
Discovery and Maintenance of Functional Dependencies
by Independencies

Siegfried Bell

Informatik VIII
University Dortmund

44221 Dortmund Germany
bell@lsS.informatik.uni-dortmund.de

Abstract

For semantic query optimization one needs detailed
knowledge about the contents of the database. Tradi-
tional techniques use static knowledge about all pos-
sible states of the database which is already given.
New techniques use knowledge only about the current
state of the database which can be found by methods
of knowledge discovery in databases. Databases are
often very large and permanently in use. Therefore,
methods of knowledge discovery are only allowed to
take a small amount of the capacity of the database
system. So database access has to be reduced to a
minimum during the process of discovery and obvi-
ously if the database changes during the process of
maintenance of the discovered knowledge.
In this paper, the main effort has been put into min-
imizing the number of database accesses, w.r.t, dis-
covery and maintenance. This is exemplified by the
discovery of functional dependencies. We improve the
inference of functional dependencies by using indepen-
dencies and cardinality dependencies. First we give
an axiomatization. Then we describe the three parts
of our system: the initialization by cardinality depen-
dencies, the exclusion of hypothetical dependencies by
entailment, and the verification of hypothetical depen-
dencies by SQL queries. Moreover, we investigate the
complexity of each subsystem. In addition, we de-
scribe the maintenance of discovered dependencies and
finally draw some conclusions.

Introduction and Related Work
Query optimization can be regarded as the process of
transforming a query Q into another query Q~ that
can be evaluated more efficiently, as mentioned by
Chakravarthy et al. (Chakravarthy, Grant, & Minker
1990). Semantic query optimization (SQO) is mainly
based on the use of semantic knowledge during the op-
timization process. Thus, the user is motivated to con-
centrate on the application rather than forming queries
with explicit semantic knowledge of the application.

So far, the main problem is to provide the optimizers
with semantic knowledge about the database during
SQO. Obviously, the only kind of semantic knowledge
which is always available in relational databases man-
agement systems (DBMS) are integrity constraints like

primary or foreign keys. Thus, Chakravarthy et al.
(Chakravarthy, Grant, & Minker 1990) have defined
SQO in respect of integrity constraints as to transform
a query into one which is semantically equivalent to
the original query, but which can be executed more
efficiently. King (King 1981) argued that the costs
evaluating the transformed query plus the transforma-
tion costs should be lower than the costs of evaluating
the original query. Semantic equivalence means that
the transformed query has the same answer as the orig-
inal query on all database states satisfying the integrity
constraints. Jarke et al. (Jarke, Clifford, & Vassiliou
1984) have shown several ways to use functional de-
pendencies for SQO. But the constraints provided by
a DBMS are few and often too general in the sense
that they are valid in all possible database states.

Another way is to provide SQO with semantic know-
ledge by hand which also seems no adequate tech-
nique. For example, King (King 1981) uses constraints
on attribute values to optimize queries by his sys-
tem QUIST. Zhang and Ozsoyoglu (Zhang & Ozsoyo-
glu 1994) have presented also techniques for semantic
query optimization which are based on implication con-
straints. Implication constraints are a generalization of
functional dependencies.

The arise of knowledge discovery in databases
(KDD) offers a new approach to solve both prob-
lems: provides SQO automatically with constraints
and extends them to constraints which precisely re-
flects the present content of the database. Siegel has
reported this by the first time (Siegel 1988) and (Siegel,
Sciore, ~z Salveter 1991). Such constraints have been
termed, for example, Database Abstractions in (Hsu
Knoblock 1993), Metadala in (Siegel & Madnick 1991),
and Meta Knowledge in (Schlimmer 1991). Also, Hsu
and Knoblock (Hsu & Knoblock 1993) have shown the
benefits of optimization techniques based on automa-
tically discovered constraints. But we have to keep
in mind that these constraints are only valid in the
present state of the database and therefore describe
the content of the database precisely. The constraints
may become invalid, if the database changes. There-
fore, we have to maintain the discovered knowledge, if

Bell 27

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

1 NULL 2we use it more than once.
Problmns arise if knowledge discovery is applied to

real world databases which are continuously in use and
large. Therefore, knowledge discovery ill databases is
only allowed to take a small portion of the system re-
sources.

