
Data Surveying

Foundations of an Inductive Query Language

Arno Siebes
CWI

Database Research group
P.O.Box 94079

NL-1090 GB Amsterdam
The Netherlands

e-mail: arno~cwi.nl

Abstract

Data mining systems have to evolve from a set of spe-
cialised routines to more generally applicable inductive
query languages to satisfy industry’s need for strate-
gic information. This paper introduces such an in-
ductive query language called Data Surveying. Data
Surveying is the discovery of "interesting subsets" of
the database. Groups of customers whose behaviour
deviates from average customer behaviour are exam-
pies of such interesting subsets. A user specifies what
makes a subset interesting through a survey task. The
wide applicability of this scheme is illustrated by a
variety of examples.
To implement aa inductive query language system, the
’~vhat" (the kind of strategic information sought) has
to be made independent from the "how" (how this
strategic information is discovered). In other words,
the discovery algorithms have to be task independent.
In this paper, operators on the search space are in-
troduced to achieve this independence. The discov-
ery algorithms are defined relative to these operators.
To enforce efficient discovery, the notion of polynomial
convergence is defined for these algorithms.
Domain knowledge plays an important role in the
specification of both the survey task and the opera-
tots.

Keywords: Foundations of Data Mining, Inductive
Query Languages, Domain Knowledge

Introduction
One of the main promises of data mining, (Piatetsky-
Shapiro & Frawley 1991; Fayyad et al. 1995; Fayyad &
Uthurusamy 1994; Holsheimer & Siebes 1994), for in-
dustry is the discovery of strategic information in their
multi-gigabyte production databases. Data mining re-
search at CWI is targeted at developing systems that
will fulfill this promise.

Strategic information can be equated with interest-
ing subgroups in a database. For example, for an in-
surance company knowledge of groups of clients with a
(highly) deviating claim-behaviour is vital to stay com-
petitive. Identifying groups of clients whose trend de-
viates over time from the average is also strategic. For

retailers, Agrawals association rules (Agrawal, Imielin-
ski, & Swami 1993; Agrawal et al. 1995) provide strate-
gic information. This problem can be (re)formulated
as the search for (large) groups of baskets that share
number of items.

The discovery of interesting subgroups is what we
call Data Surveing. Data surveying is more like an
"inductive query language" than a specific data min-
ing problem, in fact, it encompasses and extends many
techniques from data mining and statistics 1. The ad-
vantage is that data surveying is widely applicable.
The disadvantage is the required generality of the "dis-
covery engine" and the potential loss of performance
compared with tailored solutions caused by this gener-
ality.

The same considerations are, of course, true for con-
ventional (deductive) query languages. In that case,
the advantages of the generality outweigh by far the
disadvantages of the loss of performance. One of the
objectives of our research is to find out whether this
will also hold for inductive query languages.

This paper introduces data surveying formally and
illustrates its wide applicability. To implement such an
inductive query language, the discovery of the results
(the "how") has to be made independent of the actual
discovery task (the ’~what"). This paper shows how
this independence can be achieved by defining opera-
tors on the search space.

More in particular, in Section 2 the subgroups are
formalised through descriptions, the notion of interest-
ingness through quality functions, and data surveying
through survey tasks. Subsequently it is shown that
data surveying encompasses many techniques from
statistics and data mining. This generality of data
surveying comes at a price, viz., the survey tasks have
to be formulated carefully. Some aspects of the task
specification, such as the use of domain knowledge, are
discussed in the last part of this section.

In Section 3, description algebras are introduced by

1The reason I use Data Surveying rather than the
acronym IQL, is that this acronym has already been used
for the Identity Query Language in (Abiteboul & KaneUakis
1989).

Siebes 269

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

augmenting description languages with sets of opera-
tors. These sets of operators are in turn extended with
partial operators to encode (factual) domain knowl-
edge. These sets of operators form the interface be-
tween the discovery (the how) and the task (the what),
the discovery algorithms are defined relative to them.
To enforce efficient discovery, the notion of polynomial
convergence is defined for these algorithms.

In the fourth and final section, the conclusions are
formulated and future directions of research are indi-
cated.

