
Abstract
Both the number and the size of spatial databases are rapidly
growing because of the large amount of data obtained from
satellite images, X-ray crystallography or other scientific
equipment. Therefore, automated knowledge discovery be-
comes more and more important in spatial databases. So far,
most of the methods for knowledge discovery in databases
(KDD) have been based on relational database systems. In
this paper, we address the task of class identification in spatial
databases using clustering techniques. We present an interface
to the database management system (DBMS), which is crucial
for the efficiency of KDD on large databases. This interface
is based on a spatial access method, the R*-tree. It clusters the
objects according to their spatial neighborhood and supports
efficient processing of spatial queries. Furthermore, we pro-
pose a method for spatial data sampling as part of the focusing
component, significantly reducing the number of objects to be
clustered. Thus, we achieve a considerable speed-up for clus-
tering in large databases. We have applied the proposed tech-
niques to real data from a large protein database used for
predicting protein-protein docking. A performance evaluation
on this database indicates that clustering on large spatial data-
bases can be performed both efficiently and effectively using
our approach.
Keywords: discovery algorithms for large databases, data-
base interfaces, spatial data sampling, clustering, application
in molecular biology.

1. Introduction 1

Numerous applications require the management of geomet-
ric, geographic orspatial data, i.e. data related to space. The
relevant space may be, e. g., a two-dimensional projection of
the surface of the earth in the case of a geographic informa-
tion system or a 3d-space containing a protein molecule in
the case of an application in molecular biology.Spatial Da-
tabase Systems (SDBS)(Gueting 1994) are database systems
with additional support for the management of spatial data:
they offer spatial data types in their data model and provide
spatial access methods for efficient implementations of spa-
tial operations (cf. Brinkhoff et al. 1993, Brinkhoff et al.
1994). Typical objects are points, lines, polygons and
spheres with non-spatial attributes like landuse, color or

1. This research was funded by the German Ministry for Research
and Technology (BMFT) under grant no. 01 IB 307 B. The authors
are responsible for the content of this paper.

electrostatic charge. While non-spatial attributes usually
have atomar values, the values of spatial attributes often
have an extension in space.

Both the number and the size of spatial databases are rap-
idly growing because of the large amount of data obtained
from satellite images, X-ray crystallography or other scien-
tific equipment. This growth by far exceeds human capaci-
ties to analyze the databases in order to find implicit regular-
ities, rules or clusters hidden in the data. Therefore,
automated knowledge discovery becomes more and more
important in spatial databases.Knowledge discovery in da-
tabases (KDD)is the non-trivial extraction of implicit, pre-
viously unknown, and potentially useful information from
databases (Frawley, Piatetsky-Shapiro & Matheus 1991). So
far, most of the KDD methods have been based on relational
database systems which are appropriate to handle non-spa-
tial data, but not spatial data.

One of the well-known techniques for KDD is induction.
Han, Cai, & Cercone (1993) assume the existence of concept
hierarchies in the application domain and uses them to gen-
eralize the tuples of a relation into characteristic rules and
classification rules. Liu, Han, & Ooi (1993) extend this
method for SDBS by adding spatial concept hierarchies and
performing spatial induction. However, these hierarchies
may not be available in many applications and, if available,
they will not be appropriate for all KDD tasks. Therefore,
Ng & Han (1994) do not rely on any domain knowledge and
explores the applicability of cluster analysis techniques for
KDD in SDBS. An algorithm called CLARANS (Clustering
Large Applications based on RANdomized Search) is pre-
sented, which is both, efficient and effective for databases of
some thousand objects.

Ng & Han (1994) assume that all objects to be clustered
can reside in main memory at the same time. However, this
does not hold for large databases. Furthermore, the runtime
of CLARANS is prohibitive on large databases. In general,
the issue of interfacing KDD systems with a database man-
agement system (DBMS) has received little attention in the
KDD literature and many systems are not yet integrated with
a DBMS. Matheus, Chan, & Piatetsky-Shapiro (1993) pro-
pose an architecture of a KDD system including a DBMS in-
terface and a focusing component. Well-known techniques
are, e.g. focusing on a small subset of all tuples or focusing
on a subset of all attributes. Agrawal, Imielinski, & Swami
(1993) present a set of basic operations for solving different