Comparable to our approach in order to discover
functional dependencies, there are similar ones by
Mannila and R/iih~i (Mannila & Riiildi 199l), Dehaspe
et al. (Dehaspe, Laer, & Raedt 1994), Savnik and
Flach (Savnik & Flach 1993), and Schlimmer (Schlim-
mer 1993). Mannila and Riiih~i have investigated the
problem of inferring FDs from example relations in or-
der to determine database schemes. But they do not
use a complete inference relation regarding indepen-
dencies. Sawfik and Flach have investigated a special
data structure for the FDs. Briefly, they start with a
bottom-up analysis of the tuples and construct a neg-
ative cover, which is a set of FIs. In the next step they
use a top-down search approach. They check the valid-
ity of a dependency by searching for FIs in the negative
cover. Also, the negative cover is not complete regard-
ing a classical consequence relation. Schlimmer also
uses a top-down approach, but in conjunction with a
hash-function in order to avoid redundant computa-
tions. However, he does not use a complete inference
relation even regarding functional dependencies. Also
do Dehaspe et al. because their inferences are based on
® subsumption. In addition, the verification is based
on theorem proving which is not suitable for real world
databases.

In general, these authors do not use a relational
database like OracleV7 or any other commercial
DBMS. In such case, we argue that the proposed algo-
rithm and approaches have to redesign according the
set oriented interface of a relational database system.
For example, the concept of the negative cover has only
advantages if the tuples can be accessed directly, i.e.
the tuples are stored in the main memory as Prolog-
facts. Savnik and Flach have introduced it because
the complexity for testing contradiction of the FDs is
reduced.

In contrast to these appproaches our purpose is dif-
ferent because we maintain the discovered FDs in order
to use them all the time by semantic query optimiza-
tion.

In addition, we argue that by using a relational
database system, the higher complexity of the com-
plete inference relation is justified by the size of a real
world database.

We have already investigated the discovery of value
restrictions, unary inclusion dependencies, and time-
tional dependencies in relational databases and has im-
plemented this approach by using the database man-
agement system ORACLE (Bell & Brockhausen 1995).
Also, we have given an approach to test these depen-
dencies by SQL statements and have given an empirical
evaluation.

28 KDD--95

1
NULL

2

true false false
false true false
false false true

Figure 1: Equality operator

Thus, this paper focuses on minimizing the number
of accesses to the database w.r.t, the discovery of func-
tional dependencies and their maintenance. The infer-
ence of functional dependencies is improved by using
functional independencies and by cardinality depen-
dencies. Also, we regard Nu:l_:k values because they fre-
quently arise in databases. We give an axiomatization
of these independencies and discuss the complexity of
the implemented inference relation which is given by
three algorithms. Then we describe dependency main-
tenance caused by insertion or deletion of tuples.

Functional Independencies

In this section we discuss functional independencies
and their axiomatization. We assume familiarity with
the definitions of relational database theory (see for
example (Kanellakis 1990)) and the basic properties
of the classical consequence relation. The capital let-
ters A, B, C,... denote attributes, and X, Y, Z denote
attribute sets. We do not distinguish between an at-
tribute A and an attribute set {A}. We omit proofs
when they are trivial. Remember that every attribute
is associated with a set of values, called its domain.
Functional dependencies are defined as usual. Addi-
tionally, we consider Null values because the ISO stan-
dard permits Nu].:I. values in any attribute of a candi-
date key. Therefore, we adopt a special equality opera-
tor for the definition of the FDs, ~, which is illustrated
in figure 1.

The so called Armstrong’s Axioms provide a correct
and complete axiomatization for them and establish an
inference relation I-A.

