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Abstract

Finding and removing outliers is an important prob-
lem in data mining. Errors in large databases can
be extremely common, so an important property of a
data mining algorithm is robustness with respect to
errors in the database. Most sophisticated methods
in machine learning address this problem to some ex-
tent, but not fully, and can be improved by addressing
the problem more directly. In this paper we examine
C4.5, a decision tree algorithm that is already quite
robust - few algorithms have been shown to consis-
tently achieve higher accuracy. C4.5 incorporates a
pruning scheme that partially addresses the outlier
removal problem. In our RoBUST-C4.5 algorithm we
extend the pruning method to fully remove the effect
of outliers, and this results in improvement on many
databases.

Introduction

As Knowledge Discovery in Databases (KDD) becomes
more common in practice, users will apply KDD meth-
ods and algorithms to more and larger databases. A
well-known property of large databases is the frequency
of errors. Although theory and practice of database
management has advanced rapidly over the past two
decades (Ullman 1988), in the end the data stored in
a DBMS is no better than the typing skill of the data-
entry clerk and the decisions made by experts that
are recorded in databases. In order to be successful,
database mining systems must be tolerant, or robust
with respect to errors in databases.

We address the following class of problems in this
paper: given a database of some arbitrary number
of records and fields, and some distinguished field(s)
which we would like to be able to predict given the
others, discover some pattern in the database and ex-
press this pattern in some language. The field to be
predicted should be a character field with relatively
few distinct values. The language must be sufficiently
expressive that it allows a computer to fill in missing
values in the distinguished field in future databases of
the same schema. The language should also be under-
standable so that an expert or data analyst can ver-
ify that the discovered patterns make sense. Under-
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standability is also important because a KDD system
can uncover important general knowledge which should
be understood by its users. In this paper we evalu-
ate discovered patterns by both their predictive ability
and understandability. Within this framework we con-
sider the problem of selectively disregarding database
records based on a heuristic estimate of whether or not
a record is veridical.

Although nearly all machine learning and statistical
methods address robustness to errors to some extent in
the guise of overfitting avoidance, this puts the focus
on only part of the system. Most methods for overfit-
ting avoidance involve measuring the accuracy of the
learned model on the training database, and measur-
ing the complexity of the learned model. The model is
then repeatedly made simpler until some desired bal-
ance of accuracy and complexity is reached. While our
method also penalizes the model for being too complex,
our method as well penalizes the data itself for being
too hard to learn, by removing records from the train-
ing database. (Alternately, one can think of the algo-
rithm reducing the weights of the suspicious records
to zero.) As we shall see, the latter method results
in much more understandable patterns with about the
same predictive ability.

We discuss robust statistical methods in the next
section. The following section reviews the C4.5 deci-
sion tree and rule induction algorithm, explaining the
pruning method used to avoid overfitting and relat-
ing it to ideas in robust statistics. We then describe
RoBuUsT-C4.5, our robust modification of C4.5. The
following section presents our experiments, which ver-
ify our claims. We then discuss related work in ma-
chine learning, neural networks and statistics, and then
present our conclusions.

Robust Statistical Methods

All physical sciences and engineering disciplines are
grounded on observations and measurements of phys-
ical entities and events. Whenever such data is col-
lected into a large database, we almost inevitably have
the problem of finding and addressing errors in the
database. Since this is such a core issue to all physi-
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Figure 1: Millions of phone calls in Belgium, 19501973, from Rousseeuw & Leroy (1987). Plotted in S-PLUS using

code from Venables & Ripley (1994).

cal sciences and engineering disciplines, one might ex-
pect that scientists and statisticians have considered
the problem for some time. In 1777 while studying
astronomical data, Daniel Bernoulli wrote “I see no
way of drawing a dividing line between those that are
to be utterly rejected and those that are to be wholly
retained; it may even happen that the rejected obser-
vation is the one that would have supplied the best
correction to the others...” (Barnett & Lewis 1993, p.
27).

In statistics, an outlier is defined as a “case that
does not follow the same model as the rest of the data”
(Weisberg 1985). This is broad, including not only er-
roneous data but also “surprising” veridical data. Most
of the work addressing outliers in statistics assumes ei-
ther a simple estimation task, such as estimating the
mean and covariance matrix of a normal distribution,
or a linear regression. Such statistical methods are
called robust, since the estimators can withstand (are
only minimally effected by) outliers in data. We will
present a high level overview of work on outliers, and
then discuss how they relate to robust decision trees.

