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Abstract

This paper describes a new greedy Bayesian
search algorithm (GBPS) and a new “combined”
algorithm PC+GBPS for learning Bayesian net-
works. Simulation tests of these algorithms with
previously published algorithms are presented.

Introduction

A Bayesian network consists of two distinct parts: a
directed acyclic graph (DAG or belief-network struc-
ture) and a set of parameters for the DAG. The DAG
in a Bayesian network can be used to represent both
causal hypotheses and sets of probability distributions.
Under the causal interpretation, a DAG represents the
causal relations in a given population with a set of ver-
tices V when there is an edge from a to b if and only
if a is a direct cause of b relative to V. (We adopt the
convention that sets of variables are capitalized and
italicized, and individual variables are italicized.) Un-
der the statistical interpretation (in the discrete case
considered in this article) a DAG G can be taken to
represent the set of all distributions that factor accord-
ing to G in the following way:

P(V) = [] P(zI,)

zeV

where I, is the set of parents of z in the DAG.

In this paper we will consider the following search
problem. First, we will assume that we are search-
ing for the correct causal structure represented by a
DAG, rather than merely searching for a DAG that
is a good predictor. Thus when we score how well a
search algorithm performs, we will do so on on the ba-
sis of how close the answer provided by the algorithm
is to the structure that actually generated the data.
We will also assume that the user has no background
knowedge about the correct causal structure other than
that there are no latent variables.

Many researchers have recently investigated how the
DAG part of a Bayesian network can be learned from
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data and optional background knowledge. Two dis-
tinct approaches to learning DAGs have been devel-
oped. The conditional independence approach (see e.g.
Spirtes, Glymour and Scheines 1991 and 1993, Verma
and Pear] 1991) uses tests of conditional independence
to construct sets of DAGs that entail the same condi-
tional independence relations. The Bayesian search ap-
proach (see Buntine 1991,Cooper and Herskovits 1992,
Heckerman et al. 1994a and 1994b, Chickering et al.
1995) uses a Bayesian scoring metric combined with a
search algorithm to look for the DAG with the highest
posterior probability. Each approach has advantages
and disadvantages.

This paper describes a greedy Bayesian pattern
search algorithm (henceforth called GBPS) devised
by Meek that is generally more accurate, but slower,
than either the PC algorithm (which is a conditional
independence search) or the greedy Bayesian DAG
search algorithm (henceforth called GBDS) described
in Chickering et al. However, a combined algorithm
(henceforth called the combined algorithm) that uses
the PC algorithm to generate an initial starting point
for the GBPS is considerably faster than the GBPS,
and approximately as accurate. (The PC algorithm
can also be combined with the GBDS, but preliminary
tests revealed that its performance was not as good as
combining it with the GBPS). We emphasize that al-
though the GBDS can be used in this kind of search,
it was not primarily designed for this problem, and
performs well when given sufficient background knowl-
edge about the causal structure. In the following sec-
tions we briefly describ Bayesian networks, the PC al-
gorithm, and two greedy Bayesian algorithms, and an
algorithm which combines the PC algorithm and one
of the Bayesian searches. We conclude by describing of
some simulation tests of each of these algorithms. In
these simulation tests, except at small samples sizes,
on every dimension of reliability the combined algo-
rithm and the GBPS tend to do better than the other
two. (Singh and Valtorta (1993) also combined the PC
algorithm with a Bayesian search algorithm with some
success. Here we combine the PC algorithm with a
different Bayesian search algorithm (one not requiring



a vertex ordering), and do more extensive simulation
tests.)

Bayesian Networks

Bayesian network models are used extensively both in
Artificial Intelligence (in expert systems) and in Statis-
tics. Factor analysis models, path models with in-
dependent errors, recursive linear structural equation
models with independent errors, and various kinds of
latent variable models are all instances of Bayesian net-
works.

The factorization of a distribution according to a
DAG G over a set of variables V entails a set of con-
ditional independence relations among the variables in
V. Assumptions linking the statistical and causal in-
terpretations of DAG are discussed in Spirtes, Glymour
and Scheines (1993).