We now can define the consequences of a set of de-
pendencies. Let E be a set of functional dependencies,
then X ~ Y is a consequence of E, or X ---+ Y 6
Cn(E): whenever a relation satisfies E it satisfies X --+
Y. The closure of attributes X w.r.t, a set of FDs ?,
is defined as: closure(X, ~) = {Y I X ---+ Y e Cn(Z)}
and is denoted by X.

Functional independencies have been introdnced by
aan~ (aanas 1988) to mirror functional dependencies.
But they are meant for a totally different purpose: FIs
are not semantical constraints on the data, but a sup-
port for the database designer in the task of identifying
functional dependencies. In addition, they also help
to improve the inference of fimctional dependencies.
We simplify the definition of functional independen-
cies here by ignoring Null values.

In (Paredaens el al. 1989) afunctional dependencies1

are introduced, but they are a sort of semantic con-
straints and much stronger than our functional inde-
pendencies. Therefore, we cannot use them to improve
the inference of FDs.

Definition 1 (Functional Independency (FI))
X 74 Y denotes a functional independency. A rela-
lion r satisfies X 7t* Y (r ~ X 74 Y) if there exist
tuples 11, t2 of r with tl[XI~-I2[X] and tl[Y]~t2[Y].

The consequences of FDs and FIs are defined as
follows: Let ~ be a set of FDs and ~’ aset of FIs.
Cn(~ U ~,’) := {~l for each relation r if r M ~ U ~’,
then r ~ ~} where a is a FD or FI. ~ U ~’ is
called inconsistent, if there exists a X 7¢ Y so that
X -~ Y e Cn(~. U ~’) and X ~ Y e Cn(~,U ~.’)
vice versa.

An axiomatization of FIs has already been given by
Janas (Janas 1988) which establishes an inference re-
lation b..a,

Definition 2 (FIs) The axiomatization by Janas is
given by:

XJ.Y1. X~CYZ

2. XZ~-~YZX ZTt, Y

3. x-,z, xc-,zYC-,z

We show with a counterexample that this inference
relation is not complete, i.e. there exists some X 74 Y
with X 74 Y E Cn(EUZ’) and EU~.’ ~a,~ X 74

Lemma 1 The following inference rule is correct:

z --,Y, ZTCY

Lemma 2 { X --* Y, Z 74 Y } ~anas Z ~/-~ X.

Proof-" We assume that X, Y and Z are disjoint.
Then obviously the first and the second rule cannot
be applied to infer Z 74 X. Thus, the third rule can
be applied only. But Z is not in the closure of Y and
~], i.e. {X ~ Y} I;/A Y ---* Z. Thus, we cannot infer

x. []
Theorem 1 The axiomatization by Janas (Janas
1988) is not complete.

Instead, we propose the following axiomatization:

Definition 3 (Inference of FIs) An inference rela-
tion ~-li is given by an axiomatization of the FDs and
the following inference rules:

XV;I, YW, W CV
FII: xl~Y -

FI2: x-.Y, XOZY74Z

aThe definition of the AD X-//¢ Y requires that for
each tuple t there exists a tuple t’ so that fiX] -a t’[X] and
t[Y]~- t’[Y].

FI3: Y---~Z,X?4ZX74Y

For example, the functional independency X 74 YZ
which is a consequence of Janas’ first inference rule
can be inferred by P1i as follows: we infer YZ ~ Y by
Armstrong’s Axioms and use FI3 to infer a FIX 74 YZ
fromX74YandYZ~Y.

Theorem 2 (Soundness and Completeness)
The inference rules FI1 to FI3 are correct and com-
plete for a consistent set of functional dependencies,
respectively independencies.

