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Abstract

This paper introduces a new algorithm called SIAO1
for learning first order logic rules with genetic algo-
rithms. SIAO1 uses the covering principle developed
in AQ where seed examples are generalized into rules
using however a genetic search, as initially introduced
in the SIA algorithm for attribute-based representa-
tion. The genetic algorithm uses a high level rep-
resentation for learning rules in first order logic and
may deal with numerical data as well as background
knowledge such as hierarchies over the predicates or
tree structured values. The genetic operators may for
instance change a predicate into a more general one
according to background knowledge, or change a con-
stant into a variable. The evaluation function may
take into account user preference biases.

Introduction

The so-called supervised learning framework is the
main way to apply Machine Learning (ML) techniques
to rule discovery. In such a framework, a set of exam-
ples is collected, where each example is of the form "de-
scription --~ class". Each observation (or case) is thus
labelled by a class. The supervised learning algorithm
must find informative regularities in the observations
to explain their classes, and suggest these regularities
to the user.

In supervised learning, the most common representa-
tion for describing the examples is the attribute/value
representation which uses propositional logic. Each ex-
ample is described with a finite set of attributes (or
variables) that may take either numeric or symbolic
values. This representation has the advantage of being
shared by numerous knowledge discovery techniques
like for instance statistics, neural networks, data anal-
ysis, decision trees or genetic algorithms. The same
database (DB) can thus be analyzed by several tools.
However, this representation has the drawback of be-
ing unable to represent relations between entities in
the DB. Relational DBs often express relations mnong
fields that are equivalent to subsets of FOL. Thus, us-
ing first order logic (FOL) to describe the examples 
a way to be able to handle this aspect of the DB. Most

of the ML algorithms that deal with first order repre-
sentation use deterministic and heuristic techniques for
discovering knowledge, like for instance FOIL (Quin-
lan & Cameron-Jones 1993). They may get trapped in
local optima.

Genetic algorithms (GAs) are adaptive procedures
that evolve a population of chromosomes structures in
order to find the fittest individual. This evolution is
performed by a selection operator and two genetic op-
erators namely mutation and crossover. Since opti-
mization techniques based on GAs are less sensitive to
local optima, using such algorithms for learning FOL
rules seems to be a good idea. However, one major ob-
stacle is to find how to represent such rules as a chro-
mosome and to define genetic operators for modifying
their genes. The crossover operator requires preferably
a fixed size representation, and this requirement does
not fit directly the FOL representation where examples
may be described with a variable number of predicates.

This paper introduces a new algorithm SiT_..AO1 that
is a generalization of SIA, a supervised learning system
that uses attribute/value representation only and not
FOL (Venturini 1994). REGAL (Giordana & Saitta,
1993) (Giordana, Saitta & Zini, 1994) is the only
known solution for learning rules in FOL with GAs.
To deal with this representation obstacle, REGAL as-
sumes that the user can provide a general model, called
a template, of the formula to be learned, which we do
not. In this paper, we shall have no place to compare
with REGAL. Let us notice, however, that REGAL
can also induce more complex formulas than S:T.AO1 .
Section 3 will compare the two approaches with more
details.

Problem to be solved
The general problem considered in this paper is to

discover rules in FOL from a set of examples and back-
ground knowledge. The examples are described with a
conjunction of predicates witlmut quantifiers or func-
tion symbols and may belong to two classes, positive
or negative, as shown in figure l(a). The predicates
may represent symbolic information like the predi-
cate Color(X,value) as well as numeric information like
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Description part Class
Cube(a) A Block(b) A Cone(c) A Color(a,yellow) A Color(b,pink) 

Color(c,red) A Length(a,ll) A Length(b,ll) A Length(c,18) 
Supports(a,c) A Supports(b,c) --~

Object(d) A Cube(e) A Cone(f) A Color(d,purple) 
Color(e,blue) A Color(f, orange) A Length(d,6) A Length(eft) 

Length(f,8) A Supports(e,d) ~ O

(a) A positive and a negative example.

Object(X)

Volume(X)

Flat-top(X) Sphere(X) Pointed-top(X)

Cube(X) Block(X) Cone(X) Pyramid(X)

(b) A possible hierarchy of predicates.

bright dark

black bluered-like yellow-like

pink red purple yellow orange

(c) A possible hierarchy of the values of a predicate
("value" in Color(X,value) for instance).

Figure 1: A simple example of a database and of background knowledge SZ.AO1 deals with.
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the predicateLength(X,vahie). Background knowledge
can be represented in at least two ways: some predi-
cates may be organized into a generalization hierarchy
(figure l(b)) and the values of a symbolic predicate
may be also organized in the same way (see figure l(c)).

