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Abstract

In the wrapper approach to feature subset selection, a
search for an optimal set of features is made using the
induction algorithm as a black box. The estimated
future performance of the algorithm is the heuristic
guiding the search. Statistical methods for feature
subset selection including forward selection, backward
elimination, and their stepwise variants can be viewed
as simple hill-climbing techniques in the space of fea-
ture subsets. We utilize best-first search to find a good
feature subset and discuss overfitting problems that
may be associated with searching too many feature
subsets. We introduce compound operators that dy-
namically change the topology of the search space to
better utilize the information available from the eval-
uation of feature subsets. We show that compound
operators unify previous approaches that deal with
relevant and irrelevant features. The improved fea-
ture subset selection yields significant improvements
for real-world datasets when using the ID3 and the
Naive-Bayes induction algorithms.

1 Introduction

Practical algorithms in supervised machine learning
degrade in performance (prediction accuracy) when
faced with many features that are not necessary for
predicting the desired output. An important question
in the fields of machine learning, knowledge discovery,
statistics, and pattern recognition is how to select a
good subset of features. The problem is especially se-
vere when large databases, with many features, are
searched for patterns without filtering of important
features by human experts or when no such experts
exist.

Common machine learning algorithms, including
top-down induction of decision trees, such as CART,
ID3, and C4.5 (Breiman, Friedman, Olshen g~ Stone
1984, Quinlan 1993), and nearest-neighbor algorithms,
such as IB1, are known to suffer from irrelevant fea-
tures. Naive-Bayes classifiers, which assume indepen-
dence of features given the instance label, suffer from
correlated and redundant features. A good choice of

features may not only help improve performance ac-
curacy, but also aid in finding smaller models for the
data, resulting in better understanding and interpre-
tation of the data.

In the filter approach to feature subset selection, a
feature subset is selected as a preprocessing step where
features are selected based on properties of the data it-
self and independent of the induction algorithm. In the
wrapper approach, the feature subset selection is found
using the induction algorithm as a black box. The fea-
ture subset selection algorithm conducts a search for
a good feature subset using the induction algorithm
itself as part of the evaluation function.

John, Kohavi & Pfleger (1994) used the wrapper
method coupled with a hill-climbing search. Kohavi
(1994) showed that best-first search improves the ac-
curacy. One problem with expanding the search (i.e.,
using best-first search and not hill-climbing) is that of
overfitting: the accuracy estimation (cross-validation
in both papers) guides the search toward feature sub-
sets that will be good for the specific cross-validation
folds; however, overusing the estimate can lead to over-
fitting, a problem we discuss in Section 4.

In the common organization of the state space
search, each node represents a feature subset, and each
operator represents the addition or deletion of a fea-
ture. The main problem with this organization is that
the search must expand (i.e., generate successors of)
every node from the empty subset or from the full sub-
set on the path to the best feature subset, which is very
expensive. In Section 5 we introduce a way to change
the search space topology by creating dynamic opera-
tors that directly connect to nodes considered promis-
ing given the evaluation of the children. These opera-
tors better utilize the information available in all the
evaluated children. Our experimental results, shown
in Sections 5 and 6, indicate that compound operators
help identify better feature subsets faster and that fea-
ture subset selection can significantly improve the per-
formance of induction algorithms.
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2 Relevant and Optimal Features

The input to a supervised learning algorithm is a train-
ing set D of m labelled instances independently and
identically distributed (i.i.d.) from an unknown distri-
bution ~D over the labelled instance space. An unla-
belled instance X is an element of the set F1 x F2 x
¯ -- x Fn, where Fi is the domain of the ith feature. La-
belled instances are tuples (X, Y) where Y is the label,
or output.

Let Z be an induction algorithm using a hypothesis
space 7/; thus Z maps D to h E 7/ and h E 7/ maps
an unlabelled instance to a label. The prediction ac-
curacy of a hypothesis h is the probability of correctly
classifying the label of a randomly selected instance
from the instance space according to the probability
distribution ~D. The task of the induction algorithm
is to choose a hypothesis with the highest prediction
accuracy.

