
Fuzzy Interpretation of Induction Results

Xindong Wu and Petter MihlCnt

Department of Software Development, Monssh University
900 Dandenong Road, Melbourne, VIC 3145, Australia

xindongQinsect.sd.monash.edu.au

t Department of Numerical Analysis and Computer Science
Royal Institute of Technology, Stockholm, Sweden

Abstract

When applying rules induced from training ex-
amples to a test example, there are three possi-
ble cases which demand different actions: (1) no
match, (2) single match, and (3) multiple match.
Existing techniques for dealing with the fist and
third cases are exclusively based on probability
estimation. However, when there are continuous
attributes in the example space, and if these at-
trihrrtnn hilvn haan Awrc=.ti.caA intn Lqkprv& he “-.l-..u” _....” I--aa -.,-.------ --“-
fore induction, fuzzy interpretation of the discre-
tised intervals at deduction time could be very
valuable. This paper introduces the idea of us-
ing fuzzy borders for interpretation of discretised
intervals at deduction time, and outlines the re-
sults we have obtained with the HCV (Version
2.0) software.

Introduction

Knowledge discovery in databases (KDD) is a research
frontier (Wu 93a) for both database technology and
machine learning techniques, and has seen sustained
research over recent years. It acts as a link between
the two fields, thus offering a dual benefit. Firstly,
since database technology has already found wide ap-
plication in many fields, machine learning research
obviously stands to gain from this greater exposure
and established technological foundation. Secondly, as
databases grow in both number and size, the prospect
of mining them for new, useful knowledge becomes
yet more enticing. Machine learning techniques can
augment the ability of existing DBMSs to represent,
acquire, and process a collection of expertise such as
those which form part of the semantics of many ad-
vanced applications.

Generally speaking, all kinds of attribute-based
learning algorithms can be adapted to extract knowl-
edge from databases. It is not difficult to add an in-
duction engine to an existing database system in an ad
hoc way to implement rule induction from databases

or design some specific engines to learn from domain-
specific data sets. However, when we integrate ma
chine learning techniques into database systems, we
must face many problems such as:

Efficient induction algorithms are needed. The algo-
rithms should be capable of being applied to realistic
databases, e.g. 1 lo6 relational tuples. Exponential
or even medium-order polynomial complexity will
not be of nractical use. r--.-.--~.- ~~._.

The knowledge learned needs to be tested and/or
used back in the learning systems.

Noise (including missing information) has to be ef-
fectively handled. Machine learning is different from
mathematic induction. We cannot assume that the
data in the given databases is complete. There are
various sources of noise including missing values in
real-world databases. To produce acceptable results
for realistic applications, noise handling facilities are
often essential to learning algorithms.

Numerical data and symbolic data are equally im-
portant in practical application. Existing learning
algorithms can be generally divided into two groups:
numerical methods including statistical methods and
neural networks which are good at processing nu-
merical data in noisy environments, and symbolic
AI methods which are more efficient in dealing with
symbolic or nominal data. It has been a long term
dispute that AI methods (especially the decision
trees) are too simple to represent the real world. In
the meanwhile, we can also easily argue that numer-
ical methods are not good enough to represent and
maninulate locic relationshins among svmbolic val- r ---. 1_ --~-- - ~~-.-----.-~~I~ ” * ~~
ues. We need to have induction algorithms which
can effectively deal with both types of data.

There are quite a few induction algorithms such as
the ID3-like algorithms (Quinlan 86; Quinlan 93) and
HCV (Wu 93b; Wu 95) which are low-order polynomial

WU 325

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

in both time and space. However, since induction from
databases relies to a great extent on the quality of the
training databases, interpreting induction results (say,
rules) to classify a new example needs to face three
possible cases which demand different actions:

No match: No rules match the example;

Single match: One or more rules indicate the same
class match, and

Multiple match: More than one rule matches the ex-
ample, and indicates different classes.

The third case does not apply to decision trees pro-
duced by IDJ-like algorithms, but when the trees are
decompiled into rules, the rules will face the same prob-
lems (Quinlan 87; Quinlan 93).

In the single match case, the choice of class to the
example is naturally the class indicated by the rules.
Existing techniques for dealing with the first and third
cases (Wu 95) are exclusively based on probability es-
timation. Among them, the Measure of Fit for dealing
with the no match case and the Estimate of Probabil-
ity for handling the multiple match case developed in
(Michalski et al. 86) h ave been widely adopted in the
KDD community.