Figure 1 shows a database of phone calls made in
Belgium. Except for the six years from 1964 — 1969
it’s a pretty dull dataset. The six outliers were caused
by a mistake in recording the data — during the six
year period the total number of minutes spent on the
phone was recorded rather than the total number of
calls. We can see that the effect of the outliers on linear
regression is disastrous. Linear regression attempts to

fit a line to a set of points so as to minimize the sum-
squared residuals {errors):

Z(yP - Cgp)2 )
P

where p indexes each training point, and §, indicates
the value at z, predicted by the linear model. A sim-
ple algebraic procedure finds the line minimizing this
criterion. Outliers are especially problematic because
of the squared error objective function.

There are two main ways that statisticians have
addressed the outlier problem: accommodation and
identification/rejection. We’ll first discuss an exam-
ple of the accommodation method, then the rejection
method. Figure 1 shows the result of “L1” regres-
sion, which is just like least squares regression except
that the objective function is changed to Zp lvp — pl,
which de-emphasizes points far away from the fit-
ted line. The accommodation methods, due to Hu-
ber (1981), involve modifying the objective function
(usually sum-squared error) to down-weight the ef-
fect of outliers. Huber’s proposal was the M-estimate:
>pP¥p — 9p)/o, where p is some function and o is
an unimportant constant scale factor. When p is the
absolute value function we get L1 regression.

Rather than defining an objective function that
lessens the impact of outliers while still allowing them
to influence the fitted model, we may instead simply
try to identify outliers directly and remove them from
consideration. Another way to say this is that we may
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restrict our attention only to those training records
that seem “normal.” The least trimmed squares (LTS)
method of Rousseeuw & Leroy (1987) uses this idea -
rather than minimizing the sum of squared errors, it
instead finds the line with minimal trimmed sum of
squared errors, which corresponds to minimizing the
errors on those points that seem most normal. (When
a set of numbers is trimmed, the highest and lowest
few numbers are removed.) Figure 1 shows that the
LTS regression fit the veridical data best.

Another approach to identification is not through
the residuals on each training record but rather on a
measure of the effect a record has on the learned model.
Points with high leverage, points with disproportion-
ately high effect on the fitted model, are identified and
removed from training data in order to better fit the
remaining points.

Commonly, outliers are thought of as shown in Fig-
ure 1 — points that are far away from the rest of the
data, but this needn’t be the case. In a classification
task, for example, a point of class A might be an out-
lier if found in the middle of a dense cluster of points
from class B. The identification of outliers in categor-
ical (nominal, unordered) data has not been addressed
in statistics. It is this problem of outliers in categorical
data that the present paper addresses. The only idea
that seems to be easily portable from linear regression
to classification trees (or decision trees) is the idea of
leverage — we will next explore this idea in the context
of C4.5.

C4.5 and Pruning: Model Selection

C4.5 (Quinlan 1993) is a decision tree induction pro-
gram. A decision tree predicts unknown field values
by asking a series of yes/no or multiple-outcome ques-
tions. Each question is of the form “Is the value of
field f equal to k?” or “Is the value of field f less
than z.” Fach question in the series is chosen based
on the answers to previous questions. After some num-
ber of questions have been answered, the value of the
unknown field is predicted.

One problem with decision trees (and with all non-
parametric statistical methods and learning methods)
is that they can simply memorize a database given
to them as training data. Generally, memorizing the
database is not a useful activity (we have the database
already!) so instead we want to try to learn patterns
that generalize well to future data. Endeavors to solve
this problem usually rely on the application of Occam’s
razor, which can be paraphrased as “keep it simple.”
LE., if several decision trees are roughly consistent
with a database, we should choose the simplest one
if we hope to generalize well. There are also statistical
arguments phrasing this as the bias-variance problem
(Breiman, Friedman, Olshen & Stone 1984, Geman,
Bienenstock & Doursat 1992), but we will not pursue
this further.