We now define relevance of features in terms of a
Bayes classifier--the optimal classifier for a given prob-
lem. A feature X is strongly relevant if removal of X
alone will result in performance deterioration of an op-
timal Bayes classifier. A feature X is weakly relevant if
it is not strongly relevant and there exists a subset of
features, S, such that the performance of a Bayes clas-
sifter on S is worse than the performance on SO{f}.
A feature is irrelevant if it is not strongly or weakly
relevant. The set of strongly relevant features is called
the core. Formalized versions of the above definitions
can be found in John et al. (1994).

There are three main problems with these definitions
that make them hard to use in practice. First, many
hypothesis spaces are parametric (e.g., perceptrons,
monomials) and the best hypothesis approximating the
target concept from the family may not even use all the
strongly relevant features. Second, practical learning
algorithms are not always consistent: even with an in-
finite amount of data they might not converge to the
best hypothesis. Third, even consistent learning pro-
cedures may be improved for finite samples by ignoring
relevant features. These reasons motivated us to de-
fine the optimal features, which depend not only on
the data, but also on the specific induction algorithm.

An optimal feature subset, 8", for a given induction
algorithm and a given training set is a subset of the
features, ~q°, such that the induction algorithm gener-
ates a hypothesis with the highest prediction accuracy.
The feature subset need not be unique.

The relation between relevant and optimal features
is not obvious. In Section 5, we show how compound
operators improve the search for optimal features us-
ing the ideas motivated by the above definitions of rel-
evance.

3 Feature Subset Selection as

Heuristic Search
The statistical and pattern recognition literature on
feature subset selection dates back a few decades, but
the research deals mostly with linear regression. We
refer the reader to the related work section in John et
al. (1994) for key references. Langley (1994) provides
a survey of recent feature subset selection algorithms,
mostly in machine learning.

Most criteria for feature subset selection from the
statistics and pattern recognition communities are al-
gorithm independent and do not take into account the
differences between the different induction algorithms.
For example, as was shown in John et al. (1994), fea-
tures with high predictive power may impair the overall
accuracy of the induced decision trees.

The task of finding a feature subset that satisfies a
given criteria can be described as a state space search.
Each state represents a feature subset with the given
criteria used to evaluate it. Operators determine the
partial ordering between the states.

In this paper, we use the wrapper method wherein
the criteria to optimize is the estimated prediction ac-
curacy. Methods that wrap around the induction algo-
rithm, such as holdout, bootstrap, and cross-validation
(Weiss & Kulikowski 1991) are used to estimate the
prediction accuracy. To conduct a search, one needs
to define the following:

Search Space Operators The operators in the
search space are usually either "add feature" or
"delete feature" or both. In the statistics literature,
the term forward selection refers to a space contain-
ing only the "add feature" operator; the term back-
ward elimination refers to a space containing only
the "delete feature" operator. The stepwise meth-
ods use both operators. In our experiments, we used
both operators.

Accuracy Estimation The heuristic function in the
wrapper approach is the estimated prediction accu-
racy. In our experiments, we used ten-fold cross-
validation as the accuracy estimation function.

Search Algorithm Any heuristic search algorithm
can be used to conduct the search. In our experi-
ments, we used best-first search, which at every it-
eration generates the successors of the the best un-
expanded node (the node with the highest estimated
accuracy). The termination condition was five con-
secutive non-improving nodes. The initial node de-
termines the general direction of the search. One
typically starts forward selection from the empty set
of features and backward elimination from the full
set of features.
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Figure 1: Overfitting in feature subset selection using ID3. The left graph shows accuracies for a random data.set. The solid
line represents the estimated accuracy for a training set of 100 instances, the thick grey line for a training set of 500 instances,
and the dotted line shows the real accuracy. The middle and right graphs show the accuracy for real-world datasets. The
solid line is the estimated accuracy and the dotted line is the accuracy on an independent test set.

4 Overfitting

An induction algorithm overfits the dataset if it mod-
els the given data too well and its predictions are poor.
An example of an over-specialized hypothesis, or clas-
sifter, is a lookup table on all the features. Overfitting
is closely related to the bias-variance tradeoff (Geman
& Bienenstock 1992, Breiman et al. 1984): if the algo-
rithm fits the data too well, the variance term is large,
and hence the overall error is increased.