A Database Interface for Clustering in Large Spatial Databases1

Martin Ester, Hans-Peter Kriegel, Xiaowei Xu

Institute for Computer Science, University of Munich
Leopoldstr. 11 B

D-80802 München, Germany
email: {ester | kriegel | xwxu}@informatik.uni-muenchen.de

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Finally, we define thecluster of medoidmi to be the subset
of all objects from O with medoid(o) =mi, i.e.

and we define
a clustering to be a set of clusters partitioning O. Let CO be
the set of all possible clusterings of O. Theaverage distance
of a clustering is used to measure its quality:

The size of the search space CO is of order O(nk), so that
trying all possible solutions is prohibitive. Kaufman &
Rousseeuw (1990) propose a method PAM (Partitioning
Around Medoids) addressing this problem. PAM starts from
an initial set of medoids and replaces one of these medoids
by one of the non-medoids as long as the quality of the re-
sulting clustering is improved. The complexity of PAM is
O(t•k(n-k)2), wheret is the number of iterations. Thus, it is
obvious that PAM is inefficient for largen.

Ng & Han (1994) propose a clustering method based on
PAM with a new heuristic search strategy. This strategy does
not try all possible clusterings, but only a small number of
them, which are selected in a random way. In figure 1, we
briefly sketch the algorithm CLARANS. O,k anddist are
given as an input. Furthermore, CLARANS requires the pa-
rametersnumlocal(number of locally optimal clusterings to
be considered) andmaxneighbor(number of exchanges of
one medoid and one non-medoid to be tried) to control the
heuristic search strategy. Ng & Han (1994) suggest to set
numlocal to 2 and to setmaxneighbor to the maximum of
1.25%*k(n-k) and250. The output consists of a set ofk clus-
ters.

Now, we want to analyse the cost of CLARANS, when ap-
plied to a database. Our analysis is based on the following as-

FOR i FROM 1 TO numlocal DO

❶ create randomly an initial set of k

medoids;

WHILE NOT maxneighbor exchanges tried DO

❷ select randomly one of the k medoids

and one of the n-k non-medoids;

❸ calculate the difference of average

distance implied by exchanging the two

selected objects;

IF the difference is less than 0 THEN

❹ exchange the selected medoid and

non-medoid;

END WHILE;// INNER LOOP

➎ calculate the average distance of the

current clustering;

IF this distance is less than the

distance of the best clustering THEN

remember current clustering as the

best clustering;

END FOR;// OUTER LOOP

figure 1: Algorithm CLARANS

cluster mi() o o O∈ medoid o()∧ mi={ }=

average_distance:CO → R0
+

average_distance(c) = Σ Σ dist(o, mi) / n
mi∈M ο∈cluster(mi)

KDD tasks and shows how to apply them for efficientclassi-
fication, i.e. finding rules that partition the database into a
given set of groups. Good performance even on a large data-
base is obtained by splitting the search space into indepen-
dent parts, which is possible because different branches of a
decision tree may be expanded independently from each
other. Holsheimer & Kersten (1994) address the issue of
classification in large relational databases. Splitting the giv-
en relation into a lot of relatively small binary relations, i.e.
focusing on one attribute at a time, Holsheimer & Kersten
(1994) always keep the relevant part of the database in main
memory.

The task considered in this paper isclass identification,
i.e. the grouping of the objects of the database into meaning-
ful subclasses (c.f. Matheus, Chan, & Piatesky-Shapiro
1993). We show how to integrate CLARANS with a SDBS
in order to perform class identification on large spatial data-
bases, which can only partially be loaded into main memory.
The key to this integration is the use of a well-known spatial
access method, the R*-tree (Beckmann et al. 1990). The R*-
tree, designed for supporting spatial queries, provides an ef-
ficient interface to a SDBS. The rest of the paper is orga-
nized as follows. Chapter 2 gives a brief introduction into
CLARANS and discusses its application to large databases.
We present a DB interface (chapter 3) and a focusing com-
ponent (chapter 4) for clustering in large SDBS. We evaluate
the proposed method with respect to both efficiency and ef-
fectiveness on a protein database (chapter 5) and finish with
the conclusion in chapter 6.