After inducing a decision tree from a database we
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Table 1: The RoBUST-C4.5 algorithm repeatedly runs
C4.5 and removes those records it misclassifies from
the training database until all records in the reduced
training set are correctly classified.

ROBUSTC45(TrainingData)
repeat {
T <- C46BuildTres(TrainingData)
T <- C45PruneTree(T)
foreach ecord in TrainingData
if T misclassifies Record then
remove Record from TrainingData
} until T correctly classifies all
Records in TrainingData

often are left with a complex tree that fits our training
database well. We then prune it to make it simpler.
This usually causes it to perform more poorly on the
training data, but better on data held out as a test
sample. Given a complex decision tree with n nodes,
we need some procedure for choosing one of the many
subtrees that we may arrive at by pruning. C4.5s
procedure for this involves repeatedly asking “should
this node be made into a leaf?” at each node. The
question is answered by estimating the error of the
node given the current tree, then estimating the error if
the node were pruned to a leaf. If the resulting error is
smaller, the node is pruned. After repeatedly pruning
or not pruning nodes we are left with the final tree.
C4.5’s error estimation method implicitly weighs the
number of records that would be misclassified if a given
current node were pruned against the reduction in tree
size resulting from pruning the node. If only a few
points will be misclassified, but many nodes can be
saved, C4.5 will prune the node. Thus, after pruning,
the set of records misclassified by C4.5’s tree will ap-
proximate the set of points with high leverage — those
few points which caused a large tree structure to be
created so that they would be classified correctly.

Robust C4.5: Data Selection

Pruning is a method of local data selection, since
records are effectively removed from nodes deep in the
tree — pruning a node to a leaf has the same effect as
removing all instances that were not in the majority
class in the subset of the database used to build that
node’s subtree. This begs the question: if the records
are locally un-informative or harmful, then why should
we suspect that they helped the algorithm to discover
patterns higher in the tree — that is, more globally?
We could think of no good answer to this question, and
so developed the RoBuUsT-C4.5 algorithm described in
Table 1.

A novelty in our robust approach is to rebuild the
tree using the reduced training set. The reduced train-
ing set is defined to the original training set minus the



Figure 2: Leverage in a decision tree: the two points
caused the subtree to be built. When they are re-
moved, the tree size shrinks by 8 nodes.

instances which the pruned tree now classifies incor-
rectly (the “confusing” instances). While retraining
may seem odd, it is in fact just an extension of the
assumptions underlying pruning. By pruning the tree
we essentially assume that these confusing instances
are locally not useful. Retraining merely takes this as-
sumption a step further by completely removing these
instances from the training set. This makes explicit
the assumption that locally un-informative or harmful
records are globally un-informative as well. The regu-
larization algorithm continues pruning and retraining
until no further pruning can be done. Though common
in regression in the guise of robust (Huber 1977) or re-
sistant (Hastie & Tibshirani 1990, Chapter 9) fitting,
in the context of classification this appears to be novel.

Relating this to the previous discussion on robust
statistics, in the context of decision trees we may iden-
tify a set of points with high leverage by examining
the difference in number of nodes between a tree built
with and without the set of points (Figure 2). This dif-
ference is estimated by starting with a pure tree built
using all the points and then pruning. The training
instances that it now classifies incorrectly are the high
leverage points that were removed. However, the re-
moval of the points by pruning was only approximate—
the obvious step is to remove the points from the train-
ing set and retrain.

Experiments

Because of the arguments above, we hypothesized that
RoBusT-C4.5 would be a worthy competitor to C4.5
always resulting in smaller trees and increasing accu-
racy on domains with many outliers. Also, since the
definition of a robust statistic requires small changes in
the statistic for small changes in the data, the standard
deviation of the accuracy of RoBUST-C4.5 should be
smaller than C4.5. Below we first describe the experi-
mental methodology and then present and discuss the
results.

Method

To test the hypotheses, we compared RoBusT-C4.5
and C4.5 on 21 databases selected from the UCI
and Statlog database repositories (Murphy & Aha
1994, Michie, Spiegelhalter & Taylor 1994). The
databases are all stored and processed as a single re-
lation (table). The databases were selected with no
particular agenda in mind other than convenience. To
compare ROBUST-C4.5 and C4.5 on a given database
we used ten-fold cross-validation. At a computational
expense, this method gives one a more reliable estimate
of the accuracy of a learning algorithm than a single
run on a held-out test set. Cross-validation involves
randomly partitioning the database into ten disjoint
databases, then providing each algorithm with nine as
training data and using the remaining as test cases.
This process is repeated ten times using the different
possible test sets.