Data Surveying

The definition

In the introduction, data surveying is described as "the
discovery of interesting subgroups". Clearly, the result
of a data mining session should never be a listing of the
members of such a subgroup. Rather, it should result
in a (characteristic) description of this subgroup.

Such a description can be interpreted as a selection
query on the database, i.e., the tuples in the result of
this query are exactly the members of the associated
subgroup of the database.

To simplify the discussion, we assume that our
database has one relation DB, with schema A =
{A1,..., An}, with associated domains Di. The set of
all possible databases over ,4 is denoted by inst(DB).
In line with the usual abstract definition of queries
(Abiteboul, Hull, gz Vianu 1994), descriptions and de-
scription languages2 are defined as:

Definition 1 (Description Language) A descrip-
tion ¢ for DB is a mapping from inst(DB)
inst(DB) that is generic and computable, such that
Vdb ̄ inst(DB) ¢(db) C_db.

A description language ¯ for DB is a language
whose expressions are descriptions for DB

Recall that generic means roughly that the descrip-
tion (query) cannot distinguish between constants that
are indistinguishable in the input. The requirement
¢(db) _C db ensures that all descriptions are always as-
sociated with subgroups in the database.

The relational calculus is an example of a description
language. An example of a description in that language
is:

age -- 25 A sex = male

Descriptions can also be defined recursively. Due to the
fact that all descriptions are meant as selection queries,
we cannot use the Datalog syntax directly, however,
the following description describes all the ancestors of
"John" in the database:

2The reason to use the term description rather than
query is to avoid confusion. In this case the descriptions
are the results we are after, not the evaluation of the de-
scription as a query on the database.

270 KDD-95

[(t.name=XAt.child=John))

(t.name = X A t.child = Yt¯¢(db)~- V~, A (3s¯¢(db):s.name=Y)

For a more unusual example of a description lan-
guage, let X and Y be real-valued attributes. The
set of all lines in the X, Y-plane is also a description
language. That is,

3X + 4Y = 5

is an example of a description in that language.
There are two notational conventions on the sub-

groups associated with descriptions that are used in
this paper:

Definition 2 (Cover and Support) Let ¢ be a de-
scription language for DB and ¢ ¯ ¯ a description:

I. the cover of ¢, denoted by (¢), is the subset of all
tuples in db that satisfy ¢;

2. the support of ¢, denoted by [¢J is the projection of
(¢) on the domain of the attributes used in ¢.

The cover of age -- 25 A sex = male is the set of all 25
year old males in the database. Its support is simply
(age = 25, gender = male), if there is at least one
25 year old male in the database. The cover of our
recursive description are all (connected) ancestors
"John". It’s support is the set of all (name, child) pairs
of all these ancestors. The support of 3X 4- 4Y = 5 is
the set of all pairs (X = cl,Y = c2) for which there
are tuples t in the databse with t.X = cl A t.Y = c2
and 3cl + 4c2 = 5.

I will slightly abuse notation and write [tJ ¢ to denote
the projection of a tuple t ¯ (¢) on the domain of the
attributes used in ¢.

The notion of an interesting subgroup is formalised
through a quality function. This is a function that as-
signs a quality (a real number) to each description. The
higher the quality of a description, the more interesting
the corresponding subgroup is.

In general, the quality of a description is based on
some property of its cover. For example, if an insur-
ance company wants to find subgroups with a high risk
of causing an accident, the quality of a description is
related to the average number of accidents registred
for its cover. This property of the cover can also be
characterised through one or more descriptions: the
target descriptions. In the insurance example, the tar-
get descriptions would be: accident = yes and true.
The quality of a description ¢ is than computed using:

[(¢) (accident = yes)]

I(¢) n {t~e)l
where, as usual [A[denotes the number of tuples in the
set A.

In data surveying, all quality functions are based
on such counts. More precisely, they are computed
from histograms, which are defined as a straightforward
generalisation of usual notion of a histogram:

Definition 3 (Histogram) Let ¢, ¢ E 4 be two de-
scriptions, the histogram oft with regard to ¢, denoted
by H(¢[¢), is defined by:

H(¢1¢) -- {(x,y)l x e
y = I{t e dblt e (¢) (¢) = LtJ¢}l}

For example, H(age e [19, 24][damage = yes) is the,
usual, set of pairs (x, y) in which x denotes an age
between 19 and 24 and y the number of accidents in
that age group.