The Measure of Fit and Estimate of Probability
methods perform quite well with problem domains
where no real-valued attributes are involved. However,
when a problem contains attributes that take values
from continuous domains (i.e. real numbers or inte-
gers), the performance of both methods, especially in
terms of accuracy, decreases. In existing induction al-
gorithms, dealing with continuous domams is based on
discretisation of them into a certain number of inter-
vals. There are quite a few strategies available for dis-
cretisation, such as (Wu 95) Bayesian classifiers and
the information gain method. Once each continuous
domain has been discretised into intervals, the inter-
vals are treated as discrete values in induction and de-
duction. This is the standard way all existing systems
have taken. However, discretisation of continuous do-
mains does not always fit accurate interpretation, To
say an age greater than 50 is old or a temperature
above 32 centigrades is high is fuzzy. In these kinds
of cases, fuzzy interpretation of the discretised inter-
vals at deduction time could be very valuable. Rather
than trrlcina the rnt. nninta &d&d by t,E_e rl_~~c.&~~~- “IIV.L UU’.“‘~ “.A” VI” y-.-.v-
tion methods as sharp borders, we can instead place
some kind of curve at each cut point as fuzzy borders.
With these fuzzy borders, a value can be classified into
a few different intervals at the same time, with vary-
ing degrees. This could change a single match case to
a multiple match, and a no match case to a single or

even multiple match. Deduction with fuzzy borders of
discretised intervals is called fuzzy matching. In the
multiple match case, we can take the interval with the
greatest degree as the value’s discrete value.

Discretisation of Continuous Attributes
When there are both symbolic and continuous at-
tributes in an example set for induction, the standard
approach is discretise the numerical domains of these
continuous attributes into a certain number of inter-
vals. The discretised intervals can be treated in a sim-
ilar way to nominal values during induction and de-
duction.

The most difficult aspect of discretisation is to find
the right places to set up interval borders. This sec-
tion reviews some typical discretisation methods. In
the following account, N indicates the number of ex-
amples in the training set, c is the number of classes or
concepts that these examples are classified into, and d
is the number of intervals generated by discretisation.
In all these methods, sorting the values of the contin-
uous attribute in question in ascending order is always
uaafnl hnfnre rliarreticatinn ia rarrb-l nd .A”“~..~ YIL”I.2 . ..Y”.“VIYcy”SV.~ a” “..s~~I”U “YY.

The simplest class-separating method
The simplest discretisation method is to place interval
borders between each adjacent pair of examples that
are not classified into the same class. Suppose the pair
of adjacent values on attribute X are ~1 and es, 2 =
(xl+ x2)/2 can be taken as an interval border.

If the continuous attribute in question is very infor-
mative, which means that positive and negative exam-
ples take different value intervals on the attribute, this
method is very efficient and useful. You can find, for
example, that Professors and Lecturers at Australian
universities have distinctive salary ranges, and the con-
tinuous attribute salary is very informative in distin-
guishing academic positions. However, this method
tends to produce too many intervals on those attributes
which are not very informative. These intervals can
also easily confuse algorithms like HCV (Wu 93b) be-
cause a 0.16 difference between a positive example and
a negative one on a numerical attribute makes one
more interval. The worst case is d = N - 1, where
a border has to be set up between every pair of exam-
ples.

Bayesian classifiers
According to Bayes formula,

e4c.i)ecj)
p(cj’z) = Cizl P(+JP(Ck) (1)

where P(cj 1~) is the probability of an example belong-
ing to class cj if the example takes value z on the

326 KDD-9s

continuous attribute in question, P(zlcj) is the prob-
ability of the example taking value z on the attribute
if it is classified in the class cj.

P(cj) can be approximated by using one of the fol-
lowing three probability estimation methods: relative
frequency, Laplacian Law of Succession (Niblett and
Bratko 87), or the m-estimate (Lavrac & Dzeroski 94),
and P(cjIt) can take the frequency of cj under e over
all the examples in the training set.

Given P(cj) and P(cj/x), we can construct a prob-
ability curve,

fjtx) = P(XlCj)P(Cj) (2)
for each class cj. When the curves for every class have
been constructed, interval borders are placed on each
of those points where the leading curves are different
on its two sides. Between each pair of those points
including the two open ends, -00 and +co, the leading
curve is the same.