For purposes of testing the hypotheses, the impor-
tant statistics to gather for each run of each algorithm
on each database are: the mean of the accuracies from
the ten runs, the mean of the tree sizes, and the stan-
dard deviation of the accuracy among the ten cross-
validation runs.

Results

Table 2 presents the results from the experiments de-
scribed above. For each dataset and algorithm, we
report the average of the ten cross-validation accura-
cies, their standard deviation, and the average of the
ten tree sizes. At the bottom, each column’s average
is reported.

There are several interesting things to point out in
the table. Note that ROBUST-C4.5’s average accuracy
is slightly higher than C4.5, which weakly verifies our
assumption that RoBUST-C4.5 will have higher accu-
racy than C4.5. Note that since RoBUST-C4.5 spe-
cializes in the removal of outliers, it might perform
badly on complex datasets where there is no noise,
but some patterns are under-represented. In such set-
tings we might expect RoBUST-C4.5 to degrade per-
formance by throwing out perfectly good data (the
problem that worried Bernoulli over two hundred years
ago), and this was the case. Using a paired ¢ test, we
found that the accuracies of ROBUST-C4.5 and C4.5
were statistically indistinguishable (at the 95% level)
on all datasets but four. RoBUsT-C4.5 performed bet-
ter than C4.5 on “labor-neg” (Canadian labor negoti-
ation), and worse on Tic-Tac-Toe and “segment” (an
image segmentation problem). Although we cannot
make any statements about the probability of human
error in manually classifying the image segments for
the “segment” database, the Tic-Tac-Toe database is
noise-free and fairly difficult for decision trees to learn
(note the average tree size of 133), so it fits our “hard-
but-error-free” profile perfectly.

Another interesting pattern in the data is the av-
erage tree size. ROBUST-C4.5 manages to produce
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Table 2: Accuracies for C4.5 and RC4.5 on several databases.

Accuracy Mean Accuracy StdDev Tree Size
Dataset C4.5 RC4.5 C4.5 RC4.5 C4.5 RC4.5
australian 85.53 85.81 3.8 3.8 48.1 32.9
breast-cancer  74.49 74.13 5.2 53 10.8 11.5
breast 94.42 94.28 2.8 2.7 20.2 12.6
chess 99.45 99.45 0.4 0.4 55.0 55.0
cleve 73.54 74.54 7.1 6.5 43.5 28.4
crx 84.80 85.10 4.5 4.7 53.3 32.6
diabetes 72.76 74.71 6.1 59 127.8 38.0
german 73.10 75.10 3.6 3.6 149.6 30.8
glass 67.78 70.10 10.8 10.2 51.6 37.8
heart 74.10 73.36 10.5 6.0 358 21.8
hepatitis 76.20 77.95 7.6 6.6 154 10.4
horse-colic 84.51 85.59 4.7 4.5 18.4 16.2
hypothyroid 99.10 99.50 0.7 0.6 15.0 9.6
iris 94.66 92.67 5.3 7.3 7.2 7.2
labor-neg 77.68 84.67 17.5 14.7 5.9 5.6
lymphography 76.91 75.67 11.3 10.9 26.6 20.1
segment 96.35 95.87 1.3 0.8 79.8 71.6
sick-euthyroid  97.67 97.60 0.8 0.9 30.0 23.8
tic-tac-toe 86.23 83.20 4.6 4.4 133.0 109
vote 94.73 94.73 2.1 2.1 145 14.5
votel 88.71 88.71 5.9 5.9 28.6 26.8
AVERAGE 84.42 84.88 5.5 5.1 46.2 32.9

trees that are 29% smaller than C4.5’s trees, while
maintaining the same level of accuracy. In many cases
RoBUST-C4.5 can dramatically reduce tree size —
note the “diabetes” (Pima Indian diabetes) and “ger-
man” (accept/reject loan applications) datasets, where
tree size was reduced by 70% and 79% respectively.
The “german” dataset probably resembles most closely
the types of tasks common in KDD: given features such
as salary, savings, type of loan and other personal in-
formation, predict whether the loan should be granted
or denied. Since one of the goals of KDD is to present
understandable patterns to a data analyst, ROBUST-
C4.5 should be a worthwhile additional tool.