Most accuracy estimation methods, including cross-
validation, evaluate the predictive power of a given hy-
pothesis over a feature subset by setting aside instances
(holdout sets) that are not shown to the induction al-
gorithm and using them to assess the predictive ability
of the induced hypothesis. A search algorithm that ex-
plores a large portion of the space and that is guided by
the accuracy estimates can choose a bad feature sub-
set: a subset with a high accuracy estimate but poor
predictive power.

If the search for the feature subset is viewed as part
of the induction algorithm, then overuse of the accu-
racy estimates may cause overfitting in the feature-
subset space. Because there are so many feature sub-
sets, it is likely that one of them leads to a hypothesis
that has high predictive accuracy for the holdout sets.
A good example of overfitting can be shown using a
no-information dataset (Rand) where the features and
the label are completely random. Figure 1 (left) shows
the estimated accuracy versus the true accuracy for
the best node the search has found after expanding k
nodes. One can see that especially for the small sample
of size 100, the estimate is extremely poor (26% opti-
mistic), indicative of overfitting. The middle and right
graphs in the figure show overfitting in small real-world
datasets.

Recently, a few machine learning researchers have
reported the cross-validation estimates that were used
to guide the search as a final estimate of performance,
thus achieving overly optimistic results. Experiments

using cross-validation to guide the search must report
the accuracy of the selected feature subset on a sepa-
rate test set or on holdout sets generated by an external
loop of cross-validation that were never used during the
feature subset selection process.

The problem of overfitting in feature subset space
has been previously raised in the machine learning
community by Wolpert (1992) and Schaffer (1993), 
the subject has received much attention in the statis-
tics community (cf. Miller (1990)).

Although the theoretical problem exists, our exper-
iments indicate that overfitting is mainly a problem
when the number of instances is small. For our ex-
periments, we chose reasonably large datasets and our
accuracies are estimated on unseen instances. In our
reported experiments, there were 70 searches for fea-
ture subsets. Ten searches were optimistically biased
by more than two standard deviations and one was
pessimistically biased by more than two standard de-
viations.

5 Compound Operators

In this section we introduce compound operators, a
method that utilizes the accuracy estimation computed
for the children of a node to change the topology of the
search space.

The motivation for compound operators comes from
Figure 2 that partitions the feature subsets into core
features (strongly relevant), weakly relevant features,
and irrelevant features. An optimal feature subset for
a hypothesis space must be from the relevant feature
subset (strongly and weakly relevant features). A back-
ward elimination search starting from the full set of
features (as depicted in Figure 2) that removes one
feature at a time, will have to expand all the children
of each node before removing a single feature. If there
are i irrelevant features and f features, (i ¯ f) nodes
must be evaluated. In domains where feature subset
selection might be most useful, there are many features
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Figure 2: The state space. If a feature subset contMn.q
an irrelevant feature, it is in the irrelevant area; if it con-
rains only strongly relevant features it is in-the core region;
otherwise, it is in the relevant region. The dotted arrows
indicate compound operators.

but such a search may be prohibitively expensive.
Compound operators are operators that are dynami-

cally created after the standard set of children, created
by the add and delete operators, have been evaluated.
Intuitively, there is more information in the evaluation
of the children than just the node with the maximum
evaluation. Compound operators combine operators
that led to the best children into a single dynamic op-
erator. If we rank the operators by the estimated ac-
curacy of the children, then we can define compound
operator ci to be the combination of the best i + 1 op-
erators. For example, the first compound operator will
combine the best two operators.

The compound operators are applied to the parent,
thus creating children nodes that are farther away in
the state space. Each compound node is evaluated
and the generation of compound operators continues
as long as the estimated accuracy of the compound
nodes improves.

Compound operators generalize a few suggestions
previously made. Kohavi (1994) suggested that the

search might start from the set of strongly relevant
features (the core). If one starts from the full set 
features, removal of any single strongly relevant fea-
ture will cause a degradation in performance, while re-
moval of any irrelevant or weakly relevant feature will
not. Since the last compound operator connects the
full feature subset to the core, the compound opera-
tors from the full feature subset plot a path leading to
the core. The path is explored by removing one feature
at a time until estimated accuracy deteriorates. Caru-
ana ~ Freitag (1994) implemented a SLASH version
of feature subset selection that eliminates the features
not used in the derived decision tree. If there are no
features that improve the performance when deleted,
then (ignoring orderings due to ties) one of the com-
pound operators will lead to the same node that slash
would take the search to. While the SLASH approach
is only applicable for backward elimination, compound
operators are also applicable to forward selection.