Proof: For details refer to (Bell 1995). A rough sketch
is as follows: First, it has to be shown that the FIs do
not affect the inference of FDs. Second, that we can
infer from a set of FIs only trivial inferences, e.g. if
AB 74 C then A 74 Cor ifAB 74 C, then AB 74
CD. The last part can be seen by a negative proof
of Armstrong’s Axioms, or by a construction of the
certain possible cases. []

Inference of Functional Independencies

Our system consists of three elements: initialization,
entailment, and verification. It is roughly sketched in
table 1. First, we initialize our data structure List
for the FDs and FIs. Then, we generate hypotheti-
cal dependencies, check if these are already entailed
by the known dependencies or independencies, and
verify the remaining ones by querying the database.
We use a kind of breath first search because we gen-
erate only hypotheses which are not related by each
other. Terminating is ensured, because if no already
entailed hypotheses can be generated, then the algo-
rithm stops. The algorithms are written in PROLOG
and connected to an OR.ACLE7 server by a SQL inter-
face via TCP/IP.

Verification

Functional dependencies can be verified by sorting the
tuples of the relation which takes O(n log n) time w.r.t.
the number of tuples, cf. (Mannila & RAthe. 1991).
our implementation we use the nvl statement in SQL
to handle the NULL values.

Entailment

Entailment of FDs is often discussed by studying if
[-A X ----+ Y holds where ~ is a set of FDs and

n =]~4. This can be decided in linear time with appro-
priate data structures (Kanellakis 1990). By Lemma
2, we can easily construct an algorithm for testing FIs:

function ~ t3 ~’ I-fi X 74 Y;
begin

for eachV 74 W E ~’ do
if ~ I-A V --~ X and E [-A Y ~ W

then return Yes;
else return No;

end;

Bell 29

1. Initialize List.
2. Repeat
(a) Take an element t from List and generate

all tuples T with a fixed length that are
not entailed by List.

(b) Query DB server for T.

(c) Add T to List and find a minimal cover
for it.

3. until no already entailed hypothesis can be
generated

Table 1: Description of our System

It is obvious that testing FIs takes O(n2) time where
n = max(E, E~). Correctness and completeness follow
immediately from the previous section.

The sets of FDs and FIs are usually very large. We
can reduce these sets taking into account the follow-
ing observation: The set of functional dependencies is
partitioned into equivalence classes by the satisfiabil-
ity definition. Each class of functional dependencies
specifies the same set of admissible relations. As these
equivalence classes will typically contain a large num-
ber of elements, it is reasonable to define a suitable rep-
resentation with a minimal number of elements. This
representation is usually called a minimal cover, see
(Maier 1980). We can simply extend the definitions
(Maier 1980) by using our inference relation t-]i:

Definition 4 (Minimal Cover) Let E be a minimal
set of FDs.

E’ is a set of FIs and is called minimal if for all
V 7c, W E Cn(E O E’) there exists no X ~c, y E E’
with E u E’\{X ¢~ r} ~s, V ¢. W.

Therefore, minimizing can be done by repeated ap-
plication of I-]i and takes O(na) time for some set of
FDs and FIs.

Initialization

The data structures of the FDs and FIs are initialized
with information about primary keys and sufficient
conditions for FIs. These conditions are given by the
cardinality of the attributes which were introduced by
Kanellakis et al. as Unary Cardinality Dependencies
(UCDs) in the unary case (Kanellakis, Cosmadakis,
Vardi 1983). We have extended these UCDs to the gen-
eral case of CDs and have given an axiomatization in
(Bell t995). Thus, we propose the following two rules
as sufficient conditions for FIs:

Definition 5 (Cm’dinality of Attributes) Let X
and Y be sets of attributes:

CD-FII: IXl>_lYI, X;/~YY~X

30 KDD-95

CD-FI2: IxI>WIY~X
The correctness of these rules is indicated by the

fact that for every FD X --, Y equal X values demand
equal Y values. But this implies that there must exist
at least as many X values as Y values which can be
formulated only with independencies. This fact clearly
demonstrates the usefulness of FIs.