Two DAGs that entail exactly the same set of con-
ditional independence relations among the variables
in V are said to be Markov equivalent. A class of
Markov equivalent DAGs can be represented by a pat-
tern (see Verma and Pearl 1990, and Spirtes, Glymour
and Scheines 1991), which is a graphical structure con-
sisting of a mixture of directed and undirected edges.
More precisely, a DAG G is in the set of DAGs repre-
sented by pattern II if and only if (i) G has the same
adjacency relations as II; (ii) if the edge between a and
b is oriented @ — b in II, then it is oriented a — b in
G (iii) if there are edges z — y + z in G, and no edge
between x and z in G, (in which case we say the edges
form an unshielded collider at z) then there are edges
Ty zinll

The input to each algorithm described in this paper
is a sample with no missing values from a population
described by some DAG G. (Although each of the algo-
rithms considered in this paper can take various kinds
of optional background knowledge as input, no tests of
the use of background knowledge were done for this pa-
per.) The output of each of the algorithms is a pattern,
rather than a DAG. The reason for this is that condi-
tional independence relations alone do not distinguish
between DAGs represented by the same pattern, and
the scoring metric employed in the Bayesian search al-
gorithms assigns the same score to each pair of DAGs
represented by the same pattern. Hence the best one
could do in principle using these procedures is to find
a correct pattern. The pattern representing the set of
DAGs containing G is called the true pattern.

The PC Algorithm

The PC algorithm takes as input raw data for a set of
random variables assumed to be discrete or multivari-
ate normal. We assume there are no latent variables.
The output of the algorithm is a pattern. The algo-
rithm is described in detail in Spirtes, Glymour, and
Scheines (1993). The implementation in this test made
some minor modifications to the PC algorithm to im-
prove its performance.

If the population from which the sample input was
drawn perfectly fits a DAG G all of whose variables
have been measured, and the population distribution
P contains no conditional independencies except those
entailed by the factorization of P according to G, then
in the large sample limit the PC algorithm produces
the true pattern.

The degree of a vertex is the number of vertices ad-
jacent to it. In the large sample limit, in the worst case
the number of conditional independence tests required
by the algorithm is bounded above by n*¥t2 where & is
the maximum degree of any vertex in the true DAG.
While we have no formal expected complexity analysis
of the problem, the worst case is clearly rare, and the
average number of conditional independence tests re-
quired for graphs of maximal degree k is much smaller.
In practice it is possible to recover sparse graphs with
as many as a hundred variables. Of course the compu-
tational requirements increase exponentially with k.

Bayesian Search Algorithms

The following brief account summarizes the assump-
tions and scoring metric introduced for discrete DAGs
by Heckerman et al. (1994a), uses their notation, and
directly quotes their Assumptions 4 through 6 and
Theorem 1. The BDe metric they introduce is a variant
and generalization of a metric introduced in Cooper
and Herskovits (1992). The BDe metric assigns equal
scores to any pair of DAGs that are Markov equiva-
lent, as long as they have the same prior probability.
Let U be a set of variables. A case is a single instance
of all the variables in U. The first three assumptions
basically state that the database was generated from
a single Bayesian network with discrete variables, and
there are no missing values.

A database is a sequence of cases C},...,Cp,. or is

the multinomial parameter for the event U = k. For
two disjoint sets of variables X, Y C U, 0X=l?xIY=I'='y is

the conditional probability of X = kx given Y = ky.
The state assignments are omitted when the meaning
is clear from the context, and the conditional bar is
omitted when Y is empty. The event B% correspond-
ing to a Bayesian network Bgs holds if and only if for
0z:z1,...,z;_, it is the case that

VQ C Hi : gzilz],...,:t,'_l # B:I:i]Q
where II; is the set of parents of z;.

Let r; be the number of possible different instantia-
tions of z;, and ¢; be the number of possible different
instantiations of II;. Order the possible instantiations
of z; into a list of values from 1 to r;, and similarly list
the possible instantiations of IT; into a list of values
from 1 to ¢;. Let Niji the number of occurrences in
the database of the k* instantiation of z; and the jt*
instantiation of IT;. Let

Ti n g
6,-,- = U{o,'jk} and 933 = U U{Bijk}
k=1 i=1j=1
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Let p represent a density and & represent background
knowledge that is conditioned on.
Assumption 4 (Parameter Independence): For
all belief-network structures Bg,

p(©541B%,€) = [ [] »(©:51B5. )
i J

Assumption 5 (Parameter Modularity): If z; has
the same parents in any two belief-network structures
Bg, and Bgs, then for j = 1,...,4;,

p(©ij|B51,€) = p(045]Bs2, )

A complete DAG is one with no missing edges.
Assumption 6: For every complete belief-network
structures Bs. and for all ©;; C Op;,, p(0ij|BS,, §)
has a Dirichlet distribution. Namely there exists expo-
nents N;;; such that

1
Nl'jll

P(@ij;Bg'C,f) =c- Hetjk
k

where c is a normalization constant.