2. CLARANS on Large Databases

Clustering techniques are attractive for KDD, because they
can find hidden structures in data without using any addi-
tional domain knowledge. We have choosen thek-medoid
method as the basis of our clustering algorithm. In compari-
son withk-mean methods, e.g. ISODATA,k-medoid cluster-
ing algorithms have the following advantages. First, the
method can be used not only on points or vectors for which
the mean is defined but also on any objects for which a simi-
larity measure between two objects is given. Second, thek-
medoid methods are robust to the existence of outliers (i.e.
objects that are very far away from the rest of the objects).
Last but not least,k-medoid based algorithms can handle
very large data sets quite efficiently. See (Kaufman & Rous-
seeuw 1990) for a more detailed comparison ofk-medoid
methods with other clustering methods.

In this paper, we consider the following clustering prob-
lem. Given the number of clustersk, a set O of n objects, and
a distance function,dist:O x O→ R0, find a subset M⊆ O of
k representative objects, i.e. theset of medoids, such that the
average distance of all objects to their medoids is mini-
mized. Each objecto ∈ O is assigned to the closest m∈ M.
In the following, we assumedist to be the euclidean dis-
tance, which is a natural choice for spatial clustering. We de-
fine a function medoid:

medoid: O→ M
medoid(o) = mi, mi ∈M, ∀ mj ∈M: dist(o,mi) ≤ dist(o,mj)

sumptions. Letc be theaverage number of objects stored on
one page. The small set of medoids is resident in main mem-
ory, while the large set of non medoids has to reside on disk.
The I/O-cost heavily dominates the CPU cost. Therefore, we
take the number of disk pages to be read as the cost measure,
which is a common approach for database systems.

We obtain the following cost for the different operations.
The procedure❷ (see figure 1) has to read just one of the
non medoid objects, i.e. one page. For similar reasons proce-
dure❶ will have to read k pages in the worst case. Proce-
dure❸ accesses all objects, which means it readsn/c pages.
Procedure❹ only changes the set of medoids and thus does
not access to the disk. Procedure➎ again has to access all
objects, i.e. has costn/c.

Our analysis indicates that the most expensive operation
of CLARANS is the calculation of the difference of distance
(procedure❸). Its cost is O(n), i.e. it needs to read all data
pages each time. Furthermore, it is called very frequently,
depending onn, k and on the distribution of the database ob-
jects in space. In chapter 4, we will present focusing tech-
niques addressing the improvement of efficiency for CLAR-
ANS.

3. The DBMS Interface
TheDB interface allows the KDD system to access the data-
base using queries. A simple query for a relational DBMS,
e.g., could request some of the attributes of all tuples in a re-
lation with a given attribute value. Typical queries for SDBS
areregion queries (return all objects from the database inter-
secting a query polygon) andnearest neighbor queries (re-
turn the object closest to a query object) (Gueting 1994).

Spatial access methods (SAM) have been developed to
support efficient processing of such queries. They organize
both the relevant space and the objects of the database such
that only a minimal subset of the database has to be consid-
ered to find the answers of a query. Anapproximation is a
simple object with limited complexity preserving the main
properties of a complex spatial object. The use of approxi-
mations leads to a two step strategy of query processing.
First, the filtering step excludes as many objects as possible
from the set of answers based on the approximations and re-
turns a set of candidates. Second, the refinement step checks
the exact geometry of the candidates in order to decide
whether they fulfill the query condition or not.

The most common approximation is thebounding box
(BB), i.e. the minimal rectilinear rectangle containing a giv-
en spatial object. Therefore, most SAM’s are designed to
manage rectangles (c.f. Gueting 1994 for an overview of
SAM’s). The R*-tree (Beckmann et al. 1990) is a SAM
which is very efficient both for points and rectangles. It is a
balanced search tree, similar to the B+-tree, storing in each
node a set of rectangles. Each node of the tree represents a
page, the unit of secondary storage. Therefore, the number
of rectangles per node is constrained by alower limit (min)
and anupper limit (max)with the goal to obtain a high stor-
age utilization and to keep the number of disk pages to be
read for query processing as small as possible. The nodes
storing the data objects are calleddata pages, the nodes or-

ganizing the data pages are called directory pages. Figure 2
illustrates the data structure of the R*-tree giving an exam-
ple of 2-dimensional rectangles.