Unfortunately, it turned out that testing CDs by our
SQL-interface is as expensive as testing FDs2. Thus,
we check the cardinality of UCDs in a single pass for
each attribute and approximate CDs by the following
Lemma without a proof:

Lemma 3 Let A E X be the attribute with the max-
imal cardinality and Y = B1,...,Bn. If IA[>_
(IBxl...l~,~l), then IXI _> Irl-

Hence, we initialize our data structures of FDs and
FIs with CDs approximated in this manner and the in-
ference rule CD-FI2 only. Since the number of CDs is a
combinatorial function of the number of attributes, it
is easy to see that the number of CDs grows exponen-
tially w.r.t, the nmnber of attributes. Therefore, the
algorithm is in EXPTIME. But, as a matter of fact,
this approximation algorithm does not need any re-
sources of the database system. In addition, the worst
cases arise only rarely.

Complexity of the System

Our system is in EXPTIME because there exist re-
lations with the number of PDs in a minimal cover
growing exponentially w.r.t, the number of attributes.
This has been shown by Mannila and R~iih/i (Mannila
& R/iih~i 1991). As there are relations with the munber
of FIs growing exponentially the performance cannot
be improved by using FIs instead of FDs.

Theorem 3 (Cardinality of the set of FIs)
For each n there exisls a relation r which satisfies a
minimum cover of FIs with lhe cardinality f~(2n/2).

Proofi see (Bell 1995). []
If the relation of Mannila and R/iih~i is added to

ours, then it is easy to see that relations exist where
the sets of FDs and FIs grow exponentially w.r.t, the
number of attributes. Again, we argue that our goal,
to minimize database access, can be achieved with this
system.

Maintenance of FDs
Obviously, the discovered FDs can become invalid,
because they only describe the current state of the
database. Therefore, the discovered FDs have to be
maintained if new tuples are added, old tuples are
deleted, or existing tuptes are updated.

If maintenance of FDs is seen as revision, it is more
suitable to do theory revision than base revision as

2We can only count the number of values of single at-
tributes by the SQL statement count.

z.:={}
for each A1,..., Aa --* B1, ̄ ¯., Bm E E do
begin

bl,...,brn,Cl,...,cI :=
select B1,. ̄ ., Bin, C1, ̄ ¯., Cz
from r
where Ai, = ail, ¯ ¯ ¯, Ai,, = aim

ifAi=o mbi=d-+i then
En := En UAI,...,An -* B1,...,Bin

else begin
E := E\A1,...,A, --o B1,...,Bm
if there is a minimal u with C5,... , Cl~
and Ai=l vdt~ ~ ct~ then
E~ := En UA1,...,An,Ch,...,C~

B1,..., Bm
end

end

Table 2: Algorithm for Inserting New Tuples

introduced by G~irdenfors (G~irdenfors 1988). In con-
trast to theory revision, base revision works on the
whole consequnce set So it is easy to see, for example,
that by adding a new tuple the second FD of the set
{AB ---* CD, CD ~ EF} may become invalid, but the
AB ---* EF remains valid. Therefore, in a first step the
minimal set of FDs E is transformed into a set Em of
FDs. This new set is called most general and can be
computed with the following algorithm:

for each X ---* Y E E do
if Y = closure(X, E)\X then

Obviously, the complexity depends on the cardinal-
ity of E and the closure operation which is mentioned
above.

Inserting Tuples

If new tuples are added, FDs may become in-
valid. Thus, each FD is checked if it is still valid.
If not then the FD has to be replaced by a set of
FDs which are valid. The algorithm is listed in ta-
ble 2 and is applied before the tuple is inserted.
Let (dl,...,dn+m+t) be the new tuple, r the cor-
responding relation with the relation scheme R =
(A1,...,An,B1,...,Bm,C1,...,Ct), A1,...,A, ---*
B1,..., Bm the selected FD and CI,..., Ci the remain-
ing attributes. The ci can consist of values and that
we expand the left hand side of each invalid FD by
attributes which values are different from the selected
ones.

