer’s method and 
ours is the following two points. First, we apply re- 
cursive iteration of resampling methods shown in Sec- 
tion 3, whereas Schaffer only uses training samples for 
selection, and does not test his results by using test 
samples. Thus, it is uncertain whether the obtained 
selection gives an optimal one. 

Second, we use repeated cross-validation method, 
while Schaffer only use lo-fold cross-validation for se- 
lection. It means that some trial gives a worse result, 
and other trial gives better one, because the variance 
of cross-validation method is often very high. Actu- 
ally, the performance of Schaffer’s selection strongly 
depends on generation process, or sampling process, in 
lo-fold cross-validation. 

Let us illustrate the second characteristics using 
Monks-problems. In this experiment, we repeat Schaf- 
fers’s CV method for 1000 times. The total number of 
selection patterns is 135, which shows that we poten- 
tially have more than 135 kinds of selections and that 
CV choice is only one of them. In those selections, 
Table 6 and 7 shows the worst one and the best one, 
respectively. It is easy to see from the above results 
that, in the worst case, all the selections are wrong. 
This also suggests that we will meet such wrong selec- 
tion accidentally, because we only use one generation 
--- in in-f&l rrnac-Tml;rlatinn yr”s,s,~” 111 -L”-A”AxA “L”““- .wI..UI”I”I-. 

Therefore, our MULT-RECITER can be viewed as 
one kind of solution to the above sampling problem, 
that is, one kind of extention of Schaffer’s model se- 
lection if we use lo-fold cross-validation method as a 
resampling scheme. That is, we can apply our con- 
cepts of MULT-RECITER in order to strengthen this 
Schaffer’s procedure if we set R to {lo-fold repeated 
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Table 8: Adjusted-p Value (lo-fold cross-validation) 
Adiusted-p Value 

” 

Domain O-p c4 5 
Monk-l 0.0160 0.0674 

AQR CN2 
0.0075 0.0011 

Monk-2 0.0150 0.0059 0.0043 0.0048 
Monk-3 0.0180 0.0031 0.0071 0.0078 

cross-validation}. 
Table 8 depicts the results using Monks three 

problems when R is set to {lo-fold repeated cross- 
validation}, which also shows that this method solves 
the above sampling problems. 

6.2 Overfitting Avoidance as Bias 
Schaffer stresses that any overfitting avoidance avoid- 
ance strategy, such as pruning methods, amounts to a 
form of bias (Schaffer 1993a). Furthermore, he clearly 
explains this result from the viewpoint of information 
theory. As one of the pruning methods, he also dis- 
cusses cross-validation, and points out that the main 
L-Inn nf th;c ctrzatnav ic ” A hint ;E SQ m-mrl 2~ it ic annm- lUUW “I “All” ““&LUYUbJ a” 1L “IWY .” ..w” a”“” WY A” AU wyy.v 

priate”. This is exactly the same idea as “matryoshka” 
principle. In terms of statistical theory, this assump- 
tion is closely related with sampling bias (Efron 
1994; Hall 1992). As mentioned above, the main point 
of sampling bias is that the results of these samples 
should be asymptotically equal to those by using total 
population when original training samples are suitably 
sampled from population. Thus, sampling from these 
samples, if not biased, gives the same results. 

In the field of statistics, these ideas are applied 
to studying the effectiveness of the Bootstrap sam- 
pling (Efron 1994; Hall 1992), since its sampling pro- 
cedure is based on Monte Carlo simulation, which is 
rigorously studied in mathematics. The idea behind 
the Bootstrap method is also captured and formulated 
by the Edgeworth expansion (Hall 1992), since the idea 
of this sampling is easy to formulate in terms of Monte 
Carlo simulation. 

It is true of repeated cross-validation, since this 
method also uses the Monte Carlo method (Walker 
1992). However, we have not yet rigorously proved 
that the matryoshka principle is also true of cross- 
validation. This direction towards the problems of 
sampling bias of cross-validation would be a main fu- 
ture research, which may give the justification of ap- 
plying Schaffer’s method and MULT-RECITER. 
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