We call a discretisation implemented by the above
method a Bayesian classifier (Hong 94).

The information gain heuristic
When the examples in the training set have taken val-
ues of 21, x, in ascending order on a continuous
attribute, we can use the information gain heuristic
adopted in ID3 (Quinlan 86) to find a most informa-
tive border to split the value domain of the continuous
attribute. (Fayyad & Irani 92) has shown that the
maximum information gain by the heuristic is always
achieved at a cut point (say, the mid-point) between
the values taken by two examples of different classes.

We can adopt the information gain heuristic in the
following way. Each x = (zi +xi+1)/2 (i = 1, n - 1)
is a possible cut point if xi and xi+1 have been taken by
examples of different classes in the training set. Use the
information gain heuristic to check each of the possible
cut points and find the best split point. Run the same
process on the left and right halves of the splitting to
split them further. The number of intervals produced
this way may be very large if the attribute is not very
informative. (Catlett 91) has proposed some criteria
to stop the recursive splitting:

l Stop if the information gain on all cut points is the
same,

l Stop if the number of examples to split is less than
a certain number (e.g. fourteen), and

l Limit the number of intervals to be produced to a
certain number (e.g. eight).

In C4.5 (Quinlan 93), the information gain approach
is revised in the following ways. Firstly, each of the

possible cut points is not the midpoint between the
two nearest values, but rather the greatest value in the
entire training set that does not exceed the midpoint.
This ensures that all border values occur in the train-
ing data. Each border value in this case is not neces-
sarily the same as the lower of the two neighbouring
values since all training examples are examined for the
selection. Secondly, C4.5 (Quinlan 93) adopts the in-
formation gain ratio rather than the information gain
heuristic. Finally, C4.5 does binarization of continu-
ous attributes, which means only one interval border
is found for each continuous attribute.

Fuzzy Borders and Fuzzy Interpretation
Rather than taking the cut points set up by discreti-
sation methods as sharp borders, each interval is asso-
ciated with a specific membership function with fuzzy
methods. The membership function measures the de-
gree of a value belonging to the interval. In fact, sharp
intervals can be treated as a special case of fuzzy bor-
ders: the membership function for an interval with
sharp borders takes value 1 iff the value is inside the
interval and 0 otherwise, and one value can belong to
one interval only. Figure 1 shows the difference be-
tween sharp borders and fuzzy ones.

I’
I’

/ 1s

1

___---------- -----
I’ \ \

I’ \ \
II \ \

I’ \
Ii 1 \ \ \

Figure 1: Sharp and Fuzzy Borders

In Figure 1, xleft and zrisht are the left and right
sharp borders of interval Ii respectively, and 1 =
Gight - x[~J~ is the original length of the interval. s is
the spread parameter, which indicates the length that
an interval should be extended at each end. When the
parameter is 0.1, for example, the interval in Figure 1
spreads out into adjacent intervals for twenty percent
of its original length. In HCV (Version 2.0) (Wu et al
95), s is a user-specified parameter with default being
0.1.

The match of an example taking value x on a spe-
cific attribute domain with an interval is defined as
the value of the membership function of the interval
calculated for x.

wu 327

We have implemented three membership functions
(see Appendix) in HCV (Version 2.0), with which two
methods for calculating the match degree of a value z
with a selector1 or conjunction have been implemented.
The first takes the maximum membership degree of
the value in all of the intervals involved in the selector.
The drawback of this method is that if two adjacent
intervals belong to the same selector, a value close to
the border between the two intervals will get a very
low membership value in both, leading to a low overall
....d...Lm."l.:.. AA.v%.,. ,..*A.. :c:c :, ..*a11 ",...,".J l...eL., n* IIIc;IIIv~LDIIIp UG&;lr;r; C"-al II IV ID w-z,, L"YOLGU ",y U1I-z DG-

lector. In an attempt to remedy this, the other method
adds with fuzzy plus2 all the fuzzy membership degrees
within one selector.