The histogram function is generalised to sets of de-
scriptions with sets of target descriptions by

H({¢1,. ¯., ¢k}l{¢1,.-., ¢1})
{H(¢iItj)]l<i<kAl<j<l}

Quality functions simply take such a set of his-
tograms as input and yield some real number as out-
put.

Definition 4 (Quality function) A quality func-
tion Q for a description language 4 is a pair
({¢t,-.., el}, f) in which {¢1,..., tk} C 4 is the set
of target descriptions and f is a computable real val-
ued function. The quality of a set {¢1,..., tk} --- 4 of
descriptions is defined by:

Q({¢I, ¯ ¯., tk}) = f(H({¢l,..., ¢k}]{¢1,..., Or}))

Examples of quality functions are given in the next
subsection. However, before those examples are given
the notion of a survey task is defined:

Definition 5 (Survey task) Let db be a database, a
survey task for db is a pair (4,Q), such that 4 is
description language for db and Q is quality function
for 4.

The result of a survey task is defined as (a set of)
description(s) that maximizes the quality function.

Examples
Data surveying is a, perhaps surprisingly, general
framework. In (Siebes 1995; 1994a) it is shown that
it encompasses traditional exploratory data analysis
techniques such as Projection Pursuit, Principle Com-
ponent Analysis, and Cluster Analysis. Moreover, in
(Siebes 1995) it is also shown how ID3 (Quinlan 1986)
fits in this framework. Finally, above, and in (Siebes
1994b; Holsheimer, Kersten, & Siebes 1995) in more
detail but without the terminology, it is shown how
risk-analysis fits.

As an example in this paper, association rules,
(Agrawal, Imielinski, & Swami 1993; Agrawal et al.
1995), are briefly examined. In this case, the n binary
valued attributes represent, e.g., the items in the store.
The descriptions are of the form:

A Ai = present
iEI

for some I C {1,...,n}.

The quality Q of a single description ¢ is 1 if I(¢)1 ->
a (the minimal supporting set-size) and -1 otherwise.
That is, the quality of a description is 1 is its cover is
a "large" set and -1 otherwise. This quality function
is easily extended to sets of descriptions by, e.g.,

k

Q*({¢1,..., tk}) = Q(¢i)
i=1

The set with maximal Q* is exactly the collection of
all "large sets".

The specification of survey tasks
The generality of the data surveying framework is
caused by the generality of the definition of a survey
task, i.e., of descriptions and quality functions. This
generality comes at a price: survey tasks have to be
specified carefully. In this subsection we briefly discuss
the choice of the description language and the choice
of the quality function.

The description language chosen determines the sub-
groups to be found. Thus, how larger the set of descrip-
tions is, how higher the chance that unexpected results
are discovered. However, there are two good reasons
to minimize the expressiveness.

To compute the quality of a description, it has to
be evaluated as a query. Hence, the data complex-
ity (Abiteboul, Hull, & Vianu 1994) of the description
language (as a query language) becomes an important
factor in the evaluation of a survey task.

Recall that the data complexity of a query ¢ is de-
fined as the complexity of evaluating ¢ for variable
database inputs. That is, it is the complexity of the
problem: "given a database state db and a tuple u, de-
termine whether u belongs to ¢(db)".

It is well-known that the more expressive a query
language, and thus a description language, is, the
higher its complexity is. For example, simple conjunc-
tive queries are in LOGSPACE, whereas Datalog is in
PTIME. In other words, the more expressive a descrip-
tion language is the longer it will take to compute the
quality of a description.

So, the description language should be chosen as sim-
ple as is realistically possible. The second reason for
such a tight choice is, of course, that the richer the
language, the larger the search space and, potentially,
the longer it takes to find the results

Domain knowledge plays an important role in this
choice. For example, insurance companies require that
a distinction in age is based on continuous intervals.
Using such structural knowledge means a substantial
reduction in the size of the search space without a re-
duction in the accuracy of the results.