In order to compare the performance of the feature
subset selection algorithm with and without compound
nodes, we ran experiments comparing them on differ-
ent datasets. Figure 3 compares a search with and
without compound operators. Compound operators
improve the search by finding nodes with higher ac-
curacy faster; however, whenever it is easy to overfit,
they cause overfitting earlier.

6 Experimental Results
In order to compare the feature subset selection,
we used ID3 and Naive-Bayes, both implemented
in A//£C++ (Kohavi, John, Long, Manley & Pfleger
1994). The ID3 version does no pruning by itself;
pruning is thus achieved by the feature subset selec-
tion mechanism. The Naive-Bayes algorithm assumes
the features are independent given the instance label.
The use of feature subset selection in Naive-Bayes was
first suggested in Langley ~ Sage (1994). The data
for Naive-Bayes was discretized using the discretiza-
tion algorithm presented in Fayyad & Irani (1993) and
implemented in A~LC++.
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Dataset Feat- Train Test Majority Dataset Feat- Train Test Majority
ures sizes Accuracy ures sizes Accuracy

anneal 24 898 CV-5 76.174-1.4
breast (L) 9 286 CV-5 70.284-2.7
chess 36 2130 1066 52.22-t-0.9
crx 15 690 CV-5 55.514-1.9
heart 13 270 CV-5 55.564-3.0
hypothyroid 25 2108 1055 95.234-0.4
pima 8 768 CV-5 65.10=t=1.7
soybean-lrg 35 683 CV-5 13.474-1.3
vote 16 435 CV-5 61.384-2.3

australian 14 690 CV-5 55.514-1.9
breast (W) 10 699 CV-5 65.524-1.8
cleve 13 303 CV-5 54.464-2.9
DNA 180 3186 2000 51.914-0.9
horse-colic 22 368 CV-5 63.044-2.5
mushroom 22 5416 2708 51.804-0.6
sick-euthyroid 25 2108 1055 90.744-0.5
vehicle 18 846 CV-5 25.774-1.5
votel 15 435 CV-5 61.384-2.3

Table h Datasets and baseline accuracy (majority). CV-5 indicates accuracy estimation by 5-fold cross-validation. The
number after the 4- denotes one standard deviation of the accuracy.

Dataset ID3 ID3-FSS p-val C4.5 Naive-Bayes NB-FSS p-val
anneal 99.554-0.2 99.334-0.2 0.23 91.654-1.6 97.664-0.4 96.664-1.0 0.18
australian 80.434-1.0 85.944-1.7 1.00 85.364-0.7 86.094-1.1 85.904-1.6 0.47
breast (L) 68.204-2.9 73.434-2.3 0.92 71.004-2.3 70.994-2.3 70.634-2.1 0.45
breast (W) 94.42-4-0.8 94.284-0.8 0.45 94.714-0.4 97.144-0.5 96.574-0.4 0.19
chess 98.694-0.3 98.874-0.3 0.65 99.504-0.3 87.154-1.0 94.284-0.7 1.00
cleve 71.994-3.2 77.874-2.0 0.94 73.624-2.3 82.874-3.1 83.204-2.6 0.53
crx 79.864-1.7 84.354-1.6 0.97 85.804-1.0 86.964-1.2 85.074-0.8 0.08
DNA 90.394-0.9 92.504-0.8 0.97 92.704-0.8 93.344-0.7 93.424-0.7 0.53
heart 72.22-t-3.0 81.484-2.8 0.99 77.044-2.8 81.484-3.3 84.074-2.0 0.75
horse-colic 75.324-3.8 84.794-2.0 0.99 84.784-1.3 80.96=1=2.5 83.704-1.2 0.84
hypothyroid 98.584-0.4 98.774-0.3 0.65 99.204-0.3 98.584-0.4 99.244-0.3 0.93
mushroom 100.004-0.0 100.004-0.0 0.50 100.004-0.0 96.604-0.3 99.704-0.1 1.00
pima 71.754-2.1 68.364-3.0 0.18 72.654-1.8 75.514-1.6 73.564-2.2 0.24
sick-euth 96.494-0.6 95.83-t-0.6 0.22 97.70+0.5 95.644-0.6 97.354-0.5 0.98
soybean-lrg 91.944-1.0 93.27=t=1.3 0.80 88.284-2.0 91.36-1-2.0 93.41-1-0.8 0.83
vehicle 73.764-2.0 69.864-0.9 0.04 69.864-1.8 59.224-1.6 61.234-1.3 0.84
vote 94.024-0.4 95.634-0.8 0.97 95.634-0.4 90.34=t=0.9 94.714-0.6 1.00
votel 84.60+1.2 86.444-1.2 0.87 86.674-1.1 87.364-2.1 90.804-2.0 0.88
Average 85.68 87.83 87.01 86.63 87.97