From this set of examples and from background
knowledge, the learning system should discover reg-
ularities that could explain why an example belongs to
class (9 for instance. This can be achieved by learning
rules nke :

Flat-top(X) AFlat-top(Y)APointed-top(Z)A
Color (X,bright) AColor (Y,bright)AColor(Z,bright) 

Length(X,L)ALength(Y,L)ALength(Z,[1,20])^
Supports(X,Z)ASupports(Y,Z) --~ 

which represent the concept of an arch. Obviously
the representational power of FOL is needed for dis-
covering such a regularity because a relation between
entities is involved.

Representing first order logic rules in a
genetic algorithm

A genetic algorithm usually works with individuals en-
coded as binary strings with fixed length. One bit
represents the possible value of a gene, and a string
represents a chromosome which is the genetic encod-
ing of an individual. Genetic operators that modify
chromosomes using this representation are the muta-
tion and the crossover. Mutation modifies some bits,
and crossover exchanges substl~ngs between two par-
ents. The aim of this last operator is to combine useful
information in order to produce better offsprings.

GAs are interesting for solving ML problems be-
cause, as mentioned in the introduction, they make less
assumptions about the objective function than heuris-
tic methods, and can be also parallelized. However, the
crossover operator is constraining the kind of possible
representations for learning rules because rules must
be represented as a string of genes. A rule in propo-
sitional logic is already a string of elements because it
always uses the same number of attributes. This is the
reason why most of GAs applications in rule learning
use an attribute-based representation (Holland 1986)
(De Jong 1988) (De Jong & Spears 1991). For 
representation, the problem is to find a good represen-
tation, i.e, a representation that would let the crossover
play its role, and that could represent interesting rules
for the user.

REGAL is a successful attempt to deal with FOL
representation in GAs (Giordana & Salta 1993) (Gior-
dana, Saitta & Zini 1994). REGAL requires that the
user provides a model of the rule to be learned. For
instance, the user may provide the following model
(Giordana & Saitta 1993) 

Color(X,[red,blue,*]) AShape(X,[square,triangie,*]) 
-~3 Y [color(Y,[red,blue,*])Afar(X,Y,[0,1,2,3,*])]

Then, the GA is used to discover the correct values
in the predicates. A possible set of values can thus be
encoded as a string of genes, and can be represented as
a binary string. For instance, the values of "Shape" can
be represented by a 3 bits string. For a predicate with
numeric values, each bit encodes one possible value.
An additional bit may be used to encode the negation
of the internal disjunction of values.

On one hand, REGAL has several advantages from
the GA point of view: the GA works directly with bi-
nary strings of fixed length, as required by the original
GA theory. This theory has however been extended to
other representation languages (Radcliffe 1991) with
n-ary alphabets instead of binary. REGAL is also able
to encode complex formulas in the initial model with
for instance quantifiers or negation, because the GA
does not work on quantifiers but only on sets of val-
ues. Finally, the model provided by the user can be
viewed as background "knowledge.

On the other hand, REGAL has several limitations
from the point of view of knowledge discovery. Most
importantly, the user must provide the structure for
the rules to be learned. This assumes that the user
has already a rough idea of what he expects to dis-
cover. Also, REGAL does not deal with the kind of
background knowledge mentioned in figure 1. It does
not modify the variables in the predicates. Finally, for
dealing with numeric values, the binary representation
of the model may be very long which may experimen-
tally slow down the GA. For instance, if one consid-
ers that the Length predicate can take 100 values, the
binary encoding will be 101 bits long (including the
internal disjunction).

This paper provides a new technique for representing
FOL rules which overcomes the previously mentioned
limitations. One first difference is that rules will be
represented directly in FOL by using the predicates
and their argnunents as genes. The GA will be allowed
to perform other operations than in REGAL, like for
instance changing a predicate into a more general one
according to the background knowledge, or like chang-
ing a constant into a variable. However, two genes at
the same position in two rules must represent the same
predicate, if the crossover is to work well. This problem
is solved by using a covering principle in the rule dis-
covery process: an example is used as an initial model
and the GA is used to discover the best generalization
of this example. Then another example is chosen as a
new model in order to learn another rule until all exam-
ples are covered by lem~ed rules. This covering process
comes from the AQ algorithm (Michalski et al. 1986).
The combination of this covering algorithm with a GA
was firstly introduced in (Venturini 1994) with the SIA
algolJthm. SIA is however limited to attribute-based
representation and SIAO1 can be viewed as a major
extension of SIA.
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SIAOI

A covering principle

$27.AO1 main algorithm is a covering algorithm simi-
lar to AQ (Michalski et al., 1986). The system tries 
find from an example ex the best rule r according to
a rule-evaluation criterion taking into account the co-
herence of the rule, its completeness and other features
like the syntactic generality of the rule and the user’s
preferences for some predicates. Then all the positive
examples covered by r are removed, and the system ap-
plies the same process to an example ex’ chosen from
the remaining set of the non-covered positive exam-
ples. This results in the following algorithm, where/’4
is a disjunct of each learned rule:

Star methodology

1. Tie-O,

2. 79os +-- Examples of the concept to be learned.