The advantage of this algorithm is that it only one
simple query for each new tuple and for each FD is
needed. It is easy to see that the removed FDs are

no longer valid. For the correctness, we first give the
following lemma:

Lemma 4 Each generated FD is valid.

Proof: We call the new tuple tl. We know that
AI,...,An, B1,...,B,~ is invalid. Then there must
be at least
one tuple t2 so that tl [As,..., An]~- t2[A1,..., Aa] and
tl[B1,...,Bm]~t2[B1,...,B,,]. We know by con-
struction that tl[Ch,..., Ct~]~ t2 [Ch, . . ., Ct~]. Hence,
tl IX, Ch, . . ., Ct~]~ t~[X, Ch, . . . , Ct,] and
A1,...,A,,Ch,...,Ct~ --~ B1,...,Bin is valid. []

Completeness can now be seen by the following
lemma:

Lemma 5 Let E be the former set of FDs and En be
the revised set of FDs. rn is obtained by expanding r by
one tuple. Assume that E ~ X --* Y and r ~ X --* Y.

If En ~ X---* Y, then rn ~ X ~ Y.
Proof." By correctness we only add valid FDs. By
minimality of the added attributes to the LHS of the
FD, it is guaranteed that an FD with less attributes at
the LHS is not valid. []

We conclude that if our algorithm is applied on E
and the result is E~, then r~ ~ E~ by the lemmas.

Deleting Tuples

Deleting tuples does not affect the old set of FDs, but
some new FDs may become valid. Therefore, we have
to revise the FDs and add new FDs if necessary. Un-
fortunately it turned out, that deleting tuples is the
same as discovering FDs with a given starting set of
FDs. Therefore computation in this case can be as
expensive as the discovery process.

Updating Tuples

Normally, updating tuples can be seen as a combina-
tion of deleting and inserting tuples. But sometimes we
can simplify this process by comparing the old values
with the new ones.

Assume that d = (al,...,a~,bl,...,bm,cl,...,cg)
is the tuple which will be updated by the values
(a~,.. ’ ’ ’ ’ .. c~), and the selected ¯,an,bl,...,bin,el,. ,
is A1,...,An ~ B1,...,Bm.

¯ If the values of the attributes of the left and the right
hand side do not change, then we have nothing to
do.

¯ If Ai=l bl = b~ and at least one value of Ai,
1 < i < n, does not occur in r, then we have only to
apply the algorithm for deleting tuples.

Discussion
Our goal has been to minimize database access during
the discovery of FDs and the maintenance of the dis-
covered FDs. We have shown, that this can be achieved
by the axiomatization of functional dependencies and
independencies presented in this paper and the use of

Bell 31

cardinality dependencies. The alternative to a com-
plete inference would be a more or less exhaustive test
of FDs oll tile database. Usually, real world databases
are very large, tile number of tuples is much larger than
the number of attributes. Tile main costs of database
management systems are caused by reading from sec-
ondary memory. Therefore, a single saved database
query makes up for tile costs of inferring FDs and FIs.
This is true for tile maintenance, too.

Basically, our system is to discover candidate keys
because these can be used efficiently for optimization
techniques. Candidate keys are based on FDs so we
have concentrated on only discovery of FDs. In gen-
eral, algorithms for discovering PDs are in EXPTIME
w.r.t, the number of attributes. We have already in-
vestigated discovering foreign keys which play also an
important role in SQO.

Currently, we are investigating tile use of data de-
pendencies in semantic query optimization.

Acknowledgment: I would like to thank Peter
Brockhausen, Martin Mfihlenbrock, Steffo Weber and
Sabine Wohlrab for comments. This work is partly
supported by the European Community (ESPRIT Ba-
sic Research Action 6020, project Inductive Logic Pro-
gramming).