The HCV (Version 2.0) software
The HCV algorithm (Wu 93b) is a representative of the
extension matrix based family of attribute-based in-
duction algorithms, originating with JR. Hong’s AEl
(Hong 85). By dividing the positive examples (PE) of
a specific concept in a given example set into inter-
secting groups and adopting a set of strategies to find
a heuristic conjunctive rule in each group which covers
all the group’s positive examples and none of the neg-
ative examples (NE), HCV can find a rule in the form
of variable-valued logic for the concept in low-order
polynomial time. If there exists at least one conjunc-
tive rule in a given training example set for PE against
NE, the rule produced by HCV must be a conjunc-
tive one. The rules in variable-valued logic generated
by HCV have been shown empirically to be more com-
ncart than thn r-Lr;~inn tmmc no. t.h& mdvalmt. rt~risinn yyyu” “1.W.. Y..V UVV.Y.“.. V.““” “11 VIIV.. .dyu.. U.“..” ..““.Y.“..
rules produced by the ID3 algorithm (the best-known
induction algorithm to date) and its successors (e.g.,
C4.5) in terms of the numbers of conjunctive rules and
conjunctions.

The HCV (Version 2.0) software is a C++ implemen-
tation of the HCV algorithm. In this implementation,
HCV can work with noisy and real-valued domains as
well as nominal and noise-free databases. It also pro-
vides a set of deduction facilities for the user to test
the accuracy of the produced rules on test examples.
The detailed description of the software is inciuded in
(Wu et al 95).

In addition to a set of discretisation facilities, such
as the Bayesian classifiers and the information gain

’ A selector in variable-valued logic (Michalsld 75) takes
the general form

[XWI
where X is a variable or attribute, # is a relational operator
(such as =, #, <, >, 5, and 21, and R is a list of one or
more values (including discretrsed intervals) that X could
take on.

2Fuzzy plus $ is defined as follows: a @ b = a + b - ab.

heuristic, and the fuzzy borders mentioned above,
HCV (Version 2.0) permits the user to specify their
own discretisation of real-valued attributes by provid-
ing a set of intervals in the structure file, which speci-
fies the attributes (with their order and value domains)
and classes used in the data files. This is a very useful
way for integrating domain information.

Hybrid Interpretation
Extensive experiments have been carried out with the
above fuzzy methods in HCV (Version 2.0) on a large
set of databases from the University of California
at Irvine Repository of Machine Learning Databases.
However, the results were much less encouraging than
what we expected when we were trying to justify that
fuzzy borders are generally more reliable than sharp
borders with numerical domains.

We have analysed the results by fuzzy methods and
those with sharp borders, and found that the accuracy
of the single matches is in general much better than
nn mat.rh,x ad mnlt.inle matrhee wit.h all m&hncle . ..a . ..I”VY1I u.... ‘.*“.Y’y’-” . ..-““.I”” .,.Y.. .“.I . ..YY..VUY.
With the multiple match case, the Estimate of Proba-
bility (Michalski et al. 86) with the Laplacian Law of
Succession (Niblett and Bratko 87) outperforms other
methods including fuzzy matching. These observations
motivated the development of a hybrid interpretation
in HCV (Version 2.0) with fuzzy matching and the Es-
timate of Probability.

The hybrid method works as follows. In the single
match case, we do not provide any probability analysis
or fuzzy borders. In the multiple match case, the Esti- _ :_:
mate of Probability method with sharp borders is used
to find the best class for the example in question. Only
in the no match case, fuzzy borders are set up (with
the polynomial membership function as default) in or-
der to find a rule which is closest (with the maximum
membership degree) to the example in question.

The hybrid method is an option for deduction in
HCV (Version 2.0). The user can overrule it by spec-
ifying other methods (such as the combination of the
Measure of Fit and the Estimate of Probability).

Conclusions
As mentioned above, fuzzy methods, although their re-
sults are significant when combined with other deduc-
tion methods, do not contribute as much as one can ex-
pect to the accuracy of deduction on their own. This is
likely because all the experiments have not been specif-
ically conducted with domain dependent information.

Fuzziness is strongly domain dependent. The HCV
(Version 2.0) software has provided a way for the user
to specify their own intervals and select their own fuzzy
functions. This is an important direction to take if we

328 KDD-95

would like to achieve significant results with specific
domains.

References
J. Catlett, On Changing Continuous Attributes into
Ordered Discrete Attributes, Proceedings of E WSL-
91, 1991.

U.M. Fayyad and K.B. Irani, On the Handling of
Continuous-Valued Attributes in Decision Tree Gen-
eration, Machine Learning, 8(1992), 87-102.