3. jkfeg +-- Counter-examples of the concept.

4. While ~os # 0 do

(a) Choose ex "Pos asa seed.
(b) Find ttle best rule r (according to a rule-

evaluation criterion) obtained by generalization
from ex.

(c) Remove from 7~os all the examples covered by r.

(d) ~Ur.

5. Give T4 as the result.

The optimization algorithm used in the previous
point 4.(b) is a GA, which is called each time a seed
example must be generalized into a rule. The search
space is thus limited to the possible generalizations of
the seed example. This example is used to determine
the model of the rule to be learned, and is thus not
given by the user as in REGAL. Furthermore, with
another seed example, this model will be different and
is not constant as in REGAL.

SIAO1 search algorithm

The search process begins with only one individual (the
seed) in the population denoted by Pop. To obtain the
new generation, the algorithm applies to each individ-
ual a genetic operator (mutation or crossover), and in-
serts possibly the newly created individual in Pop. The
size of the population grows until it reaches a bound
given by the user (typically Pmaz = 50). The algo-
rithm is shown below:

1. Pop e-- { Seed }

2. Repeat

(a) Generate an intermediate population: for every
individual r of Pop, if r has not already produced
any offsprings, then create:

i. one offspring by mutation with probability
Pm r -~ rt

ii. two offsprings by crossover with probability
Pc r,r’ -+ rl,r~. The other parent r’ is se-
lected randomly in the population among rules
that have not produced yet any offsprings.

(b) For every individual r of the intermediate popula-
tion, possibly insert r in Pop only if r fL Pop and
either:

¯ the maximum size of the population is not
reached (r is added to Pop), or

¯ the maximum size of the population is reached,
and r fitness is better than the worst fitness ob-
served in Pop (r replaces the worst individual).

3. Until the fitness of the best individual observed has
not changed since the last n generations, and then
give this best individual as the result.

The default parameters are Pm = 0.8, Pc = 1-Pro =
0.2 and n = 5. This algorithm has the following prop-
erties:

¯ two individuals in the population axe necessarily dif-
ferent. This maintains in the population the diver-
sity required to prevent premature convergence that
may occur in GAs. The difference guaranteed be-
tween individuals is syntactic, and it proved to be a
good alternative in terms of complexity to the use
of more complex similarity measures, which m’e dif-
ficult to define in first order logic,

¯ the stopping of the algorithm is ensured in the fol-
lowing way: the best individual in the population
is never deleted due to the selection operator and
it may only be improved by the genetic operators.
Thus the fitness of the best individual is strictly in-
creasing and is also bounded,

¯ the search algorithm is non-deterministic, and in
particular SZ,401 is sensitive to the choice of the
seeds which will be processed.

Genetic operators

The genetic operators have been adapted to the cov-
ering principle of the algorithm. Thus the mutation,
operating on a gene generalizes it, and the crossover is
a standm’d one-point crossover which exchanges infor-
mation between two individuals. Let us consider for
instance the following rule r:

Pyramid(d) A Color(d,yellow) A Supports(c,d)
A Length(d,7) 

encoded as the string of genes represented in figure 2.
More precisely, the mutation selects randomly a rel-

evant gene on which it will operate randomly one of
the following modifications:

¯ if the gene codes a predicate, it is possible to gen-
eralize it according to the domain theory, for in-
stance "Pyramid" could be changed into "Pointed-
top" without modifying the arguments of the pred-
icate. If no more generalization of the predicate is
possible, then the mutation will drop it, replacing
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I Pyramid[dl Color [dlyellow I Supports]c I dlLength[d I 7l

Figure 2: The chromosome coding rule r.

the former symbol by an "empty" symbol, meaning
that the predicate and the arguments immediately
following it are not to be considered anymore. The
corresponding part of the chromosome becomes a
non-coding part, and no mutation will take place
there (having no effects).

* ff the gene codes a numeric constant, then the mu-
tation can create an interval, or if such an interval
already exists, the mutation can widen it. The fol-
lowing operations are thus possible: "7" -+ "[7,9]’,
"[7,9]" -~ "[6,9]". The bounds of the intervals are
generated randomly in a user given range,

¯ if the gene codes a symbolic constant, then the muta-
tion may create an internal disjunction or generalize
an existing disjunction. This may result in the fol-
lowing operations: "yellow" ~ "yellow V orange" ,
"yellow V orange" -r "yellow V orange V blue". A
value like "yellow" may also be changed to "yellow-
like" according to the background knowledge,

* it is also possible to change a numeric or symbolic
constant into a new variable. Because creating new
variables is interesting as long as relations can be
detected, this kind of mutation may have an effect
not only on the gene it is destined to, but on the en-
tire chromosome: it finds all the occurrences of the
symbol concerned in the chromosome and then ran-
domly replaces them by the new variable or leaves
them unchanged. A mutation operating on the sec-
ond "d" of r could generate for instance one of the
following rules:
"Pyramid(d)AColor(X,yellow) ASupports(c,d) 
"Pyramid(X)AColor(X,yellow)ASupports(c,d)A...",
"Pyramid(d)AColor(X,yellow) ASupports(c,X)A...",
"eyramid(X)AColor(X,yellow)ASupports(c,X)A...",
assuming that "X" is a new variable occurring
nowhere else in the formula.