Data rectangles may overlap, which does not hold for
point data. If overlapping data rectangles do not fit into the
same page, an overlap of directory pages will occur. This
overlap of directory rectangles has to be minimized for effi-
cient query processing. Therefore, the R*-tree uses the fol-
lowing splitting strategy when the capacity of a page is ex-
ceeded after the insertion of a new object. The page (set of
rectangles) is split into two pages (two sets of rectangles)
such that the bounding boxes of the resulting pages have
minimal area, margin and overlap. This heuristics is both ef-
ficient and effective as experiments on realistic data point
out (Beckmann et al. 1990).

4. The Focusing Component

Thefocusing component determines which parts of the data-
base are relevant for pattern extraction. In a relational DBS,
e.g. one could focus on some attributes of the tuples yielding
most information or focus on a randomly drawn sample of
all tuples. Finally, the focusing component asks queries to
the DB interface obtaining the input for pattern extraction.

According to chapter 2, there are two approaches to im-
prove the efficiency of CLARANS on large SBDS. First, a re-
duction of the numbern of the considered objects will result in
a significant speed up, because the calculation of the distance
difference is linear. Second, a careful analysis shows that actu-
ally not alln objects contribute to the result of the distance dif-
ference, such that efficiency can be improved by restricting the
access to the relevant objects. We have designed several focus-
ing techniques following these approaches. In this paper, due
to the strict page limit, we only presentfocusing on represen-
tativesin section 4.1 and a method for determining the num-
ber of representatives in section 4.2.

4.1 Focusing on Representatives

We propose to apply CLARANS not to the whole database,
but to select a relatively small number of representatives
from the database and to apply CLARANS only to these rep-
resentatives. This is a kind of sampling, a technique com-
mon in KDD systems.

Kaufman & Rousseeuw (1990) propose the clustering al-
gorithm CLARA (Clustering LARge Applications) based
on sampling. CLARA draws a set of40 + 2k representatives

figure 2: R*-tree for two-dimensional rectangles

a b

c

1

2
3

4
5

6
7

8

9
10

1 2 3 4 5 6 7

a b c

8 9 10

a, b, c: directory rectangles
1, 2, 3, . . .: data rectangles

: overlap of directory rectangles

R*-tree

from the n objects of the database and applies PAM to the
representatives only. The method for sampling is as follows:

Assign each object to a unique index in the range [1..n].
Draw40+2k random numbers from the interval [1..n] and re-
turn the objects with the respective indices as representatives.

Step (1) is the crucial one. In order to obtain representa-
tives with a good distribution over the geometric space, the
indices have to be assigned such that objects with similar in-
dices are close to each other in the geometric space. In other
words, we need a method for defining a linear order for ob-
jects reflecting their geometric neighborhood as much as
possible. Kaufman & Rousseeuw (1990) give no hint how to
obtain such an order. The R*-tree, however, offers a solution
to this problem. In fact, the R*-tree has been designed to store
a SDB such that neighboring objects, which are often re-
quested by the same query, are stored in neighboring pages
on the disk.

In the following, we define a method for spatial sampling
based on the R*-tree. LetN denote the set of thenatural
numbers, P ⊆ N denote the set of allpage numbers andE
⊆ N the set of allentry numbers, i.e. the relative indices of
objects in their page. Letpagebe the function returning the
set of objects of the page with a given page number andob-
ject be the function returning the object of a page with a giv-
en entry number:

Let a functionrandom be defined asrandom:
drawing a set of m random numbers from a given set of num-
bers, either page numbers or entry numbers.

Kaufman & Rousseeuw (1990) report experiments indi-
cating that40 + 2k is a reasonable choice for the number of
representatives. However, these experiments have been per-
formed with values forn (≤ 1000) andk (≤ 30) which are not
realistic for large databases. Our experimental evaluation in
chapter 5 reveals that a reasonable definition for the heuris-
tic parametermaxneighbor of CLARANS differs consider-
ably between midsize and large databases. Therefore, we in-
troduce two parameters allowing to scale the number of
representatives drawn from a database. Letnp be thenumber
of pagesto be considered for sampling, andne be thenum-
ber of entriesto be drawn from the same page. A value ofn/
c for np and a value of 1 forne, e.g., yields one representa-
tive for each page, i.e.n/c representatives. In general, the
number r of representativescan be calculated asr = np * ne.