The second component of the specification of a sur-
vey task is the specification of the quality function. Be-
cause the quality of a description determines whether
it is strategic information or not, the quality function
encodes inductive inference. For, we conclude general-
ities from a finite number of examples.

Siebes 271

The epistemological problems of induction and its
conclusions have been discussed by philosophers since
at least the time of Hume. Some interesting points
of view pertaining these problems can be found in
(Holland et al, 1986). Since a long time, statistics
is the most successful approach to asssess the validity
of inductive conclusions. Hence, the quality function
should be chosen such that the discoveries are statisti-
cally valid.

For example, if we discover that young males cause
on average more accidents then other insurants, the
validity of this claim has to be checked before this
"risk-group" is reported. Space limitations preclude
a further discussion of this important aspect in the
specification of quality functions. In (Siebes 1995), the
reader can find such a discussion.

The Discovery

Description algebra

Abstractly, the discovery of the descriptions that max-
imize the quality function3 Q is independent of the ac-
tual survey task. Because, for a given database state,
Q forms a quality landscape over the set of descrip-
tions ~. This quality landscape is analogous to the
fitness landscape of genetic and evolutionary program-
ming (Michalewicz 1992). All the discovery algorithm
has to do is to find the peaks in this landscape and
report the global maxima.

There is, however, one component missing in the
search space to exploit this idea. Before one can gen-
uinely speak of a landscape, one needs a topological or
even metrical structure on ~.

However, to make the independence between the
"what" and the "how" concrete a complete metric
structure on ¢ is not necessary. All we have to add to

are those components of the structure that a search
algorithm actually exploits.

For example, all what hill-climbing and simulated
annealing algorithms need to know about the structure
is the notion of a neighbour. That is, all they need on

is an operator n, that given a description ¢ 6 ¢
returns the set of all its neighbours.

Similarly, all a genetic search algorithm needs are
an operator that mutates descriptions and an operator
that performs a cross-over on a pair of descriptions.

In other words, if we turn the description language
into a description algebra, the search is independent of
the actual survey task! Description algebras are de-
fined as follows:

Definition 6 (Description Algebra) A descrip-
tion algebra is specified by a pair (¢, O), in which ¢ is
a description language and 0 a set of operators on ~.

aTo simplify the discussion we assume in this section
that we are searching for a single description. The gener-
alisation to sets of descriptions is straight-forward.

272 KDD---95

Domain-knowledge
In the choice of a suitable description language "struc-
tural" domain knowledge plays an important role. For
example by stipulating that an age-attribute has to be
partitioned in continuous intervals. Clearly, there is
more domain knowledge, viz., "factual" domain knowl-
edge. For example, taxonomical information such as
the fact that New York, San Fransisco, and Seattle are
Big Cities; see also (Han, Cai, & Cercone 1992).

Such factual knowledge fits in our algebraic frame-
work: it can be represented by partial operators. For
example, a description ¢ that uses the value Seattle
has the description4 ¢[Seattle \ BigCity] as a neigh-
bour and vice versa.

Previous discovered knowledge implies partial oper-
ators in the same way. If for example ¢ maximises a
quality function Q which has ¢ as a target description,
¢ and ¢ are neighbours.

These observations inspire the following definition:

Definition 7 Knowledge Base and Algebraic
Survey Tasks
Let D = (~, O) be a description algebra, knowledge
base]CB for D, is a set of partial operators on ¢.

An algebraic survey task for a database d6 is spec-
ified by a triple (D = (~, 0), IEB, Q) in which D
description algebra for db, ICl3 a knowledge base for D
and Q a quality function on ~.

The result of an algebraic survey task is still defined
as (a set of) description(s) that maximizes the quality
function. The intention, however, is that the search
algorithm uses only the (partial) operators in O and
K:B and the quality of the descriptions generated by
these operators.

Different from conventional knowledge bases, con-
sistency is not an issue for our knowledge bases. For,
the partial operators in/(:/3 only augment the standard
operators in O. In fact, we assume that the partial op-
erators in/C~ are associated with the operators in (9.
That is, we assume that each of the partial operators
in]E~ has the same name and arity as one of the op-
erators in 0.