Heckerman et al. (1994a) show that if DAGs that
entail the same set of conditional independence and
dependence relations are equally likely given any
database, then Nj;, +1= K -p(zi = k,II; = ilBg,,€)
where K is a constant. The constant K is often called
an equivalent sample size, and controls how fast the
data changes the posterior probability of a Bayesian

network.
Theorem 1 Given Assumptions 1 through 6,

p(D, Bs l€) =

A K -p(ll = §|Bg..,
sl T 1] v rm e

Ni; + K - p(IL; = j|Bg_,€))

ﬁ F(Nijk + K -p(ﬁ:g = kl I, = ]IBE'C){))
L™ & e =% T = 1B%,, 9))

This scoring metric can be combined with a variety
of search algorithms. The basic problem is that even
for a small number of variables the number of differ-
ent possible Bayesian networks is too large to make an
exhaustive search feasible. A number of heuristic algo-
rithms are described in Cooper and Herskovits (1992)
and Heckerman et al. (1994a). The simplest algorithm
(which we will call the greedy Bayesian DAG search or
GBDS) which is studied below starts with some initial
DAG, and does a greedy search which at each stage
makes the single modification graph (an edge addi-
tion, edge removal, or edge reversal) to the current
graph which most improves the scoring metric. Chick-
ering et al. (1995) shows that this strategy is success-
ful when the initial Bayesian network is close to the
true Bayesian network. They suggest that it will not
perform well when starting from a Bayesian network
with no edges, and that is confirmed by this simula-
tion study.
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Greedy Pattern Search algorithm

Most of the heuristic searches described in the litera-
ture use the space of DAG’s as the search space. The
idea for the GBPS is to transform the search space from
a space of DAG’s to a space of patterns. Given the as-
sumption that our metric has the property of Marko
score equivalence this simplification of the search space
is reasonable.

procedure GBPS(pat; data);
begin
graph:=pat-to-graph(pat) ;
current-score:=score{graph,data) ;
max-score:=current-score;
while max-score <= current-score do
begin
new-pat :=add-best-edge-to-pat (pat) ;
graph:=pat-to-graph(new-pat);
current-score:=score(graph,data);
if current-score > max-score then
begin
max-score:=current-score;
pat:=new-pat;
end;
end;
current-score:=max-score;
while max-score <= current-score do
begin
new-pat:=remove-worst-edge-in-pat(pat);
graph:=pat-to-graph(new-pat);
current-score;:=score(graph,data) ;
if current-score > max-score then
begin
max-score:=current-score;
pati:=nevw-pat;
end;
end;
return(pat);
end;

The algorithm is best described as a greedy pattern
search. Given an initial pattern (an empty pattern
when running alone or a pattern obtained from another
algorithm such as the PC algorithm) the algorithm
simply adds edges to the pattern until no furthur ad-
dition improve the score and then attempts to remove
edges until no furthur removals improve the score. The
details of the addition and removal process are de-
scribed in more detail below.

Although patterns are the elements of the search
space, the scoring functions are defined for DAGs.
Thus the algorithm needs the function pattern-to-
graph which takes a pattern and returns a DAG from
the class of graphs represented by the given pattern.
Orientation rules for finding a DAG from a pattern can
be found in Meek (1995). The resulting DAG and the
data are used to obtain the score for the pattern.

The function add-best-edge-to-pattern takes a pat-
tern and returns the pattern with the best score ob-



tainable from the given graph by a single edge addi-
tion. When the algorithm considers the addition of
an undirected edge between two variables a and b it
also consider adding (if possible) unshielded colliders
at a or unshielded colliders at b. The algorithm also
checks to insure that the resulting set of edges is actu-
ally a pattern. For instance, if the current pattern is
a—c—d— bthen the patterns b +a + ¢c—d - b and
a—~c—d — b+ a will be checked when considering
the addition of an edge between ¢ and b but the set of
edges in the mixed graph a — ¢ — d — b — a is not the
pattern for any directed acyclic graph.

The function remove-worst-edge-in-pattern takes a
pattern and returns the pattern with the best score
obtainable by the removal of one edge from the given
pattern. As in case of edge removals there is a com-
binatorial aspect to the removal edges. If the current
pattern is a — b — ¢ — a and we are considering the
removal of the edge between a and b then the two pat-
terns which the algorithm will check are b = ¢ « a
andb—-c—a.

PC + GBPS

The PC algorithm can be used to provide an initial
pattern for the GBPS algorithm. The PC algorithm
can get close to the correct pattern in a relatively short
period of time. This shortens the amount of time that
the GBPS algorithm spends on its search.