J. Hong, AEl: An Extension Matrix Approximate
Method for the General Covering Problem, Inter-
national Journal of Computer and Information Sci-
ences, 14(1985), 6: 421-437.

J. R. Hong, PKAS: A Practical Knowledge Acquisi-
tion System, Unpublished (1994).

N. Lavrac and S. Dzeroski, Inductive Logic Program-
ming - Techniques and Applications, Ellis Horwood,
1994.

R.S. Michalski, Variable-Valued Logic and Its Appli-
cations to Pattern Recognition and Machine Learn-
ing, Computer Science and Multiple- Valued Logic
Theory and Applications, D.C. Rine (Ed.), Amster-
dam: North-Holland, 1975, 506-534.

R.S. Michalski, I. Mozetic, J. Hong and N. Lavrac,
The Multi-Purpose Incremental Learning System
A&15 and Its Testing Application to Three Medi-
cal Domains, Proceedings of AAAZ 1986, 1986, 1041-
1045.

T. Niblett and I. Bratko, Learning Decision Rules in
Noisy Domains, Research and Development in Expert
Systems III, M. A. Bramer (Ed.), Cambridge, New
York Cambridge University Press, 1987 pp. 25-34

J.R. Quinlan, Induction of Decision Trees, Machine
Learning, 1(1986), 81-106.

J.R. Quinlan, Generating Production Rules from De-
cision Trees, Proceedings of International Joint Con-
ference on Artificial Intelligence, J. McDermott (Ed.),
Morgan Kaufmann Publishers, Inc., 1987,304-307.

J.R. Quinlan, C&?i: Programs for Machine Learning,
Morgan Kaufmann Publishers, 1992.

X. Wu, Inductive Learning: Algorithms and Fron-
tiers, Artijiciai inteiiigence Review, 7(i993j, 2: 93-
108.

X. Wu, The HCV Induction Algorithm, Proceedings
of the 2lst ACM Computer Science Conference, S.C.
Kwasny and J.F. Buck (Eds.), ACM Press, USA,
1993, 168-175.

X. Wu, Knowledge Acquisition from Data Bases (in
press), 1995.

X. Wu, J. Krisar and P. MBhMn, HCV (Version
2.0) User’s Manual, Department of Software Devel-
opment, Monash University, Australia, 1995.

Appendix:
Three Fuzzy Membership Functions
Implemented in HCV (Version 2.0)

There are three functions in HCV (Version 2.0) which
can be used to fuzzify interval borders.

The linear function (see Figure 2) is specified by

A .kx+lJ =... / b+n
. . :

10 --

. .
.*

. ..’ % % **..
._

. . . .
-...

-.
- F”uuu memh.dlm Rmct,m _ ..-.. --_ ._.- __..

Figure 2: The linear membership function

the following expressions where s and 1 have the same
meanings as in Figure 1.

k=&> 1
a = -heft + 2,

1
b = kx,ie/,t + - 2

Einrejt(x) = kx + a

lin,i,ht(x) = -kx + b

Zin(x) = MAX(0, MTN{l,linr,ft(z),Ein,i,ht(~)}}

With the polynomial membership function (see Fig-
ure 3), the fuzzy borders are defined by a third-degree
polynomial.

P&lejt (g) = wejtx3 + &+x2 + Cleft2 + 4ejt

Polyright (z) = %ghtZ3 + bightX2 + Crightx + dright

where
1

aft = aright = --
4&)3

b aide = -3a sidexside

cside = saside(x:ide - (lS)2)

d side = -a(&de - 3X:,ide(ls)2 + 2(ls)3)

wu 329

- - - Shup mrnknhip W&km

Figure 3: The polynomial membership function

Figure 4: The arctan membership function

and side E {left, right), XSi& is the sharp border on
each side, and I and s are the original interval length
and the spread respectively.

if Xleft - IS 5 2 5 X:left + Is
if Xright - Is < x < Xright + IS
if xleft + 1s 5 X 5 xTight - t.5
otherwise

The third membership function (see Figure 4) is the
arctan function. The spread of the interval is used to
indicate the flatness or linearity of the curve, and the
fuzzy membership of an interval takes the minimum
of the membership from the left and the one from the
right. The function used to calculate the membership
is:

arctan = M IN{ ;atrnqx -5yt) + ;,

+an(2 -;;igh t) + ;I*

330 KDD-95