For example, neighbours are computed using the
neighbour operator in O and the result is augmented
by the descriptions that the applicable partial opera-
tors called neighbour in K:/~ yield. The database is the
queried for the quality of these descriptions, and the
search algorithm bases its decision of the next step on
this information only.

The search
To make the notion of a discovery algorithm more pre-
cise, we first have to discuss its type. Since we want
to make the "how" (the discovery) independent of the
"what" (the task), a discovery algorithm has to

4Replace all occurences of the string "Seattle" in ¢ by
the string "BigCity".

polymorphic in the search task and the database, un-
der the requirements that the search task supplies the
operators needed by the algorithm and the search task
is applicable to the database.

To formalise this, let an abstract operators be a (op-
erator name, arity) pair. If O1 is a set of abstract
operators, and 02 a set of concrete operators on some
description language ~, O1 _C 02 denotes that 02 has
a concrete operator for every abstract operator in Or;
i.e., one with the same name and arity.

Let O be a set of abstract operators, the type of a
discovery algorithm D for 0 is given by:

D : V’r[T = ((~,O,-),ICB, Q): 0 0.]
V DB for which ¢ is a description language

Vdb 6 inst(DB) : (r, OS, db)

In general, the search space will be too large to search
through exhaustively. In other words, an effective dis-
covery algorithm can only ’%isit" a fraction of the de-
scriptions in ¢.

For a simple search algorithm such as a hill-climber,
the distribution of the quality function over the de-
scriptions could be such that the algorithm is forced
to visit all descriptions before it ends at the (global)
maximum.

Therefore, we should not require that the algorithm
visits only a limited number of descriptions in all runs.
However, for a hill-climber the worst-case sketched
above will be exceptional rather than the rule. There-
fore, we can require that D will vist only a limited
set of descriptions on the average over all runs for all
possible tasks.

The larger the database, the larger the set of de-
scriptions with a non-empty cover will be. In general,
the size of the set of non-trivial descriptions will be
exponential in the size of the database. Therefore, "a
limited number of descriptions" is formalised as "poly-
nomial in the size of the database" (and, thus, loga-
rithmic in leD:

Definition 8 (Discovery Algorithm) Let 0 be a
set of abstract operators, a discovery algorithm D for
0 is a computable function, polymorphically typed as
indicated above, such that

1. the average number of descriptions visited in a run
is polynomial in [db[and

Z. if k~ = {¢1,..., Cn} is the set of descriptions visited
in one run, D reports a ¢i E ¯ with maximal Q
value.

Clearly, this definition does not require that D reports
a global maximum. Indeed, it should not, since heuris-
tic algorithms may report a local maximum on a given
run. What we can require is that the more runs we
make, the higher the chance that we find a global max-
imum. This requirement can be formalised as follows:

Definition 9 (Convergence) Let D be a discovery
algorithm for a set of abstract operators O. For a suit-
able task % denote by R~ the set containing all sets of

n runs for r. Moreover, let ¢, be the description that
has maximal quality over all descriptions visited in a
run r E R~. Finally, let ¢0 denote a description with
maximal quality in ¢. D converges iff:

VTVDB lim I{r E R~IQ(¢,) = Q(¢0)}[= 1

Note that even the discovery algorithm that reports the
quality of one randomely chosen description satsifies
this requirement. However, it will require a number of
runs in the order of [¢[. For more efficient algorithms,
note that if we spell out this definition, we get the usual
Ve > 0 3N Vn > N-... If this N is polynomial in the
size of the database (and thus logarithmic in I¢]),
say that D converges polynomially.

Clearly, polynomial convergence is a desirable prop-
erty for a discovery algorithm, for only in that case
we know that we can find our interesting subgroups
effectively.