Simulation Tests

The average degree of the vertices in the graphs consid-
ered are 2, 3, or 4; the number of variables is 10; and
the sample sizes are 100, 250, 500, 1000, 2500. For
each combination of these parameters, 10 DAGs were
generated, and a single parameterization of each DAG
obtained, and a single sample taken from each param-
eterized DAG. All pseudo-random numbers were gen-
erated by the UNIX “random” utility. Each sample is
generated in three stages:

1. The DAG is pseudo-randomly generated.

2. The conditional probabilities (DAG parameters) are
pseudo-randomly generated.

3. A sample for the model is pseudo-randomly gener-
ated.

It should be emphasized that each of these algo-
rithms has parameters that can be set by the user,
and the algorithms were not tested to find optimal
parameter settings, although some preliminary tests
were done to determine generally what parameter set-
tings were reasonable. PC always used a significance
level of 0.0001. (This unusual significance level was
selected because it tends to produce sparse DAGs,
which are good starting points for the GBPS. Hence
this significance level improved the performance of the
combined algorithm, but degraded the performance

of the PC algorithm. In general, adjusting param-
eters for the sample size would improve the perfor-
mance of all of the search algorithms.) The GBPS
and GBDS always used a pseudo-sample size of 10 and
assigned each Bayesian network an equal prior prob-
ability. The greedy Bayesian search algorithm that
was tested here was chosen for ease of implementa-
tion, and other search algorithms might do somewhat
better. See Chickering et al. (1995) and Heckerman
et al. (1994a) for simulation tests of several different
Bayesian search algorithms.

The results were scored as follows. For each algo-
rithm and each sample we take the patterns output
by the algorithm and call the pattern with the highest
score the algorithm’s ouiput pattern for that sample.
An edge existence error of commission occurs when
any pair of variables are adjacent in the output pat-
tern but not in the true pattern. If an edge e between
a and b occurs in both the true and output patterns,
there is an edge direction error of commission when e
has an arrowhead at a in the output pattern but not
in the true pattern, (and similarly for b.) Errors of
omission are defined analogously in each case. The re-
sults of the simulation are shown in graphs and tables
at the end of the article. The percentage of edge ezis-
tence errors of commission is the average over the trial
distributions of the ratio of the number of actual edge
errors of commission to the number of possible edge
errors of commission (i.e. the number of edges in the
true pattern) multiplied by 100. The other errors are
calculated in an analogous way. For each error type
and each algorithm, the percentage of errors is plotted
against sample size and average degree.

The numerical results of the simulations are tabu-
lated below; a sense of the major differences in relia-
bilites of the algorithms can be gleaned from the dia-
grams of error surfaces. In general, the GBPS and com-
bined search algorithms perform about as well or better
than the other two procedures, with two exceptions: at
small sample sizes the PC algorithm erroneously adds
fewer edges than the other algorithms; and, at small
sample sizes the GBDS search erroneously adds fewer
arrowheads than other algorithms. At larger sample
sizes this advantage of PC over GBPS and the com-
bined search almost vanishes, and at larger sample
sizes the GBDS search usually becomes worse at arrow-
head addition errors than GBPS or combined search.
GBDS performs particlarly badly with edge addition
errors, which actually increase as sample sizes increase
above 500. PC shows similarly bad behavior with in-
creasing sample size for arrowhead addition. Particu-
larly at smaller sample sizes the poor performance of
the PC algorithm on edge omission is in part because
of the non-optimized small significance level that was
used.

Unless confronted with a problem in which only edge
addition errors matter, GBPS and the combined search
procedure PC + GBPS seem clearly preferable to the
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others in reliability, and their reliability, at least in this
simulation, is remarkably good.

Future work should investigate the reliabilities of
the procedures under more optimal parameter adjust-
ments, and the reliabilities of the more promising pro-
cedures with normally distributed variables, and with
varying degrees of prior knowledge about the target
structure. Future work should also consider the predic-
tive accuracy of models selected by these procedures.

We also compared the speed of the combined algo-
rithm and the GBPS algorithm for DAGs with different
numbers of variables (10, 15, 20). In each case the com-
bined algorithm was roughly twice as fast as the GBPS
algorithm. This is also confirmed by running both of
the algorithms on the Alarm data, a DAG with 36 vari-
ables. On a sample size of 10000 both the GBPS and
the combined algorithm reconstructed the correct pat-
tern for the Alarm network with only one error (the
omission of an edge.) This took about 5 hours on a
Sparcstation 20 for the GBPS algorithm, and about
2.5 hours for the comgined algorithm. Singh and Val-
torta (1993) report similar edge error rates for their
combined algorithm for the Alarm network.
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Appendix: Keys to table and figure

The following codes are used in Table 1. D is the
average degree of the vertices; A is the algorithm
(where 1 represents the PC algorithm, 2 represents
the combined PC + Bayesian search, and 3 represents
GBPS and 4 represents GBDS); Size is the sample size;
%emiss is the percentage of edge existence errors of
omission; %eadd is the percentage of edge existence
errors of comission; %amiss is the percentage of edge
direction errors of omission; %aadd is the percentage
of edge direction errors of comission.
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