Regarding the robustness of ROBUST-C4.5 note
that the average standard deviation is indeed smaller
than C4.5 by about .4. Looking at each database, the
standard deviation of RoBUST-C4.5 was smaller than
C4.5 on eleven, the same on six, and higher on four.
This supports the last hypothesis and indicates that
by removing outliers, the RoBuUsT-C4.5 algorithm is
able to learn more stable representations of the hidden
patterns in the data than C4.5.

Hastie (1994) suggested that the success of ROBUST-
C4.5 was simply due to the fact that C4.5 does not
prune enough, therefore the advantage from RoOBUST-
C4.5 is simply due to the fact that after rebuilding the
tree, the pruning algorithm gets another shot at reduc-
ing the size further. To test this we ran two other full
experiments like the one reported above with different
settings for C4.5’s pruning parameter, and found qual-
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itatively the same results as in our original experiment.
Thus the superior performance of RoBUsT-C4.5 does
not seem to be due solely to under-pruning on C4.5’s
part.

Related Work

RoBusT-C4.5 is based on our earlier work in deci-
sion trees (John 1995), which also rejected misclassified
records and retrained. Regarding robust methods and
outlier rejection, Huber (1977) states “I am inclined
to ... prefer technical expertise to any ‘statistical’ cri-
terion for straight outlier rejection.” We are guilty
of this sin in our work, but Guyon, Boser & Vapnik
(1993) have proposed an interesting method for making
use of human expertise in outlier removal to “clean” a
dataset. Similarly, rather than rejecting suspected out-
liers outright, RoBUST-C4.5 could as well interview an
expert, presenting the suspicious database records and
asking for an opinion as to whether the record should
be removed or down-weighted. Barnett & Lewis {1993)
give an interesting and entertaining survey of work in
outlier removal in statistics. Venables & Ripley (1994,
ch. 8) present a concise review of robust statistics,
accompanied by S-PLUS code.

Another way of looking at robust methods (and the
identification approach in particular) is as a data se-
lection method. The selection of data for training is an
ubiquitous problem in KDD. Many methods are pas-
sive, accepting data from a training sample in some
random order or all at once as a set. Other methods



(Aha 1991) actively accept or reject training patterns
from a temporal sequence presented to them. The dif-
ference between outlier removal and active learning (as
commonly presented) is somewhat akin to the differ-
ence between forward and backward feature subset se-
lection (John, Kohavi & Pfleger 1994) or forward and
backward (construction/pruning) search methods over
neural net or decision tree architectures. In general,
unless time is a very limited resource, the best re-
sults are achieved by starting “big” and then shrinking
(Breiman et al. 1984). This should apply to pattern se-
lection as well, and thus we suspect backward pattern
selection (i.e., outlier removal) will give greater perfor-
mance than forward selection. Cohn (1994) discusses
yet more “active” data selection methods that might
perform even better, but they require the availability
of a domain expert.

Since RoBUST-C4.5 just runs C4.5 many times on
similar databases, the approach could benefit from an
incremental tree-updating scheme such as that pro-
posed in Utgoff (1994) — rather than removing the
outliers from the database and retraining on the en-
tire remainder, we could instead simply incrementally
remove the outliers from the tree itself, never having
to fully retrain.

Conclusion

We have presented a learning algorithm based on ideas
drawn from robust statistics. Rather than solely be-
ing concerned with the structure, complexity and accu-
racy of the patterns it has learned from the database,
our method also actively screens the training database
in an attempt to ignore erroneous records. Such ro-
bust methods seem well-suited to learning patterns in
databases which are likely to have many errors — by
ignoring the errors the produced patterns can be more
accurate and far simpler than patterns produced by
comparable algorithms which are forced to pay atten-
tion to all records. Our experiments on 21 databases
confirm this claim, showing that on datasets with char-
acteristics typical of KDD tasks, our RoBusT-C4.5
can learn trees with slightly higher accuracy and up
to 70% fewer nodes C4.5’s trees.
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