Now, we define the main functionspatial_sampling with
a set of objects,np andne as input:

An obvious question is, whether it is reasonable to let the
R*-tree perform the whole clustering in one step without us-
ing CLARANS in a second step. The answer is “no” because
of the following reasons: (i) The R*-tree does not allow the
user to specify the numberk of clusters, it derivesk indirect-
ly from n and from the capacity of a page. Thisk may be in-

page: P→ 2O

object: 2O x E → O
2N N× 2N→

spatial_sampling: 2O x P x E → 2O

spatial_sampling(set_of_objects, np, ne) =
{o ∈set_of_objects | p ∈ random(P, np)∧
e∈ random(E, ne)∧ o = object(page(p), e) }

appropriate for a given application and may yield clusterings
with a high average distance. (ii) All clusters (i.e. the direc-
tory rectangles) have a rectangular shape and, furthermore,
these rectangles have to be parallel to the axes of the coordi-
nate system.

One of the goals of the R*-tree is to guarantee high stor-
age utilization, whereas the purpose of CLARANS is to gen-
erate clusterings with maximum quality according to an ap-
plication specific distance function. The R*-tree is efficient
for large databases, CLARANS, on the other hand, is ineffi-
cient for large values of n and k. Therefore, we propose to
combine the good properties of the R*-tree and of CLAR-
ANS in the following two step approach: (1) Extract repre-
sentatives according tonp andne from the R*-tree. (2) Clus-
ter the representatives using CLARANS and returnk
medoids.

4.2 Determining the Number of Representatives

We have introduced two parameters allowing to scale the
number of representatives drawn from a database: the num-
ber of pages and the number of entries. In this section, we
will determine values for these parameters yielding a good
trade-off between effectiveness and efficiency for the result-
ing clustering. We use experiments to determine suitable pa-
rameters.

In the following experiments, we cluster some 50.000 3-D
points from a protein database (c.f. chapter 5 for a descrip-
tion of the application). These points have been clustered
with the number of representatives varying from 256 (np =
256, ne = 1) to 4108 (np = 1027,ne = 4). Figure 3 and
figure 4 depict the resulting effectiveness and efficiency for
the varying number of representatives.

av
er

ag
e

di
st

an
ce

256 1027

4
5

2

7

1

3

6

2054 4108513

figure 3: Average Distance

number of
 representatives

figure 4: Relative Runtime

number ofre
la

tiv
e

ru
nt

im
e

256 513 1027

1

6.50

0.200.07

28.12

2054 4108
representatives

We observe no significant reduction of the average distance
for more than 1027 representatives, whereas the runtime in-
creases more or less linearly with the number of representa-
tives. We conclude that one representative from each data page
is an appropriate choice for the number of representatives.
Therefore, the experiments reported in chapter 5 will be based
on a value ofn/c for np and on a value of 1 forne.

5. Application and Performance Evaluation

We apply the proposed clustering techniques to a large pro-
tein database and evaluate their performance in this context.
We introduce the protein database (section 5.1) and evaluate
focusing on representatives with respect to effectiveness and
efficiency (section 5.2).

5.1 BIOWEPRO - a SDBS for Protein-Protein
Docking

Proteins are biomolecules consisting of some hundreds to
some thousands of atoms. Their mode of operation lies in the
interaction with other biomolecules, for example proteins,
DNA or smaller partner molecules. These interactions are
performed by connecting the partner molecules, and are
therefore calleddocking.

Molecular biologists point out that the geometry of the
molecular surfaces at the interaction site plays an important
role, along with the physicochemical properties of the mole-
cules. A necessary condition for protein-protein docking is
the complementarity of the interaction site with respect to
surface shape, electrostatic potential, hydrophobicity etc.
Therefore, a database system for protein-protein docking
has to process queries for proteins with similar or comple-
mentary surfaces.

In the BIOWEPRO (Biomolecular Interactions of Pro-
teins) project (Ester et al. 1995), we are developing a SDBS
to support protein-protein docking. We use the crystallo-
graphically determined atom coordinates of proteins and
protein complexes from the Brookhaven Protein Data Bank
(PDB 1994), presently containing some 3,000 proteins.
Each protein has a triangulated surface consisting of some
10,000 3D points. For each point on the protein surface, sev-
eral geometric and physicochemical features are computed.
The solid angle (SA), e.g., (Connolly 1986) is a geometric
feature describing the degree of convexity or concavity of
the surface in the neighborhood of the considered point.