References

Bell, S., and Brockhausen, P. 1995. Discovery of
constraints and data dependencies in databases (ex-
tended abstract). In Lavrac, N., and Wrobel, S., eds.,
Machine Learning: ECML-95 (Proc. European Conf.
on Machine Learning, 1995), Lecture Notes in Arti-
ficial Intelligence 914, 267 - 270. Berlin, Heidelberg,
New York: Springer Verlag. An extended version is
also available as Research Report by the authors.

Bell, S. 1995. Inferring data independencies. Techni-
cal Report 16, University Dortmund, Informatik VIII,
44221 Dortmund, Germany.
Chakravarthy, U. S.; Grant, J.; and Minker, J. 1990.
Logic-based approach to semantic query optimiza-
tion. ACM Transaction on Database Systems 15(2).
Dehaspe, L.; Laer, W. V.; and Raedt, L. D. 1994.
Applications of a logical discovery engine. In Wrobel,
S., ed., Proe. of the Fourth International Workshop
oll hlductive Logic Programmiug, GMD-Studien Nr.
237, 291-304. St. Augustin, Germany: GMD.

G~rdenfors, P. 1988. Knowledge in Flux -- Modeling
the Dynamics of Epistenlic Slates. Cambridge, MA:
MIT Press.

Hsu, C.-N., and Knoblock, C. A. 1993. Learning
database abstractions for query reformulation. In
Knowledge Discovery in Database, Workshop, AAAI-
93.

Janas, J. M. 1988. Covers for functional indepen-
dencies. In Conference of Database Theory. Springer,
Lecture Notes in Computer Science 338.

32 KDD-95

Jarke, M.; Clifford, J.; and Vassiliou, Y. 1984. An
optimizing prolog front-end to a relational query sys-
tem. ACM SIGMOD.

Kanellakis, P.; Cosmadakis, S.; and Vardi, M. 1983.
Unary inclusion dependencies have polynomial time
inference problems. Proc. 15th Annual ACM Sympo-
sium on Theory of Computation.

Kanellakis, P. 1990. Formal Models and Semantics,
Handbook of Theoretical Computer Science. Elsevier.
chapter Element.s of Relational Database Theory, 12,
1074 - 1156.
King, J. J. 1981. Query optimization by semantic rea-
soning. Technical Report STAN-CS-81-857, Stanford
University.

Maier, D. 1980. Minimum covers in tile relational
database model. Journal of the A CM 27(4):664 - 674.
Mannila, H., and RS.ih~i, K.-J. 1991. The design of
relational databases. Addison-Wesley.
Paredaens, J.; de Bra, P.; Gyssens, M.; and van
Gucht, D. 1989. The Structure of the Relational
Database Model. Springer Verlag Berlin Heidelberg.

Savnik, I., and Flach, P. 1993. Bottum-up indution of
functional dependencies from relations. In Piatetsky-
Shapiro, G., ed., KDD-93: Workshop on Knowledge
Discovery in Databases. AAAI.

Schlimmer, J. C. 1991. Database consistency via
inductive learning. In Eight International Conference
on Machine Learning.
Schlimmer, J. 1993. Using learned dependencies to
automatically construct sufficient and sensible editing
views. In Piatetsky-Shapiro, G., ed., KDD-93: Work-
shop on KT~owledge Discovery in Databases. AAAI.
Siegel, M., and Madnick, S. M. i991. A metadata ap-
proach to resolving semantic conflicts. In Conference
on Very Lalye Databases.

Siegel, M.; Sciore, E.; and Salveter, S. 1991. Rule
discovery for query optimization. In Knowledge Dis-
covery in Databases. Menlo Park: AAAI Press. chap-
ter 24.
Siegel, M. D. 1988. Automatic rule derivation for
semantic query optimization. In Second International
Conference on Expert Database Systems.

Zhang, X., and Ozsoyoglu, Z. M. 1994. Reasoning
with implicational and referential constraints in se-
mantic query optimization. In Workshop on Con-
straiuts and Databases, Post-lLPS.