¯ finally the mutation can apply the same process of
variabilization to a variable instead of a symbolic or
numeric constant.

Two crossover operators are available. The fix’st one
(used by default) randomly determines a cut point lo-
cated before a predicate and exchanges the two re-
maining strings (see figure 3). The offsprings that re-
sult from this restrained crossover operator are always
valid because they are generalizations of the same seed
example. This restrained one-point crossover is use-
ful because it prevents the appearance of the hidden
arguments following an empty predicate. Allowing a
cut point just after the "Pyramid" predicate would on
the previous example hide the "X" variable in the first
offspring and reveal the argument hidden due to the

empty predicate. Since this kind of behavior must be
avoided, it has been impeded.

If the seed contains only one predicate symbol, the
restrained one-point crossover becomes useless, and
therefore the classical one-point crossover applies. This
is the case when one wants to use $Z‘4(91 on a clas-
sical attribute/value learning base. In such a case it
is possible to add the same arbitrary predicate symbol
before each line of data, with no domain theory for the
predicates.

Evaluation function

The fitness function gives a numerical evaluation of an
individual. In 827,401 like in many genetic algorithms,
this function has been empirically designed, and gives
a result in [0,1]. Four criterions are taken into account:

¯ the consistency of the rule. Because the algorithm
proceeds mainly by generalization, this criterion is
critical: a rule covering too many negative examples
will continuously generate inconsistent rules. There-
fore, the fitness function will strongly penalize any
inconsistent rule, and it will give a score of 0 to any
rule covering more counter-examples than allowed
by a noise parameter,

¯ the completeness of the rule. Unlike consistency, this
criterion gives a positive contribution to the fitness,
growing linearly with the number of positive exam-
ples covered,

¯ the syntactic generality of the rule computed with a
home-made formula returning a value in [0,1]; this
allows the algorithm to favor between rules with
equal completeness over the set of examples, the one
containing the more variables and the largest dis-
junctions and intervals. This criterion is particularly
important in the case of a learning base whose ex-
amples are distant -from a mutation point of view-
in the search space.

¯ the user’s preferences. In 8Z,401 , the user can fix
parameters to favor the presence of a given predi-
cate in a rule, or to favor the presence of relations
between predicate arguments. Fulfilling the user’s
preferences is expressed by another function which
gives a result in [0,1].

Given E~ the number of examples covered, EG the
number of counter-examples covered, T(9 the total
number of examples, TO the total number of counter-
examples, the maximum noise tolerated Af ,the syn-
tactic generality S of the rule and it’s appropriateness
to the user’s preferences 7~, we can define:

¯ the absolute consistency of the rule C]q" = TO-EO
TO ’
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Figure 3: Tile crossover applied to two parents rules (a) with a single cut point (denoted 
offsprings rules (b).

Y X 0 0 0

(b) I Pyramid X Color X]yellow I Supports c d
d 7

0 0 Color Y yellow Supports]Y xlLength 0101
"[[’) may give two

¯ its absolute completeness CM = E E__¢
T(9

Therefore, the quality of an individual r will be:

¯ (1-a-fl)C.MWaSWflP if CA/’> 1-Af
¯ 0 otherwise.

a and fl are user-defined parameters, but typically
1 meaning that user’sa < 10.fl and 0 _< a + fl < T~+Te

preferences are more important than the absolute gen-
erality of a formula, and that these two criterions can-
not prevent preference for a more complete rule.

Conclusion
We have presented in this paper a new learning
algorithm based on genetic algorithms that learns
first order logic rules from a set of positive and
negative examples and from background knowledge.
SZ.AO1 represents rules in a high level language, and
is thus able to perform high level operations such as
generalizing a predicate according to the background
knowledge or like changing a constant into a variable.

Genetic algorithms thus prove that they can repre-
sent and learn rules in high level language involving
relations, as initially demonstrated by REGAL, and
now by SZ.AO1 . In this context, the ability of these
algorithms to be parallelized is certainly essential com-
pared to other heuristic techniques. (Giordana, Saitta
& Zini, 1994)

Current research on SZ.AO1 concern the paralleliza-
tion of the algorithm, its application to real DBs and
its extension to deal with more expressive and complex
domain theories.
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