The search for similar protein surfaces is not performed at
the level of surface points, but at the level of surface seg-
ments, resulting in a significant reduction of the number of
both, the objects in the database and the answers to a given
query. Asegment is defined as a set of neighboring surface
points with similar non-spatial attributes, e.g. with similar
SA values. The segments should have a good correlation with
the known docking sites of the proteins, i.e. a docking site on
a protein surface should consist of a small number of seg-
ments. Thus, the KDD task is to find a segmentation of pro-
tein surfaces supporting the processing of docking queries.

5.2 Evaluation of Focusing on Representatives

In this section, we present experimental results from the
BIOWEPRO database evaluating the technique of focusing
on representatives with respect to efficiency and effective-
ness. Our measure of effectiveness is the average distance of
the resulting clusterings. Efficiency is measured by the CPU
runtime of the whole processing. All experiments have been
run on an HP 9000/735 workstation.

We use the protein hemoglobin for our experiments, be-
cause it is one of the largest objects in the database. The sur-
face of hemoglobin consists of 50,559 points, and for each of
these points we store the 3D-coordinates along with the val-
ue of SA. The number of clusters is set to 10 andnumlocal
set to 2. Ng & Han (1994) has proposed a heuristic to deter-
mine maxneighbor, i.e. maxneighbor= max(250, k(n-
k)*1.25%). This proposal is based on experiments with n
varying from 100 to 3000 and k varying from 5 to 20. Our
experiments indicate that this heuristic is not appropriate for
values ofn varying between 10,000 and 100,000. The result-
ing values formaxneighbor are so large, that the gain in ef-
fectiveness is very small compared to the increase of runt-
ime. maxneighbor = 0.1*k(n-k)*1.25%seems to be a good
trade-off between effectiveness and efficiency in our case. In
the first set of experiments, we directly apply CLARANS on
hemoglobin withmaxneighbor varying from 250 over 500
to 1,000. In the second set of experiments, we use “focusing
on representatives”. We obtain 1,027 representatives out of
the 50,559 points for hemoglobin, and CLARANS is then
applied to this set of representatives.

The results on effectiveness in terms of the average dis-
tance are presented in figure 5. Using the focusing tech-

nique, we observe a decrease of effectiveness ranging from
1.5% to 3.2% compared to clustering without focus.
Figure 6 depicts the results of the comparison of efficiency.

figure 5: Comparison of Effectiveness

maximum number

without focus

with focus

av
er

ag
e

di
st

an
ce

250 500 1000

2

6
8

10
12
14

4

of neighbors

figure 6: Comparison of Efficiency

without focus

with focus

re
la

tiv
e

ru
nt

im
e

250 500 1000

1 11

158

101

48

maximum number
of neighbors

Focusing improves the efficiency by a factor ranging from
48 to 158 in comparison to clustering without focus.

To conclude, focusing improves efficiency by a factor of 48
to 158, whereas the loss of effectiveness is only 1.5% to 3.2%.

6. Conclusion

We use the clustering algorithm CLARANS (Ng & Han
1994) for class identification in SDBS. We have presented a
DB interface and a focusing component supporting cluster-
ing in large SDBS. The DB interface of our KDD system is
based on a spatial access method, the R*-tree. It clusters the
objects according to their spatial neighborhood and supports
efficient processing of spatial queries. Focusing on represen-
tative objects significantly reduces the number of objects to
be clustered. Thus, we achieve a considerable speed-up for
clustering in large databases. Our DB interface provides an
effective way of determining these representatives.

We have applied the proposed clustering techniques to
real data from a large protein database. In general, our ap-
proach can be used in any database where spatial access
methods are provided. In (Ng & Han 1994) an application of
CLARANS to a geographic database consisting of point
data is described. We are going to apply the proposed meth-
ods to a database managing CAD parts with non-spatial fea-
tures. Our goal is to identify classes of these parts based on
their features.

We have performed an evaluation of focusing on represen-
tatives on the protein database. Focusing reduces the runtime
for clustering by factors, whereas the decrease of effective-
ness is very small. Thus, focusing on representatives offers a
very good trade-off between efficiency and effectivity.