Table 2: The accuracies for ID3, ID3 with feature subset selection (FSS), C4.5, Naive-Bayes, and Naive-Bayes with FSS.
The numbers after the 4- indicate the standard deviation of the reported accuracy. The first p-val column indicates the
probability that FSS improves ID3 and the second column indicates the probability that FSS improves Naive-Bayes. The
p-values were computed using a one-tailed t-test.

Because small datasets are easier to overfit using
our approach, we chose real-world datasets from the

U.C. Irvine repository (Murphy & Aha 1994) that had
at least 250 instances. For datasets with over 1000
instances, a separate test set with one-third of the in-
stances was used; for datasets with fewer than 1000
instances, 5-fold cross-validation was used. Table 1
describes general information about the datasets used.

The initial node for our search was the empty set
of features mainly because the search progresses faster
and because in real-world domains one would expect
many features to be irrelevant or weakly relevant. The
best-first search is able to overcome small local maxima
caused by interacting features, whereas hill-climbing
cannot.

Table 2 shows that feature subset selection signif-

icantly (over 90% confidence) improves ID3 on eight
out of the eighteen domains and significantly degrades
the performance only on one domain. Performance of
Naive-Bayes significantly improves on five domains and
significantly degrades on one domain. The average er-
ror rate for the datasets tested decreased (relatively)
by 15% for ID3 and by 10% for Naive-Bayes. Both
ID3 and Naive-Bayes were inferior to C4.5, but both
outperformed C4.5 after feature subset selection.

A similar experiment (not shown) with C4.5 showed
that C4.5 with feature subset selection slightly im-
proved C4.5: the average accuracy went up from

87.01% to 87.60%, a 4.5% reduction in error.

The execution time on a Sparc20 for feature subset
selection using ID3 ranged from under five minutes for

breast-cancer (Wisconsin), cleve, heart, and vote 
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about an hour for most data.sets. DNA took 29 hours,
followed by chess at four hours. The DNA run took so
long because of ever increasing estimates that did not
really improve the test-set accuracy.

7 Conclusions
We reviewed the wrapper method and discussed the
problem of overfitting when the search through the
state space is enlarged through the use of best-first
search. While overfitting can occur, the problem is
less severe for large datasets, so we have restricted our
experiments to such datasets. One possible way to deal
with overfitting is to reevaluate the best nodes using
different cross-validation folds (i.e., shuffle the data).
Initial experiments indicate that re-evaluation of the
best nodes indeed leads to lower estimates for those
nodes, partially overcoming the overfitting problem.

We introduced compound operators that change the
search topology based on information available from
the evaluation of children nodes. The approach gen-
eralizes previous suggestions and was shown to speed
up discovery of good feature subsets. Our results indi-
cated significant improvement both for ID3 and Naive-
Bayes and some improvement for C4.5. The average
error rate for the datasets tested decreased (relatively)
by 15% for ID3, by 10% for Naive-Bayes, and by 4.5%
for C4.5.

An issue that has not been addressed in the liter-
ature is whether we can determine a better starting
point for the search. For example, one might start
with the feature subset used by a learning algorithm
when the subset is easy to identify, such as when using
decision trees.
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