Conclusions
In this paper the foundations for an inductive query
language, Data Surveying, have been laid. The
"queries" in this language have been formalised
through survey tasks and the discovery of the results
of such a task were formalised through discovery al-
gorithms. The wide applicability of data surveying
has been indicated by examples from data mining and
statistics. The required independence of the how (the
discovery algorithm) and the what (the actual survey
task) has been achieved by defining the discovery algo-
rithms relative to a set of operators on the search space.
To enforce efficient discovery of the results, the notion
of polynomial convergence of discovery algorithms has
been introduced. Finally, the important role domain
knowledge plays in the specification of both the survey
task (structural knowledge) and the operators (factual
knowledge in the knowledge base) has been empha-
sized.

While we have seen that polynomially converging
discovery algorithms are well-suited for an efficient im-
plementation of Data Surveying, we have not shown
that they exist! This is the current topic of our theo-
retical research. The current practical goal is the con-
struction of a new version of our tool Data Surveyor,
one that supports the general framework of data sur-
veying; see (Holsheimer et al. 1995).

Acknowledgements Many discussions with Mar-
cel Holsheimer, Martin Kersten, Willi K15sgen, and
Heikki Mannila have taught me what Data Mining is
all about. Data Surveying is a brain-child that belongs
to all of us.

References
Abiteboul, S., and Kanellakis, P. 1989. Object iden-
tity as a query language primitive. In Proc. A CM
SIGMOD Symposium on the Management of Data,
159-173.

Siebes 273

Abitebout, S.; Hull, R.; and Vianu, V. 1994. Foun-
dations of Databases. Addison Wesley.
Agrawal, R.; Mannila, H.; Srikant, R.; Toivonen, H.;
and Verkamo, A. I. 1995. Fast discovery of association
rules. In Fayyad et al. (1995). To appear.
Agrawat, R.; Imielinski, T.; and Swami, A. 1993.
Mining association rules between sets of items in large
databases. In Proceedings of the 1993 International
Conference on Management of Data (SIGMOD 93),
207 - 216.
Fayyad, U. M., and Uthurusamy, R., eds.
1994. AAAI-94 Workshop Knowledge Discovery in
Databases.
Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth, P.; and
Uthurusamy, R., eds. 1995. Advances in Knowledge
Discovery and Data Mining. AAAI/MIT Press. To
appear.

Han, J.; Cai, Y.; and Cercone, N. 1992. Knowl-
edge discovery in databases: An attribute-oriented
approach. In Proceedings of the 18th VLDB Confer-
ence, 547 - 559.
Holland, J. H.; Holyoak, K. J.; Nisbett, R. E.; and
Thagard, P. R. 1986. Induction: processes of infer-
ence, learning and discovery. Computational models
of cognition and perception. Cambridge: MIT Press.
Holsheimer, M., and Siebes, A. 1994. Data mining:
the search for knowledge in databases. Technical Re-
port CS-R9406, CWI.
Holsheimer, M.; K15sgen, W.; Mannila, H.; and
Siebes, A. 1995. A data mining architecture. In
preparation.
Holsheimer, M.; Kersten, M.; and Siebes, A. 1995.
Data surveyor: Searching the nuggets in parallel. In
Fayyad et al. (1995). chapter 4. To appear.

Michalewicz, Z. 1992. Genetic Algorithms + Data
Structures = Evolution Programs. Artificial Intelli-
gence. Springer-Verlag.

Piatetsky-Shapiro, C., and Frawley, W. J., eds. 1991.
Knowledge Discovery in Databases. Menlo Park, Cal-
ifornia: AAAI Press.

Quinlan, J. 1986. Induction of decision trees. Machine
Learning 1:81-106.
Siebes, A. 1994a. Data mining: Exploratory data
analysis on very large databases. In Apt, K.; Schri-
jver, L.; and Temme, N., eds., From Universal
Morphisms to Megabytes: A Baayen Space Oddysey
(Liber Amicorum for Prof. P.C. Baayen). CWI. 535-
558.
Siebes, A. 1994b. Homogeneous discoveries contain no
surprises: Inferring risk-profiles from large databases.
In Fayyad and Uthurusamy (1994), 97 - 108.
Siebes, A. 1995. On the inseparability of data mining
and statistics. In Proceedings of the Mlnet Familiar-
ization Workshop: Statistics, Machine Learning and
Knowledge Discovery in Databases.

274 KDD-95