Future research will have to consider the following issues.
CLARANS randomly selects two objects to be exchanged
and does not consider any alternatives if the exchange re-
sults in a reduction of the average distance of the clustering.
Heuristic strategies for selection should reduce the huge size
of the search space and thus improve the efficiency of pat-
tern extraction. So far, we have created crisp clusterings, i.e.
each object has been assigned to a unique cluster. However,
due to the spatial nature of the objects, it is possible that an
object intersects the area of two clusters at the same time.
Therefore, for SDBS fuzzy clustering techniques seem to be
more appropriate than crisp clustering methods and will be
explored. Besides clustering techniques, there are other
methods for class identification in SDBS, e.g. region grow-
ing, which should also be supported by a KDD system. It is
an open question, how these methods compare with cluster-
ing methods.

Acknowledgments

We thank Thomas Seidl for engaging and fruitful discus-
sions on the subject of this paper and for his support in the
performance evaluation on the BIOWEPRO data.

References
Agrawal R.; Imielinski T.; and Swami A. 1993. Database Mining: A
Performance Perspective.IEEE Transactions on Knowledge and
Data Engineering 5(6):914-925.

Beckmann N.; Kriegel H.-P.; Schneider R.; and Seeger B. 1990 The
R*-tree: An Efficient and Robust Access Method for Points and
Rectangles, Proc. ACM SIGMOD Int. Conf. on Management of
Data, Atlantic City, NJ, 1990, pp. 322-331.

Brinkhoff T.; Horn H.; Kriegel H.-P.; and Schneider R. 1993. A
Storage and Access Architecture for Efficient Query Processing in
Spatial Database Systems. Proc. 3rd Int. Symp. on Large Spatial
Databases (SSD ‘93), Singapore, Lecture Notes in Computer
Science, Springer, Vol. 692, pp. 357-376.

Brinkhoff T.; Kriegel H.-P.; Schneider R.; and Seeger B. 1994
Efficient Multi-Step Processing of Spatial Joins, Proc. ACM
SIGMOD Int. Conf. on Management of Data, Minneapolis, MN,
1994, pp. 197-208.

Connolly M. L. 1986 Measurement of protein surface shape by
solid angles,Journal of Molecular Graphics 4(1):3-6.

Ester M.; Kriegel H.-P.; Seidl T.; and Xu X. 1995 Shape-based
Retrieval of Complementary 3D Surfaces in Protein Databases, (in
German), Proc. GI Conf. on Database Systems for Office
Automation, Engineering, and Scientific Applications, Springer.

Frawley W.J.; Piatetsky-Shapiro G.; and Matheus J. 1991
Knowledge Discovery in Databases: An Overview. Knowledge
Discovery in Databases, 1-27. AAAI Press, Menlo Park.

Gueting R.H. 1994. An Introduction to Spatial Database Systems.
The VLDB Journal 3(4): 357-399.

Han J.; Cai Y.; and Cercone N. 1993. Data-driven Discovery of
Quantitative Rules in Relational Databases. IEEE Transactions on
Knowledge and Data Engineering, 5(1): 29-40.

Holsheimer M., and Kersten M.L. 1994. Architectural Support for
Data Mining, Proc. AAAI Workshop on Knowledge Discovery in
Databases, 217-228. Seattle, Washington.

Kaufman L., and Rousseeuw P.J. 1990.Finding Groups in Data: an
Introduction to Cluster Analysis. John Wiley & Sons.

Lu W.; Han J.; and Ooi B.C. 1993 Discovery of General Knowledge
in Large Spatial Databases, Proc. Far East Workshop on
Geographic Information Systems, 275-289. Singapore.

Matheus C.J.; Chan P.K.; and Piatetsky-Shapiro G. 1993. Systems
for Knowledge Discovery in Databases,IEEE Transactions on
Knowledge and Data Engineering 5(6): 903-913.

Ng R.T., and Han J. 1994. Efficient and Effective Clustering
Methods for Spatial Data Mining, Proc. 20th Int. Conf. on Very
Large Data Bases, 144-155. Santiago, Chile.

Protein Data Bank, 1994.Quarterly Newsletter No. 70,
Brookhaven National Laboratory, Upton, NY.

